唯一性定理
- 格式:ppt
- 大小:243.50 KB
- 文档页数:7
存在唯一性定理 如(,)f x y 在R 上连续且关于y 满足利普希茨条件,则方程(,),dyf x y dx=在区间0x x h -≤上存在唯一解00(),()y x x y ϕϕ==,其中(,)min ,,max (,)xy R bh a M f x y M∈⎛⎫== ⎪⎝⎭逐步迫近法 微分方程(,)dyf x y dx=等价于积分方程00(,)xxy y f x y dx =+⎰取00()x y ϕ=,定义001()(,()),1,2,xn n x x y f x x dx n ϕϕ-=+=⎰ 可证明lim ()()n n x x ϕϕ→∞=的()y x ϕ=满足积分方程。
通过逐步迫近法可证明解的存在唯一性。
命题1 先证积分方程与微分方程等价:设()y x ϕ=是微分方程(,)dyf x y dx =定义于区间00x x x h ≤≤+上满足初值条件00()x y ϕ=的解,则()y x ϕ=是积分方程000(,),xx y y f x y dx x x x h =+≤≤+⎰定义于区间00x x x h ≤≤+上的连续解。
反之亦然。
证 因()y x ϕ=是微分方程(,)dyf x y dx=的解,有 ()(,())d x f x x dxϕϕ= 两边从0x 到0x h +取定积分0000()()(,()),xx x x f x x dx x x x h ϕϕϕ-=≤≤+⎰代入初值条件00()x y ϕ=得0000()(,()),xx x y f x x dx x x x h ϕϕ=+≤≤+⎰即()y x ϕ=是积分方程0000(,),xx y y f x y dx x x x h =+≤≤+⎰定义于区间00x x x h ≤≤+上的连续解。
反之,则有0000()(,()),xx x y f x x dx x x x h ϕϕ=+≤≤+⎰微分之()(,())d x f x x dxϕϕ= 且当0x x =时有00()x y ϕ=。
Picard 存在与唯一性定理的证明定义:设函数(,)f x y 在闭区域D 上有定义,如果存在常数0L >,使对任何12(,),(,)x y x y D ∈均满足不等式1212(,)(,)f x y f x y L y y -≤-,则称(,)f x y 在D 上关于y 满足Lipschitz 条件,称L 为Lipschitz 常数Picard 定理:设(,)f x y 在闭矩形域D :00,x x a y y b -≤-≤上连续,且关于y 满足Lipschitz 条件,则初值问题00(,)()dyf x y dx y x y ⎧=⎪⎨⎪=⎩·········①在区间[]00,I x h x h =-+上有且只有一个解,其中(,)min(,),(,)max x y Dbh a M f x y M ∈== 证明:整个证明过程分成如下五个部分Ⅰ,首先证明求初值①的解等价于求积分方程00(,),xx y y f x y dx x I =+∈⎰··········②的连续解。
事实上,若()()y x x I ϕ=∈是初值问题①的解,则有00(())(,()),()d x f x x x I dx x y ϕϕϕ⎧≡⎪∈⎨⎪=⎩由此,(,())f x x ϕ在I 上连续,从而可积,于是对恒等式(())(,()),d x f x x x I dxϕϕ≡∈积分并利用初始条件,得到00()(,()),xx x y f x x dx x I ϕϕ=+∈⎰即,()()y x x I ϕ=∈是积分方程②的解反之,设()()y x x I ϕ=∈是方程②的连续解,即有恒等式00()(,()),xx x y f x x dx x Iϕϕ=+∈⎰因为(,())f x x ϕ在I 上连续,故00()(,()),xx x y f x x dx x I ϕϕ=+∈⎰右端是积分上限x I ∈的可微函数,从而()x ϕ在I 可微于是将00()(,()),xx x y f x x dx x I ϕϕ=+∈⎰两边对x 求导,得恒等式(())(,()),d x f x x x I dxϕϕ≡∈,并令0x x =得00()y x y =,因此 ()()y x x I =∈是初值问题①的解因此,我们只需证明积分方程②存在唯一定义在区间[]00,I x h x h =-+上的连续解。
关于静电场的唯一性定理静电场的唯一性定理被称为静电学中的一颗明珠。
说说静电场唯一性定理的重大意义。
静电场的唯一性定理是以库仑定律为基础推导出来的一个极为重要和有用的定理,它是静电学中极有品位和令人赞叹的定理。
静电场的唯一性定理有许多种表述。
其中一种常见的表述是:若区域V 内给定电介质分布和自由电荷分布()r ρ ,在V 的边界面S 上给定电位S ϕ或者电位的法向空间变化率Sn ϕ∂∂,若区域内有导体存在,如果还给定各导体的电位或者各导体所带的自由电量,则V 内的静电场就唯一地确定了。
静电场的唯一性定理表明,一定的空间区域外界的电荷对该区域内静电场的影响,完全体现在该区域的边界面上。
只要一定的空间区域内的电介质的分布和自由电荷的分布给定了,同时该区域边界面上的电位或者电位沿边界面的法线方向的空间变化率的分布给定了,那么不论外界的电荷分布怎样改变,该区域内的静电场都是唯一确定的。
因此,静电场的唯一性定理给出了确定静电场的条件,为求电场强度以及设计静电场指明了方向。
(镜像法就是建立在唯一性定理的基础之上的。
)更重要的是它具有十分重要的实用价值。
无论采用什么方法得到解,只要该解满足泊松方程、边值关系和给定的边界条件,则该解就是唯一的正确解。
因此对于许多具有对称性的问题,可以不必用繁杂的数学去求解泊松方程,而是通过提出尝试解,然后验证是否满足泊松方程、边值关系和边界条件。
满足即为唯一解,若不满足,可以加以修改。
如果有人精于设计和求解静电场,那么他已经是一个有名望的专家学者了,并且享有丰厚的报酬。
因此,虽然静电学是电磁场理论中相对比较简单的一门学问,请同学也不要小看它。
一个外行人,有谁会相信上述有名望的专家学者的工作基础就是高中生都明白的库仑定律呢?大理大学工程学院教授罗凌霄2020年3月20日。
3.1 一阶微分方程存在唯一性定理(Existence and Uniqueness Theorem ofInitial Value Problem of ODE )[教学内容] 1. 上一章内容小结和习题课; 2.介绍研究初值问题解的存在唯一性定理必要性; 3. 介绍柯西解的存在唯一性定理和Picard定理; 4. 介绍定理的证明.[教学重难点] 重点是知道并会运用微分方程初值问题的解的存在唯一性定理,难点是如何引入了解定理的证明思路和过程[教学方法] 自学1、2、3;讲授4、5课堂练习[考核目标]1.知道一阶微分方程的类型及其解法;2. 知道Lipshitz条件和解的存在唯一性定理(柯西版本和Picard版本);3. 知道Picard定理的证明思路和过程;4. 会用Picard函数序列给出微分方程初值问题的近似函数解.5. 了解和掌握Graonwall积分不等式.1. 一阶微分方程类型及其初等解法小结(1)认识一阶微分方程:一阶线性方程(交换x,y或Bernoulli方程及其他可通过引入变量替换化为一阶线性方程的)、一阶可分离变量型方程(齐次方程以及其他可化为可分离变量型的)、一阶对称形式的恰当方程(通过引入积分因子可化为恰当方程的方程)一阶隐方程(可解出x或y的类型,以及x, y, y’只含有其中两个的方程类型)(2)解法常数变易公式、Bernoulli方程的变量替换分离变量方法、齐次方程的变量替换恰当方程的解法、积分因子的求法隐方程的求导法和参数法(3)例题上述提到的方程类型各举出一个例子来,并用上面的方法来求解,允许一题多解.(4)介绍一些可以化为微分方程来求解的函数方程和积分方程(参见上节讲义).(5)预告:下周二上午第一节课进行上一章测试,请相互转告.2. 必要准备:数学中的进化论生物上,比如水稻品种一代一代通过基因重组往高产优质方向优化,还有如下图片.在数学上也有类似的进化过程,下面就说一说.(1)考察三次代数方程 x 3+4x-2 0. 该方程没有有理根. 该方程只有唯一实根且落在[0,1]. 下面有两种思路来找到该方程的根.思路一:运用连续函数的零点定理, 记1] [0,]b ,[a 11=表示第一代;将]b ,[a 11平分为两个子区间,取满足如下条件0)f(b )f(a i i ≤⋅子区间作为第二代,即]21 [0,]b ,[a 22=;将]b ,[a 22平分为两个子区间,取满足如下条件0)f(b )f(a i i ≤⋅子区间作为第三代,即]21 ,41[]b ,[a 33=;将]b ,[a 33平分为两个子区间,取满足如下条件0)f(b )f(a i i ≤⋅子区间作为第四代,即]21 ,81[]b ,[a 44=;... ... 这样下去,]b ,[a n n 越来越接近方程的根 x ≈ 0.473466,其中误差就是|a b |n n -.思路二:运用教材P89习题9的结论和证明过程,改写方程为x 42x -3=+,记42x f(x)3+-= 则方程就是f(x)x =,方程的根也就是函数f(x)的不动点. 可以验证f(x)满足教材P89习题9的条件(自行验证),于是方程的根存在且唯一,下面就用进化的思想来寻找方程的根.选取第一代1x 1=(这里可以选其他实数);经过进化机制(用f(x)作用一下)得到第二代25.0)f(x x 12==;再经过进化机制(用f(x)作用一下)得到第三代496094.0)f(x x 23≈=;再经过进化机制(用f(x)作用一下)得到第四代469477.0)f(x x 34≈=;再经过进化机制(用f(x)作用一下)得到第五代474131.0)f(x x 45≈=;再经过进化机制(用f(x)作用一下)得到第六代473354.0)f(x x 56≈=;... ... n x 越来越接近方程的根 x ≈ 0.473466.打个比方,把方程的根比作我们想要的某种属性的对象,我们可以通过迭代(进化)过程来把它造出来或找出来。