19.1.2函数的图象(1)
- 格式:ppt
- 大小:1.84 MB
- 文档页数:15
一、情境引入问题我校想建一个正方形的花坛。
面积s随边长x变化而变化,请你写出函数关系式,并确定自变量的取值范围.面积s与边长x的函数关系式为:s = x2 (x>0)从式子 s = x2来看,边长 x 越大,面积 s 也越大。
能不能用图象直观形象的反映出来呢?二、探究新知(一)、函数的图象的意义一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横坐标和纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.(二)如何画出函数s=x2(x>0)的图象?从x的取值范围中选取一些数值,算出S的对应值.即列表.x …0.5 1 1.5 2 2.5 3 …s …0.25 1 2.25 4 6.25 9 …自变量X的一个确定值与它所对应的唯一的函数值S是否确定一个点(X,S)呢?把x的值作为横坐标, S的对应值作为纵坐标在平面直角坐标系中, 将上面表格中各对数值所对应的点画出来.即描点.按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来.即连线.归纳:描点法画函数的图象一般步骤:1、列表:列出自变量与函数的对应值表.注意:自变量的值(满足取值范围),并取适当.2、描点:建立直角坐标系,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点.3、连线:按照横坐标从小到大的顺序把描出的点用平滑曲线依次连接起来.(三)、识函数的图象1.这个图是自动测温仪记录的图象,它反映了我们地区春季某天气温T 随时间t 变化而变化的规律.你从图象中能得到什么信息?三、课堂训练(一).下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.•其中x表示时间,y表示小明离他家的距离.根据图象回答下列问题:1.菜地离小明家多远?小明走到菜地用了多少时间?2.小明给菜地浇水用了多少时间?3.菜地离玉米地多远?小明从菜地到玉米地用了多少时间?4.小明给玉米地锄草用了多长时间?5.玉米地离小明家多远?小明从玉米地走回家平均速度是多少?归纳解答函数图象题主要步骤如下:1. 了解横、纵轴的意义2. 从函数图象上判定函数与自变量的关系3. 抓住特殊点的实际意义一看坐标轴,二看特殊点,三看变化趋势;四看如果有两个图象就看交点。
19.1.2函数的图象(第一课时)导学案【学习目标】1、使学生了解函数图象的意义;2、初步掌握画函数图象的方法(列表、描点、连线);3、学会通过观察、分析函数图象来获取相关信息;【学习重点】初步掌握画函数图象的方法;【学习难点】通过观察、分析函数图象来获取信息.【学习过程】活动一、课前小测1、在一个变化过程中,我们称数值____________的量为变量;在一个变化过程中,我们称数值____________的量为常量.2、长方形相邻两边长分别为x、•y•,面积为10•,•则用含x•的式子表示y•为____________,则这个问题中,__________是常量;______________是变量.3.一般地,在一个变化过程中,如果有两个变量x与y,并且对于x•的每一个确定的值,y•都有唯一确定的值与其对应,•那么我们就说x•是_________,y是x的____.如果当x=a时y=b,那么b•叫做当自变量的值为a时的_______.4.已知三角形底边长为8,高为h,三角形的面积为s,则s与h的函数关系式为____________,其中自变量是_______,自变量的函数是________。
活动二:观察分析,探究新知问题一:正方形的面积S与边长x的函数关系为________,其中自变量x的取值范围是______,我们还可以利用在坐标系中画图的方法来表示S与x的关系.想一想:自变量x的一个确定的值与它所对应的唯一的函数值S,是否能确定一个点(x,S)呢?(1(2)描点:(建立直角坐标系,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点)(3)连线:(按照横坐标由小到大的顺序,把所描出的各点用平滑曲线连接起来)想一想:这条曲线包括原点吗?应该怎样表示?强调:用表示不在曲线上的点;在函数图象上的点要画成的点.归纳总结:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的_________.问题二:下面的图象反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家。
19.1.2 函数的图象第1课时函数的图象学习目标①知道函数图象的意义.②学会用列表、描点、连线画函数图象.③学会观察、分析函数图象信息.④能利用函数的图象解决实际问题重点难点:函数图象的画法;观察、分析、概括图象中的信息.学习过程一、自主学习(阅读教材并完成下列活动)【活动1】思考:如图是某人体检时的心电图,图上点的横坐标x表示时间,纵坐标y表示心脏部位的生物电流,y与x之间的函数关系能用式子表达吗?显然有些函数问题用函数关系式表示出来,然而可以通过来直观反映.【活动2】正方形的边长x与面积S的函数关系式为;在这个函数中,自变量是、它的取值范围是,是的函数,请根据这个函数关x 0 0.5 1 2 3 ……S ……思考与探究:如果把自变量的值当作横坐标,函数S的值作为纵坐标,组成一对有序实数对(x、S),这样的实数对有多少对?请在下面的直角坐标系中描出这些点,你有什么发现?二、探究新知识①一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的、坐标,那么坐标平面内由这些点组成的图形,就是这个函数的。
②画函数图象的一般步骤是:、、。
③在坐标平面内,若点P(x,y)向右上方移动,则y随x的增大而;若点P(x,y)向右下方移动,则y随x的增大而。
第2课时函数的表示方法学习目标①进一步理解函数及其图像的意义.②学会根据自变量的值求函数值;或根据函数值求自变量的值,掌握函数的表示方法.③熟练掌握求函数中自变量的取值范围的方法.重点难点:①怎样根据自变量的值求函数值;②怎样求函数自变量的取值范围;③根据函数图象解决实际问题.学习过程一、自主学习(阅读教材)【活动1】分析并解决下列列问题:1.用解析法表示函数关系优点: . 缺点: . 2.用列表表示函数关系优点: . 缺点: . 3.用图象法表示函数关系优点: . 缺点: . 【活动2】请用原来所学的知识完成下列填空:1、若错误!未找到引用源。
有意义,则x的取值范围是 .2、若错误!未找到引用源。
19.1.2 函数的图象教学目标(一)教学知识点1.了解函数图象的一般意义,初步学会用列表、描点、连线画函数图象.2.学会观察、分析函数图象信息.(二)能力训练要求1.提高识图能力、分析函数图象信息能力.2.体会数形结合思想,并利用它解决问题,提高解决问题能力.(三)情感与价值观要求1.体会数学方法的多样性,提高学习兴趣.2.认识数学在解决问题中的重要作用从而加深对数学的认识.教学重点:初步掌握画函数图象的方法;通过观察、分析函数图象来获取信息.教学难点:分析概括图象中的信息.教学方法:自主─探究、归纳─总结.教具准备:多媒体演示.教学过程:一.情境引入生活中有许许多多的图形与图象,比如体检时的心电图, 心电图直观地反映了心脏生物电流与时间的关系.电流波随时间的变化而变化.又如, 投篮后时,篮球划过的一道优美的弧线(抛物线).(播放视频) 有些问题中的函数关系很难列式子表示,但我们可以通过图象来直观反映,比如心电图直观地反映心脏生物电流与时间的关系;抛物线直观地反映了篮球的高度与水平距离之的函数关系, 即使对于能列式表示的函数关系,如果也能画图表示,则会使函数关系更清晰。
今天我们就来学习如何画函数图象的问题及解读函数图象信息.我们先看正方形的面积与边长的关系。
二.探究新知活动一:了解函数图象的一般意义,初步学会画函数图象这是我们熟悉的正方形,你能写出正方形的边长x与面积S的函数关系式,并确定自变量x的取值范围吗?从式子S=x2来看,边长x 越大,面积S也越大,能不能用图象直观地反映出这种关系呢?对于每一个x的值,S有唯一的值与它对应,这样我们就能等到一些有序实数对.把这些有序实数对在平面直角坐标系中表示出来,便能得到图形。
提示:自变量x的一个确定值与它对应的唯一的函数值S,就确定一个点(x,S).把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就叫做这个函数的图象.函数S=x2的图象可以按“列表——描点——连线”三个步骤来画出。