裂纹闭合应力及其用于评价岩石微裂纹损伤
- 格式:pdf
- 大小:502.26 KB
- 文档页数:10
弹性力学基本知识考试 一、基本概念:(1) 面力、体力与应力、应变、位移的概念及正负号规定 (2) 切应力互等定理:作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。
(3) 弹性力学的基本假定:连续性、完全弹性、均匀性、各向同性和小变形。
圣维南原理;(提边界条件)如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受到的影响可以忽略不计。
(4) 轴对称;在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。
这种问题称为空间轴对称问题。
二、平衡微分方程:(1) 平面问题的平衡微分方程; 0yx x x xy yy f x y f xyτστσ∂∂++=∂∂∂∂++=∂∂(记)1、平衡方程仅反映物体内部的平衡,当应力分量满足平衡方程,则物体内部是平衡的。
2、平衡方程也反映了应力分量与体力(自重或惯性力)的关系。
x y xy u x v y v u xyεεγ∂=∂∂=∂∂∂=+∂∂(记)1、几何方程反映了位移和应变之间的关系。
2、当位移完全确定时,应变也确定;反之,当应变完全确定时,位移并不能确定。
(刚体位移) 三、物理方程;(1) 平面应力的物理方程;()()()1121x xyy yx xy xyE EEεσμσεσμσμγτ=-=-+=(记)(2) 平面应变的物理方程;()22111121x xy y yx xy xyE E Eμμεσσμμμεσσμμγτ⎛⎫-=- ⎪-⎝⎭⎛⎫-=- ⎪-⎝⎭+= 四、边界条件;(1) 几何边界条件; 平面问题:()()()()s su u s v v v == 在u s 上;(2) 应力边界条件; 平面问题:()()xyx xsxyyysl m f l m f σττσ+=+=(记)(3) 接触条件;光滑接触:()()n nσσ'= n 为接触面的法线方向 非光滑接触:()()()()n n n nu u σσ'='= n 为接触面的法线方向1.弹性力学,也称弹性理论,是固体力学学科的一个分支。
练习题一、名词解释:1、各向异性:岩石的全部或部分物理、力学性质随方向不同而表现出差异的性质。
2、软化系数:饱水岩样抗压强度与自然风干岩样抗压强度的比值。
3、初始碎胀系数:破碎后样自然堆积体积与原体积之比。
4、岩体裂隙度K:取样线上单位长度上的节理数。
5、本构方程:描述岩石应力与应变及其与应力速率、应变速率之间关系的方程(物理方程)。
6、平面应力问题:某一方向应力为0。
(受力体在几何上为等厚薄板,如薄板梁、砂轮等)1.平面应变问题:受力体呈等截面柱体,受力后仅两个方向有应变,此类问题在弹性力学中称为平面应变问题。
2.给定载荷:巷道围岩相对孤立,支架仅承受孤立围岩的载荷。
3.长时强度:作用时间为无限大时的强度(最低值)。
4.扩容现象:岩石破坏前,因微裂隙产生及内部小块体相对滑移,导致体积扩大的现象5.支承压力:回采空间周围煤岩体内应力增高区的切向应力。
1.平面应力问题:受力体呈等厚薄板状,所受应力为平面应力,在弹性力学中称为平面应力问题。
2.给定变形:围岩与母体岩层存在力学联系,支架承受围岩变形而产生的压力,这种工作方式称为给定变形。
3.准岩体强度:考虑裂隙发育程度,经过修正后的岩石强度称为准岩体强度。
4.剪胀现象:岩石受力破坏后,内部断裂岩块之间相互错动增加内部空间在宏观上表现体积增大现象。
5.滞环:岩石属滞弹性体,加卸载曲线围成的环状图形,其面积大小表示因内摩擦等原因消耗的能量。
1、岩石的视密度:单位体积岩石(包括空隙)的质量。
2、扩容现象:岩石破坏前,因微裂隙产生及内部小块体相对滑移,导致体积扩大的现象。
3、岩体切割度Xe:岩体被裂隙割裂分离的程度:4、弹性后效:停止加、卸载,应变需经一段时间达到应有值的现象。
5、粘弹性:岩石在发生的弹性变形具有滞后性,变形可缓慢恢复。
6、软岩(地质定义):单轴抗压强度小于25MPa的松散、破碎、软弱及风化膨胀类岩石。
1.砂土液化:饱水砂土在地震、动力荷载或其它物理作用下,受到强烈振动而丧失抗剪强度,使砂粒处于悬浮状态,致使地基失效的作用或现象。
《岩体力学》课后习题附答案一、绪论岩体力学:研究岩体在各种力场作用下变形与破坏规律的科学。
.二、1.从工程的观点看,岩体力学的研究内容有哪几个方面?答:从工程观点出发,大致可归纳如下几方面的内容:1)岩体的地质特征及其工程分类。
2)岩体基本力学性质。
3)岩体力学的试验和测试技术。
4)岩体中的天然应力状态。
5)模型模拟试验和原型观测。
6)边坡岩体、岩基以及地下洞室围岩的变形和稳定性。
7)岩体工程性质的改善与加固。
2.岩体力学通常采用的研究方法有哪些?1)工程地质研究法。
2)试验法。
3)数学力学分析法。
4)综合分析法。
二、岩块和岩体的地质基础一、1、岩块:岩块是指不含显著结构面的岩石块体,是构成岩体的最小岩石单元体。
有些学者把岩块称为结构体、岩石材料及完整岩石等。
2、波速比k v:波速比是国标提出的用来评价岩的风化程度的指标之一,即风化岩块和新鲜岩块的纵波速度之比。
3、风化系数k f:风化系数是国标提出的用来评价岩的风化程度的指标之一,即风化岩块和新鲜岩块饱和单轴抗压强度之比。
4、结构面:其是指地质历史发展过程中,在岩体内形成的具有一定的延伸方向和长度、厚度相对较小的地质面或带。
它包括物质分异面和不连续面,如层面、不整合、节理面、断层、片理面等,国内外一些文献中又称为不连续面或节理。
5、节理密度:反映结构发育的密集程度,常用线密度表示,即单位长度内节理条数。
6、节理连续性:节理的连续性反映结构面贯通程度,常用线连续性系数表示,即单位长度内贯通部分的长度。
7、节理粗糙度系数JRC:表示结构面起伏和粗糙程度的指标,通常用纵刻面仪测出剖面轮廓线与标准曲线对比来获得。
8、节理壁抗压强度JCS:用施密特锤法(或回弹仪)测得的用来衡量节理壁抗压能力的指标。
9、节理张开度:指节理面两壁间的垂直距离。
10、岩体:岩体是指在地质历史过程中形成的,由岩块和结构面网络组成的,具有一定的结构,赋存于一定的天然应力状态和地下水等地质环境中的地质体。
测井地质解释考试 1、什么是测井地质解释?它能解决哪些地质问题? (1) 测井地质解释就是以地球物理测井学、地质学和岩石物理学的基本理论为指导,综合运用各种测井信息,并结合其他地质、测试等信息,来解决地层学、构造地质学、沉积学、石油地质学以及油田地质学中的各种地质问题。 (2) 解决的问题:识别岩石成分和结构;研究生油岩,确定生油岩有机质含量和生烃潜力;研究沉积相和沉积序列;研究生储盖组合确定盖层的封盖性能;进行储集层综合研究和油气藏描述
2、什么是倾角、倾向、和走向?倾角测井成果显示方式
有哪几种?倾角测井的应用有哪些? (1) 地层倾角:在倾斜方向上地层面与水平面的夹角;或倾斜线与倾向线之间的夹角,也叫真倾角。 地层倾向:是地层面由高到低变化最大的方向,也称为倾斜方位。 地层走向:就是岩层的延伸方向,是地层面与水平面交线的方向,与倾向垂直。 (2)显示方式: 列表、倾角矢量图、方位频率图、杆状图、圆柱面坐标图 (3)应用: 倾角矢量的模式、地质构造解释、沉积学解释、裂缝识别、确定地应力方向、
3、倾角测井有几种矢量模式?分别是何种含义?
倾角模式及地质含义 红色模式:倾向大体一致,倾角随深度的增加而逐渐增大的一组矢量;通常指示断层、沙坝、河道、不整合等。 白色模式:倾向和倾角都杂乱变化的一组矢量或点子少,可信度差。指示断面、风化面或岩性粗缺少好的层理。 蓝色模式:倾向大体一致,倾角随深度增加逐渐减小的一组矢量。指示断层、水流层理、不整合等。 绿色模式:倾向大体一致,倾角不随深度变化的一组矢量。一般反应构造倾斜
4、什么是成像测井?特点是什么?目前国际三大成像测
井系列是什么? (1)什么是成像测井: 1)成像测井与常规测井的显著区别在于其井下仪器是以扫描方式或阵列方式来测量岩石的某个物理量(电阻率、声阻抗等)在柱状坐标系(r,θ,z)中的分布,输出的是该物理量的沿井壁或井周的分布图。 2)由于岩石的物理量与储层的物性密切相关,所以这种数字图像可以间接反映岩层在井壁或井周分布的非均匀性。 (2) 成像测井资料的特点:形象直观,与露头、岩心进行对比,可以清楚识别不同的沉积构造;具有定向性,可以准确地测量出地层倾角和裂缝产状;连续的高分辨率、高覆盖率地层信息为地质解释提供充实资料基础;灵活的比例可调性允许从不同尺度进行分析,有利于地质模型的建立;丰富的地层信息使测井地质应用由一孔之见走向以点带面成为可能 (3)三大成像测井系列: Schlumberger公司MAXIS-500; Atlas公司的ECLIPS-5700; Halliburton公司的EXCELL-2000;
3.5.岩石的强度准则3.5.1概述岩石中任一点的应力、应变增长到某一极限时,该点就要发生破坏。
用以表征岩石破坏条件的应力状态与岩石强度参数间的函数关系,称为岩石的强度准则(又称强度条件、破坏判据、强度判据)。
由于岩石的成因不同和矿物成分的不同,使岩石的破坏特性会存在着许多差别。
此外,不同的受力状态也将影响其强度特性。
人们根据岩石的不同破坏机理,在大量的试验基础上,加以归纳、分析描述,建立了多种强度准则。
本节将着重介绍在岩石力学中最常用的强度准则。
3.5.2库仑准则3.5.2.1基本思想库仑准则是一个最简单、最重要的准则,属于压剪准则。
库仑(C.A.Couloumb )于1773年提出最大剪应力强度理论,纳维尔()在库仑理论的基础上,对包括岩石在内的脆性材料进行了大量的试验研究后,于1883年完善了该准则,所以又被称为库仑—纳维尔准则。
该准则认为,固体内任一点发生剪切破坏时,破坏面上的剪应力(τ)等于或大于材料本身的抗切强度(C)和作用于该面上由法向应力引起的摩擦阻力(ϕσtan )之和,即:tan C f C τσσϕ=+=+ (3.29)这就是库仑准则的基本表达式。
3.4.2.2库仑准则参数的几何与物理意义在στ-平面上式(3.29)的几何图,如图3.36所示,库仑准则是一条直线。
由图可见:图3.36库仑准则的几何图(1)当0σ=时,C τ=,C 为纵轴(σ轴)截距;物理意义为:岩石试件无正压力时的抗剪强度,通常称为岩石的内粘聚力。
(2)当0C =时,ϕσσtan =,通常称ϕ为岩石的内摩擦角,ϕtan 为岩石的内摩擦系数。
C ,ϕ是表征岩石抗剪强度的两个重要参数。
3.5.2.3库仑准则的确定方法岩石强度准则反映岩石固有的属性,因此一定要求来源于试验。
常用于确定库仑准则的试验有两种,角模压剪试验和三轴压缩试验。
(1)角模压剪试验 如图3.10所示,作一系列不同倾角α的压剪试验,并由式(3.7)计算出不同倾角的破坏面上的正应力σ和剪应力τ;再在στ-平面描点作出强度准则曲线,或用数理统计方法确定其方程。