第1节(续) 解的局部存在唯一性定理
- 格式:pdf
- 大小:402.67 KB
- 文档页数:37
存在唯一性定理 如(,)f x y 在R 上连续且关于y 满足利普希茨条件,则方程(,),dyf x y dx=在区间0x x h -≤上存在唯一解00(),()y x x y ϕϕ==,其中(,)min ,,max (,)xy R bh a M f x y M∈⎛⎫== ⎪⎝⎭逐步迫近法 微分方程(,)dyf x y dx=等价于积分方程00(,)xxy y f x y dx =+⎰取00()x y ϕ=,定义001()(,()),1,2,xn n x x y f x x dx n ϕϕ-=+=⎰ 可证明lim ()()n n x x ϕϕ→∞=的()y x ϕ=满足积分方程。
通过逐步迫近法可证明解的存在唯一性。
命题1 先证积分方程与微分方程等价:设()y x ϕ=是微分方程(,)dyf x y dx =定义于区间00x x x h ≤≤+上满足初值条件00()x y ϕ=的解,则()y x ϕ=是积分方程000(,),xx y y f x y dx x x x h =+≤≤+⎰定义于区间00x x x h ≤≤+上的连续解。
反之亦然。
证 因()y x ϕ=是微分方程(,)dyf x y dx=的解,有 ()(,())d x f x x dxϕϕ= 两边从0x 到0x h +取定积分0000()()(,()),xx x x f x x dx x x x h ϕϕϕ-=≤≤+⎰代入初值条件00()x y ϕ=得0000()(,()),xx x y f x x dx x x x h ϕϕ=+≤≤+⎰即()y x ϕ=是积分方程0000(,),xx y y f x y dx x x x h =+≤≤+⎰定义于区间00x x x h ≤≤+上的连续解。
反之,则有0000()(,()),xx x y f x x dx x x x h ϕϕ=+≤≤+⎰微分之()(,())d x f x x dxϕϕ= 且当0x x =时有00()x y ϕ=。
一阶微分方程解的存在性定理的其它证明方法姜旭东摘要 本文在文[1]对一阶微分方程初值问题解得存在唯一性定理证明的基础上,应用压缩映像原理,Schauder 不动点定理,以及Euler 折线法,给出了一阶微分方程解得存在唯一性定理的其它几种证法.关键词 一阶微分方程 不动点定理 解的存在性 唯一性 1、引言微分方程来源于生活实际,研究微分方程的目的在于掌握它所反映的客观规律。
在文[1]第二章里,介绍了能用初等解法求解的一阶方程的若干类型,但同时指出,大量的一阶方程一般是不能用初等解法求解它的通解,而实际问题需要的往往是要求满足某种初始条件的解. 本文在文[1]对一阶微分方程初值问题解的存在唯一性定理证明的基础上,应用压缩映像原理,Schauder 不动点定理,以及Euler 折线法,给出了一阶微分方程解的存在唯一性定理的其它几种证法.考虑一阶微分方程 (,)dyf x y dx= (1.1)这里(,)f x y 是在矩形区域00:||,||R x x a y y b -≤-≤ (1.2)上的连续函数.函数(,)f x y 在R 上满足Lipschitz 条件,即存在常数L >0,使得不等式1212|(,)(,)|||f x y f x y L y y -≤- (1.3)对所有12(,),(,)x y x y R ∈都成立, L 称为Lipschitz 常数。
定理1.1、如果(,)f x y 在R 上连续且关于y 满足Lipschitz 条件,则方程(1.1)存在唯一的解()y x ϕ=,定义于区间0||x x h -≤上,连续且满足初始条件00()x y ϕ=这里min(,)bh a M=,(,)max |(,)|x y R M f x y ∈=.文[1]中采用皮卡逐步逼近法来证明这个定理.为了简单起见,只就区间00x x x h≤≤+来讨论,对于00x h x x -≤≤的讨论完全一样.分五个命题来证明这个定理:命题1、设()y x ϕ=是方程(1.1)定义于区间00x x x h ≤≤+上满足初始条件00()x y ϕ=的解,则()y x ϕ=是积分方程0(,)xx y y f x y dx =+⎰ 00x x x h ≤≤+ (1.4)的定义于00x x x h ≤≤+上的连续解.反之亦然. 现在取00()x y ϕ=,构造皮卡逐步逼近函数序列如下:0000100()()(,())x nn x x y x y f d x x x hϕϕξϕξξ-=⎧⎪⎨=+≤≤+⎪⎩⎰ (1.5)(n=1,2,…)命题2 、对于所有的n ,(1.5)中()n x ϕ在00x x x h ≤≤+上有定义、且满足不等式0|()|n x y b ϕ-≤命题3 、函数序列{}()n x ϕ在00x x x h ≤≤+上是一致收敛的. 命题4 、()x ϕ是积分方程(1.4)的定义于00x x x h ≤≤+上的连续解.命题5 、()x ψ是积分方程(1.4)的定义于00x x x h ≤≤+上的一个连续解,则()()x x ϕψ=,00x x x h ≤≤+.综合命题1—5,即得到存在唯一性定理.本文在方程(1.1)在满足定理1.1条件下,应用应用压缩映像原理,Schauder 不动点定理,以及Euler 折线法,给出了一阶微分方程解得存在唯一性定理的其它几种证法.2、预备知识定义 2.1、 定义在t αβ≤≤上的实值(m 维)向量函数族{}()F f t =,如果存在数M >0,使得对任一f F ∈,都有()f t M ≤,当t αβ≤≤时,则称函数族F 在t αβ≤≤上是一致有界的.定义2.2 、定义在t αβ≤≤上的实值(m 维)向量函数族{}()F f t =,如果对于任给的ε﹥0,总存在δ﹥0,使得对任一f F ∈和任意的12,[,]t t αβ∈,只要12|,|t t -<δ就有12()()f t f t -<ε则称函数族F 在 t αβ≤≤上是同等连续.定义2.3、设X 是度量空间,M 是X 中子集,若M 是X 中紧集,则称M 是X 中相对紧集。
微分方程初值问题解的唯一性微分方程初值问题是研究微分方程的解的性质及其存在唯一性的重要问题之一、在实际问题中,由于观测数据的限制,我们通常只能得到初始条件下的解析解或数值解中的一个。
因此,我们需要确保初值问题存在唯一解,以保证对问题的研究有意义。
首先,我们来讨论微分方程的局部解的唯一性。
定理1(局部解的唯一性):设函数f(x,y)及其偏导数在区域D内连续,则对于方程dy/dx=f(x,y)的几个具有相同初始条件(x0,y0)的解,其区间I的长度不超过\alpha,其中\alpha>0只依赖于f(x,y)及其偏导数的最大值和最小值,且不依赖于(x0,y0)。
证明:设y1(x)和y2(x)为方程dy/dx=f(x,y)在区间I=[x0-\alpha,x0+\alpha]的两个解,且y1(x0)=y0,y2(x0)=y0。
构造函数w(x)=,y1(x)-y2(x),>0,则w'(x)=,y1'(x)-y2'(x),=,f(x,y1(x))-f(x,y2(x)),\leqslant Mw(x),其中M为f(x,y)及其偏导数的最大值和最小值的绝对值的最大值。
由Gronwall不等式,有w(x)\leqslant w(x0)e^{M(x-x0)},其中w(x0)=0。
因此w(x)=0,即y1(x)=y2(x),定理得证。
以上定理说明,如果微分方程的右端项在一些区域内连续,那么由同样的初始条件出发的解的局部存在且唯一其次,我们来讨论微分方程的整体解的唯一性。
定理2(整体解的唯一性):设函数f(x,y)及其偏导数在闭区域D内连续,且满足Lipschitz条件,即存在常数L>0,使得对于任意(x,y1)和(x,y2)属于D,有,f(x,y1)-f(x,y2),\leq L,y1-y2、则方程dy/dx=f(x,y)的任意两个解在其公共存在的区间上是相同的。
证明:设y1(x)和y2(x)是方程dy/dx=f(x,y)的两个解,考虑函数z(x)=y1(x)-y2(x),则有z'(x)=y1'(x)-y2'(x)=f(x,y1(x))-f(x,y2(x))。
1解的存在唯一性
解的存在唯一性定理是指方程的解在一定条件下的存在性和唯一性,它是常微分方程理论中最基本的定理,有其重大的理论意义,另一方面由于能求得精确解的微分方程并不多,常微分方程的近似解法具有十分重要的意义,而解的存在唯一性又是近似解的前提,试想,如果解都不存在,花费精力去求其近似解有什么意义呢?如果解存在但不唯一,但不知道要确定的是哪一个解,又要去近似的求其解,又是没有意义的。
2解的存在唯一性定理一
定理1
如果函数f(x,y)在矩形域R上连续且关于y满足利普希茨条件,则方程
dx/dy=f(x,y);存在唯一的解y=φ(x),定义于区间|x-x0|<=h上,连续且满足初值条件φ(x0)=y0,这里h=min(a,b/M) , M=max|f(x,y)|。
命题1
设y=φ(x)是方程的定义于区间x0<=x<=x0+h上,满足初值条件φ(x0)=y0的解,则y=φ(x)是积分方程y=y0+∫f(x,y)dx,x0<=x<=x0+h的定义于x0<=x<=x0+h上的连续解,反之亦然。
命题2
对于所有的n,皮卡逐步逼近函数φn(x)在 x0<=x<=x0+h上有定义,连续且满足不等式|φn(x)-y0|<=b。
命题3
函数序列{φn(x)} 在x0<=x<=x0+h上已收敛的。
命题4
φn(x)是积分方程的定义于x0<=x<=x0+h上的连续解
命题5
设ψ(x)是积分方程的定义于 x0<=x<=x0+h的另一个解,则
ψ(x)=φ(x)(x0<=x<=x0+。
解的存在唯一性定理利用逐次逼近法,来证明微分方程(,),dyf x y dx =的初值问题00(,)()dy f x y dx y y x ==⎧⎨⎩的解存在与唯一性定理。
一、【存在、唯一性定理叙述】 如果方程(,),dyf x y dx=的右端函数(,)f x y 在闭矩形区域0000:,R x a x x a y b y y b -≤≤+-≤≤+上满足如下条件:(1)、在R 上连续;(2)、在R 上关于变量y 满足利普希茨条件,即存在常数N ,使对于R 上任何一点(),x y 和(),x y 有以下不等式:()|(,),|||f x y f x y N y y -≤-。
则初值问题00(,)()dyf x y dx y y x ==⎧⎨⎩在区间0000x h x x h -≤≤+上存在唯一解00(),()y x x y ϕϕ==, 其中0(,)min ,,max (,)xy R bh a M f x y M∈⎛⎫== ⎪⎝⎭二、【证明】 逐步迫近法:微分方程(,)dyf x y dx=等价于积分方程00(,)x x y y f x y dx =+⎰。
取00()x y ϕ=,定义001()(,()),1,2,3, (x)n n x x y f x x dx n ϕϕ-=+=⎰可证明lim ()()n n x x ϕϕ→∞=的()y x ϕ=满足积分方程。
通过逐步迫近法可证明解的存在唯一性。
命 题 1:先证积分方程与微分方程等价: 设()y x ϕ=是微分方程(,)dyf x y dx=定义于区间0000x h x x h -≤≤+上满足初值条件00()x y ϕ=的解,则()y x ϕ=是积分方程00(,),x x y y f x y dx =+⎰定义于区间0000x h x x h -≤≤+上的连续解。
反之亦然。
证: 因()y x ϕ=是微分方程(,)dy f x y dx =的解,有'()()(,())d x x f x x dxϕϕϕ== 两边从0x 到x 取定积分,得:000000()()(,()),xx x x f x x dx x h x x h ϕϕϕ-=-≤≤+⎰代入初值条件00()x y ϕ=得:000000()(,()),xx x y f x x dx x h x x h ϕϕ=+-≤≤+⎰即()y x ϕ=是积分方程00(,)xx y y f x y dx =+⎰定义于区间0000x h x x h -≤≤+上的连续解。