《相交线与平行线》单元测试题
- 格式:doc
- 大小:246.50 KB
- 文档页数:2
B E DA CF87654321DCBA第五章 相交线与平行线测试题一、选择题(每题3分,共30分)1、如图1,直线a ,b 相交于点O ,若∠1等于40°,则∠2等于( )A .50°B .60°C .140°D .160°图1 图2 图3 2、如图2,已知AB ∥CD ,∠A =70°,则∠1的度数是( )A .70°B .100°C .110°D .130°3、已知:如图3,AB CD ⊥,垂足为O ,EF 为过点O 的一条直线,则1∠ 与2∠的关系一定成立的是( )A .相等B .互余C .互补D .互为对顶角4、如图4,AB DE ∥,65E ∠=,则B C ∠+∠=( )A .135B .115C .36D .65图4 图5 图65、如图5,小明从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20方向行走至C 处,此时需把方向调整到与出发时一致,则方向的调整应是( )A .右转80°B .左转80°C .右转100°D .左转100° 6、如图6,如果AB ∥CD ,那么下面说法错误的是( )A .∠3=∠7;B .∠2=∠6C 、∠3+∠4+∠5+∠6=1800D 、∠4=∠87、如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30,那么这两个角是( )A . 42138、;B . 都是10;C . 42138、或4210、;D . 以上都不对8、下列语句:①三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中( )A .①、②是正确的命题;B .②、③是正确命题;C .①、③是正确命题 ;D .以上结论皆错DB A C1ab1 2OABCD EF 2 1Oa b M P N 1 2 3A B C a b1 23 B E9、下列语句错误的是( )A .连接两点的线段的长度叫做两点间的距离;B .两条直线平行,同旁内角互补C .若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角D .平移变换中,各组对应点连成两线段平行且相等10、如图7,a b ∥,M N ,分别在a b ,上,P 为两平行线间一点,那么123∠+∠+∠=( )A .180B .270C .360D .540二、填空题(每题3分,共18分)11、如图8,直线a b ∥,直线c 与a b ,相交.若170∠=,则2_____∠=.图7 图8 图9 图1012、如图9,已知170,270,360,∠=︒∠=︒∠=︒则4∠=______︒.13、如图10,已知AB ∥CD ,BE 平分∠ABC ,∠CDE =150°,则∠C =______14、如图11,已知a b ∥,170∠=,240∠=,则3∠ 图11 1315、如图12的一个条件 .16、如图13,已知AB CD //,∠α=____________ 三、解答题(共52分)17、推理填空:(每空1分,共12分)如图: ① 若∠1=∠2,则 ∥ ( ) 若∠DAB+∠ABC=1800,则∥ ()②当 ∥ 时,∠ C+∠ABC=1800 ( ) 当 ∥ 时,∠3=∠C ( )18、如图,∠1=30°,AB ⊥CD ,垂足为O ,EF 经过点O .求∠2、∠3的度数. (8分)12 bac b ac d1 2 3 4 A BCDE 321DCBAABCDO123EF19、已知:如图AB ∥CD ,EF 交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE=500,求:∠BHF 的度数.(8分)20、(10分(1)如图a ,图中共有___对对顶角;(2)如图b ,图中共有___对对顶角; (3)如图c ,图中共有___对对顶角.(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于一点,则可形成多少对对顶角?(5)若有2008条直线相交于一点,则可形成 多少对对顶角?21、(6分)如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B =30º,求∠EAD ,∠DAC ,∠C 的度数。
相交线与平行线一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,共24分)1.在下面各图中,∠1与∠2是对顶角的是()A.B.C.D.2.如图,直线a、b相交于点O,若∠1=30°,则∠2等于()A.60°B.30°C.140°D.150°3.如图,直线a,b相交于点O,若∠1=40°,则∠2=()A.40°B.50°C.60°D.140°4.如图,点P在直线l外,点A,B在直线l上,PA=3,PB=7,点P到直线l的距离可能是()A.2 B.4 C.7 D.85.如图,直线a∥b,∠1=50°,则∠2的度数为()A.40°B.50°C.55°D.60°6.如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是()A.连接直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行7.如图,已知ON丄a,OM丄a,所以OM与ON重合的理由是()A.两点确定一条直线B.经过一点有且只有一条线段垂直于己知直线C.过一点只能作一条垂线D.垂线段最短8.如图,直线AB∥CD,∠A=70°,∠E=30°,则∠C等于()A.30°B.40°C.60°D.70°二、填空题(本大题共6小题,每小题3分,共18分)9.如图所示,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:.10.如图,已知O是直线AB上一点,∠1=30°,OD平分∠BOC,则∠2=.11.如图,直线AB、CD相交于点O,EO⊥AB,∠AOC=25°。
12345678(第4题)ab cABCD(第7题)第五章《相交线与平行线》测试卷姓名 _______ 成绩 _______一、选择题(每小题4分,共 40 分) 1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图,在正方体中和AB 垂直的边有( )条.A.1B.2C.3D.4 3、如图AB ∥CD,∠ABE=120°,∠ECD=25°,则∠E=( )A.75°B.80°C.85°D.95°4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件:①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( )A 、①②B 、①③C 、①④D 、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( ) A 、第一次左拐30°,第二次右拐30° B 、第一次右拐50°,第二次左拐130° C 、第一次右拐50°,第二次右拐130° D 、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的( )BDA BCDE(第10题)水面入水点运动员(第14题)ABC D EFG H第13题7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 面积的比是( )A 、3:4B 、5:8C 、9:16D 、1:2 8、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走A 、③B 、②③C 、①②④D 、①②⑤ 9、下列说法正确的是( )A 、有且只有一条直线与已知直线平行B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
《相交线与平行线》单元测试题一.选择题(共10小题)1.下列图形中,∠1与∠2是对顶角的是()A.B.C.D.2.下列句子中不是命题的是()A.明年是2020年B.延长线段EFC.三角形的内角和是360度D.对顶角相等3.在同一平面内,已知点P在直线l上,过点P画直线l的垂线,可以画出多少条()A.1条B.2条C.3条D.4条4.如图,下列判断正确的是()A.∠3与∠6是同旁内角B.∠2与∠4是同位角C.∠1与∠6是对顶角D.∠5与∠3是内错角5.如图,点P是直线l外一点,从点P向直线l引P A,PB,PC,PD四条线段,其中只有PC与l垂直,这四条线段中长度最短的是()A.P A B.PB C.PC D.PD6.下面推理正确的是()A.∵a∥b,b∥c,∴c∥d B.∵a∥c,b∥d,∴c∥dC.∵a∥b,a∥c,∴b∥c D.∵a∥b,c∥d,∴a∥c7.如图,在下列给出的条件中,不能判定AB∥CD的是()A.∠BAD+∠ADC=180°B.∠ABD=∠BDCC.∠ADB=∠DBC D.∠ABE=∠DCE8.如图,△ABC沿射线BC方向平移到△DEF(点E在线段BC上),如果BC=7cm,EC =4cm,那么平移距离为()A.3cm B.5cm C.8cm D.13cm9.如图,AC∥BD,AE∥BF,下列结论错误的是()A.∠A=∠B B.∠A+∠B=180°C.∠B=∠DPE D.∠A=∠APB 10.某同学的作业如下框,其中横线处应填的依据是()如图所示,当∠1=∠2时,∠3=∠4吗?为什么?请完成下面的说理过程.解,∵∠1=∠2(已知).∴直线a∥b(______________).∴∠3=∠4(两直线平行,同位角相等)A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.同位角相等,两直线平行二.填空题(共6小题)11.如图所示,△EFG是由△ABC沿水平方向平移得到的,如果∠ABC=90°,AB=3cm,BC=2cm,则EF=,FG=,EG=.12.将命题“互为补角的两个角都是锐角”改写成“如果……,那么……”的形式是.13.如图,在三角形ABC中,∠C=90°,AC=3,BC=4,AB=5,则点A到BC的距离等于.14.如图,在长方体中,与棱AB平行的棱有条.15.如图,一个弯形管道ABCD,若它的两个拐角∠ABC=120°,∠BCD=60°,则管道AB∥CD.这里用到的推理依据是.16.如图,已知∠1=∠2=32°,∠D=78°,则∠BCD=.三.解答题(共8小题)17.如图,直线AB,CD相交于点O,OA平分∠EOC,若∠EOD=88°,求∠BOD的度数.18.指出下列命题的题设和结论,并判断其真假,如果是假命题,请举出一个反例.(1)邻补角互补;(2)同旁内角互补.19.如图,△ABC,△A1B1C1的顶点都在边长为1个单位长度的小正方形组成的网格线交点上.(1)将△ABC向右平移4个单位得到△A2B2C2,请画出△A2B2C2.(2)试描述△A1B1C1经过怎样的平移可得到△A2B2C2.20.如图,在直角三角形ABC中,∠C=90°,DE⊥AC交AC于点E,交AB于点D.(1)请分别写出当BC,DE被AB所截时,∠B的同位角、内错角和同旁内角.(2)试说明∠1=∠2=∠B的理由.21.如图,已知AB∥CD,射线AH交BC于点F,交CD于点D,从D点引一条射线DE,若∠B+∠CDE=180°,求证:∠AFC=∠EDH.证明:∵AB∥CD(已知)∴∠B=(两直线平行,内错角相等)∵∠B+∠CDE=180°(已知)∴∠BCD+∠CDE=180°(等量代换)∴BC∥(同旁内角互补,两直线平行)∴=∠EDH()∵=∠BFD(对顶角相等)∴∠AFC=∠EDH(等量代换)22.如图是两个重叠的直角三角形,将其中一个直角三角形沿着BC方向平移BE的长度就得到该图形,求阴影部分的面积(单位:厘米)23.如图,点O在直线AB上,OC⊥OD,∠D与∠1互余,F是DE上一点,连结OF.(1)ED是否平行于AB,请说明理由;(2)若OD平分∠BOF,∠OFD=80°,求∠1的度数.24.如图,图①是一种网红弹弓的实物图,在两头上系上皮筋,拉动皮筋可形成平面示意图如图②和图③,弹弓的两边可看成是平行的,即AB∥CD,各活动小组探索∠APD与∠A,∠C之间数量关系时,有如下发现:(1)在图②所示的图形中,若∠A=30°,∠D=35°,则∠APD=;(2)在图③中,若∠A=150°,∠APD=60°,则∠D=;(3)有同学在图②和图③的基础上,画出了图④所示的图形,其中AB∥CD,请判断∠α,∠β,∠γ之间的关系,并说明理由.。
相交线与平行线》单元测试题及答案初一下学期数学相交线与平行线单元质量检测姓名。
学号:本次考试为90分钟,共100分。
一、填空题:(每小题3分,共30分)1、空间内两条直线的位置关系可能是相交或平行。
2、“两直线平行,同位角相等”的题设是前提条件,结论是同位角相等。
3、已知∠A和∠B是邻补角,且∠A比∠B大20,则∠A=110度,∠B=70度。
4、如图1,O是直线AB上的点,OD是∠COB的平分线,若∠AOC=40,则∠BOD=70度。
5、如图2,如果AB∥CD,那么∠B+∠F+∠E+∠D=360度。
6、如图3,图中ABCD-A B C D是一个正方体,则图中与BC所在的直线平行的直线有3条,与A B所在的直线成异面直线的直线有2条。
7、如图4,直线a∥b,且∠1=28度,∠2=50度,则∠ACB=102度。
8、如图5,若A是直线DE上一点,且BC∥DE,则∠2+∠4+∠5=180度。
9、在同一平面内,如果直线l1∥l2,l2∥l3,则l1与l3的位置关系是平行。
10、如图6,∠ABC=120度,∠BCD=85度,AB∥ED,则∠CDE=15度。
二、选择题:(每小题3分,共30分)11、已知:如图7,∠1=60度,∠2=120度,∠3=70度,则∠4的度数是(B)A、70 B、60 C、50 D、4012、已知:如图8,下列条件中,不能判断直线l1∥l2的是(E)A、∠1=∠3 B、∠2=∠3 C、∠4=∠5 D、∠2+∠4=180 E、无法判断13、如图9,已知AB∥CD,HI∥FG,EF⊥CD于F,∠1=40度,那么∠EHI=(D)A、40 B、45 C、50 D、5514、一个角的两边分别平行于另一个角的两边,则这两个角(B)A、相等 B、相等或互补 C、互补 D、不能确定15、在正方体的六个面中,和其中一条棱平行的面有(B)A、5个B、4个C、3个D、2个16、两条直线被第三条直线所截,则(B)A、同位角相等 B、内错角相等 C、同旁内角互补 D、以上结论都不对17、如图10,AB∥CD,则∠ACD=∠BDC。
第4章相交线与平行线单元测试卷一、选择题(每题2分,共20分)1.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角D.对顶角2.如图,AB∥CD,AD平分∠BAC,若∠BAD=65°,那么∠ACD的度数为()A.40°B.35°C.50°D.45°1 2 33.如图,AB∥EC,下列说法不正确的是()A. ∠B=∠ECDB. ∠A=∠ECDC. ∠B+∠ECB=180°D. ∠A+∠B+∠ACB=180°4.如图,在俄罗斯方块游戏中,出现一小方块拼图向下运动,通过平移运动拼成一个完整的图案,最终所有图案消失,则对小方块进行的操作为()A.向右平移1格再向下B.向右平移3格再向下C.向右平移2格再向下D.以上答案均可5.如图所示,3块相同的三角尺拼成一个图形,图中有很多对平行线,其中不能由下面的根据得出两直线平行的是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.平行于同一直线的两直线平行D.垂直于同一直线的两直线平行6.如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是()A.40°B.70°C.80°D.140°7.同一平面内的四条互不重合的直线满足a⊥b,b⊥c,c⊥d,则下列各选项中关系能成立的是()A.a∥dB.a⊥cC.a⊥dD.b⊥d8.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120 °B.130°C.140°D.150°9.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°10.如图,把一块含有45°角的直角三角尺的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()6 8 9 10二、填空题(每题3分,共21分)11.如图所示,某地一条小河的两岸都是直的,小明和小亮分别在河的两岸,他们拉紧了一根细绳,当测出∠1和∠2满足关系________时,河岸的两边才是平行的.12.同一个平面内的三条直线两两相交,最多有a个交点,最少有b个交点,则a+b=________.13.在测量跳远成绩时,从落地点到起跳线所拉的皮尺应当与起跳线________.14.如图,在三角形ABC中,BC=5 cm,将三角形ABC沿BC方向平移至三角形A'B'C'的位置时,B'C=3 cm,则三角形ABC平移的距离为cm.11 14 1515.如图是我们常用的折叠式小刀,刀柄外形是一个长方形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图所示的∠1与∠2,则∠1与∠2的度数和是度.16.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=°.17.如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个图案可以看成是第1个图案经过平移而得,那么第2015个图案中有白色六边形地面砖块.三、解答题(22~24题每题9分,其余每题8分,共59分)18.如图,在一条公路l的两侧有A,B两个村庄.(1)现在镇政府为民服务,沿公路开通公共汽车,同时修建A,B两个村庄到公路的道路,要使两个村庄村民乘车最为方便,请你设计道路路线,在图中画出(标明①),并标出公共汽车停靠点的位置,说出你这样设计的理由;(2)为方便两村物流互通,A,B两村计划合资修建一条由A村到达B村的道路,要使两个村庄物流、通行最为方便,请你设计道路路线,在图中画出(标明②),说出你这样设计的理由.19.如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=37°,求∠D的度数.20.如图,CD⊥AB,EF⊥AB,∠E=∠EMC,说明:CD是∠ACB的平分线.21.如图,已知点A,O,B在同一直线上,OC是从点O出发的任意一条射线,OD是∠AOC的平分线,OE是∠COB的平分线,试确定OD和OE的位置关系,并说明理由.22.如图,∠E=∠3,∠1=∠2,试说明:∠4+∠BAP =180°.23.如图所示,潜望镜中的两个镜子是互相平行放置的,光线经过镜子反射时,入射光线与平面镜的夹角等于反射光线与平面镜的夹角(∠1=∠2,∠3=∠4).请说明为什么进入潜望镜的光线和离开潜望镜的光线是平行的.24.如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①②③④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(1)当动点P落在第①部分时,如图①,试说明:∠APB=∠PAC+∠PBD;(2)当动点P落在第②部分时,如图②,∠APB=∠PAC+∠PBD是否成立?若不成立,请说明理由.参考答案一、1.【答案】B 2.【答案】C3.【答案】B解:根据两直线平行,同位角相等,得出A正确;根据两直线平行,同旁内角互补,得出C正确;根据两直线平行,内错角相等,得出∠A=∠ACE,而∠ACE+∠B+∠ACB=180°,则∠A+∠B+∠ACB=180°.得出D正确.故选B.4.【答案】C5.【答案】C6.【答案】B7.【答案】C8.【答案】C9.【答案】A10.【答案】B二、11.【答案】∠1=∠212.【答案】4解:a=3,b=1.13.【答案】垂直14.【答案】215.【答案】9016.【答案】14017.【答案】8062三、18.解:(1)画图如图,P,Q即为公共汽车停靠点的位置垂线段最短;(2)画图如图,两点之间,线段最短.19.解:因为AB∥CD,所以∠ECD=∠A=37°,又因为DE⊥AE,所以∠CED=90°,所以∠D=180°-90°-37°=53°.20.解:因为CD⊥AB,EF⊥AB,所以CD∥EF(垂直于同一直线的两直线平行).相等),又因为∠E=∠EMC,所以∠BCD=∠ACD(等量代换).所以CD是∠ACB的平分线(角平分线定义).21.解:OD和OE互相垂直,即OD⊥OE.理由如下:因为点A,O,B在同一直线上,所以∠AOB=180°.又因为OD是∠AOC的平分线,OE是∠COB的平分线,所以∠DOC=∠AOC,∠COE=∠COB.所以∠DOE=∠DOC+∠COE=(∠AOC+∠COB)=∠AOB=×180°=90°,所以OD⊥OE.22.解:因为∠ENM=∠3(对顶角相等),∠E=∠3(已知),所以∠ENM=∠E(等量代换),所以AE∥HM(内错角相等,两直线平行).所以∠EAM=∠AMH(两直线平行,内错角相等).又因为∠1=∠2,所以∠EAM+∠1=∠AMH+∠2(等式性质),即∠BAM=∠AMC.所以AB∥CD(内错角相等,两直线平行).所以∠AMD+∠BAP=180°(两直线平行,同旁内角互补).因为∠4=∠AMD(对顶角相等),所以∠4+∠BAP=180°(等量代换).23.解:根据题意,作出如图所示的几何图形,已知:AB∥CD,∠1=∠2,∠3=∠4.试说明:EF∥GH.说明过程:因为AB∥CD(已知),所以∠2=∠3(两直线平行,内错角相等).又因为∠1=∠2,∠3=∠4,所以∠1=∠2=∠3=∠4.因为∠5=180°-(∠1+∠2),∠6=180°-(∠3+∠4),所以∠5=∠6,所以EF∥GH(内错角相等,两直线平行).即进入潜望镜的光线和离开潜望镜的光线是平行的.24.解:(1)如图①:过点P作MP∥AC,则MP∥BD,因为MP∥AC,所以∠APM=∠PAC,因为MP∥BD,所以∠BPM=∠PBD,所以∠APM+∠BPM =∠PAC+∠PBD,①②(2)不成立.理由如下:如图②,过点P作MP∥AC,则MP∥BD, 因为MP∥AC,所以∠APM=∠PAC,因为MP∥BD,所以∠BPM=∠PBD,所以∠APM+∠BPM =∠PAC+∠PBD,即:360°-∠APB=∠PAC+∠PBD.所以∠APB=∠PAC+∠PBD不成立.。
相交线与平行线章末训练一.选择题1.如图,直线b,c被直线a所截,则∠1与∠2是()A.对顶角B.同位角C.内错角D.同旁内角2.要说明命题“若|a|>5,则a>5”是假命题,可以举的一个反例是()A.a=5B.a=﹣5C.a=6D.a=﹣63.要在墙上钉牢一根木条,至少要钉两颗钉子.能正确解释这一现象的数学知识是()A.两点之间,线段最短B.垂线段最短C.两点确定一条直线D.经过一点有且只有一条直线与已知直线垂直4.直线a、b、c中,a∥b,b⊥c,则直线a与直线c的关系是()A.相交B.平行C.垂直D.不能确定5.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.对顶角相等,两直线平行6.如图,把△ABC沿AC方向平移得到△FDE,AF=8,EC=2,则平移的距离为()A.3B.4C.5D.67.如图,将射线AB沿着直线l平移得到射线CD,若∠1=115°,则∠2的度数是()A.115°B.75°C.65°D.60°8.如图已知直线m∥n.三个图形的顶点均在直线m,n上,三个图形面积最大的结论正确的是()A.①最大B.②最大C.③最大D.不确定9.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么七条直线最多有()A.9个交点B.15个交点C.21个交点D.26个交点10.如图,将一条两边沿互相平行的纸带折叠,若∠1比∠2大12°,则∠1的度数为()A.66°B.68°C.54°D.56°11.①如图1,AB∥CD,则∠A+∠E+∠C=180°;②如图2,AB∥CD,则∠E=∠A+∠C;③如图3,AB∥CD,则∠A+∠E﹣∠1=180°;④如图4,AB∥CD,则∠A=∠C+∠P.以上结论正确的个数是()A.①②③④B.①②③C.②③④D.②④12.黑板上有一个数学问题如图所示:如图AB⊥BC,BC交CD于点C,AE平分∠BAD交BC于E,AE⊥DE,∠1+∠2=90°,M,N分别是BA,CD延长线上的点,∠EAM和∠EDN的平分线交于点F.几位同学经过研究得到以下结论:嘉嘉说:“AB∥CD”;琪琪说:“∠AEB+∠ADC=180°”;薇薇说:“DE平分∠ADC”;亮亮说:“∠F=135°”,则()A.只有嘉嘉的结论正确B.嘉嘉和琪琪的结论都正确C.只有琪琪的结论不正确D.四个人的结论都正确二.填空题13.命题“在同一平面内,垂直于同一直线的两直线平行”的题设是,结论是.14.为了测量古塔的外墙底角∠AOB的度数,王明设计了如下方案:作AO、BO 的延长线OD、OC,量出∠COD的度数,就得到了∠AOB的度数,王明这样做的依据是.15.如图,点P是直线l外一点,过点P作PO⊥l于点O,点A是直线l上任意一点,连接P A,若PO=3,则P A的长可能是(写出一个即可).16.已知直线a、b、c,满足a∥b,a∥c,那么直线b、c的位置关系是.17.如图所示,一块长为18m,宽为12m的草地上有一条宽为2m的曲折的小路,则这块草地的绿地面积是.18.已知l1∥l2,一个含有30°角的三角尺按照如图所示的位置摆放,若∠1=65°,则∠2=度.三.解答题19.如图,直线AB,CD相交于点O,OA平分∠EOC,若∠EOD=88°,求∠BOD的度数.20.如图,OB⊥OD,OC平分∠AOD,∠BOC=40°,求∠AOB的大小.21.如图,一束平行光线AB与DE射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4.试说明BC∥EF.22.如图,已知直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠BOE=36°,求∠AOF的度数.23.如图,一条公路两次转弯后,和原来的方向相同.如果第一次的拐角∠A是135°,第二次的拐角∠B是多少度?为什么?24.如图,已知直线AB∥DF,∠D+∠B=180°.(1)求证:DE∥BC;(2)如果∠AMD=70°,求∠AGC的度数.25.如图,点G在CD上,已知∠BAG+∠AGD=180°,EA平分∠BAG,FG平分∠AGC,请说明AE∥GF的理由.解:因为∠BAG+∠AGD=180°(),∠AGC+∠AGD=180°(),所以∠BAG=∠AGC().因为EA平分∠BAG,所以∠1=1().2因为FG平分∠AGC,,所以∠2=12得∠1=∠2(),所以AE∥GF().26.如图,图①是一种网红弹弓的实物图,在两头上系上皮筋,拉动皮筋可形成平面示意图如图②和图③,弹弓的两边可看成是平行的,即AB∥CD,各活动小组探索∠APD与∠A,∠C之间数量关系时,有如下发现:(1)在图②所示的图形中,若∠A=30°,∠D=35°,则∠APD=;(2)在图③中,若∠A=150°,∠APD=60°,则∠D=;(3)有同学在图②和图③的基础上,画出了图④所示的图形,其中AB∥CD,请判断∠α,∠β,∠γ之间的关系,并说明理由.27.【提出问题】若两个角的两边分别平行,则这两个角有怎样的数量关系?【解决问题】分两种情况进行探究,请结合如图探究这两个角的数量关系.(1)如图1,AB∥EF,BC∥DE,试证:∠1=∠2;(2)如图2,AB∥EF,BC∥DE,试证:∠1+∠2=180°;【得出结论】由(1)(2)我们可以得到结论:若两个角的两边分别平行,则这两个角的数量关系为;【拓展应用】(3)若两个角的两边分别平行,其中一个角比另一个角的2倍少60°,求这两个角的度数.(4)同一平面内,若两个角的两边分别垂直,则这两个角的数量关系为.相交线与平行线章末训练(答案解析)一.选择题1.如图,直线b,c被直线a所截,则∠1与∠2是()A.对顶角B.同位角C.内错角D.同旁内角【解答】解:由题意可得,∠1与∠2是直线b,c被直线a所截而成的同位角.故选:B.2.要说明命题“若|a|>5,则a>5”是假命题,可以举的一个反例是()A.a=5B.a=﹣5C.a=6D.a=﹣6【解答】解:a=﹣6时,满足|a|>5,但﹣6<5,故选:D.3.要在墙上钉牢一根木条,至少要钉两颗钉子.能正确解释这一现象的数学知识是()A.两点之间,线段最短B.垂线段最短C.两点确定一条直线D.经过一点有且只有一条直线与已知直线垂直【解答】解:在墙上要钉牢一根木条,至少要钉两颗钉子,能解释这一实际应用的数学知识是两点确定一条直线,故A,B,D不符合题意,C符合题意.故选:C.4.直线a、b、c中,a∥b,b⊥c,则直线a与直线c的关系是()A.相交B.平行C.垂直D.不能确定【解答】解:如图,∵b⊥c,∴∠1=90°,∵a∥b,∴∠2=∠1=90°,∴a⊥c.故选:C.5.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.对顶角相等,两直线平行【解答】解:如图,给出了过直线外一点作已知直线的平行线的方法,其依据是同位角相等,两直线平行.故选:A.6.如图,把△ABC沿AC方向平移得到△FDE,AF=8,EC=2,则平移的距离为()A.3B.4C.5D.6【解答】解:由平移变换的性质可知,AE=CF=12(AF﹣EC)=12×(8﹣2)=3,故选:A.7.如图,将射线AB沿着直线l平移得到射线CD,若∠1=115°,则∠2的度数是()A.115°B.75°C.65°D.60°【解答】解:∵AB∥CD,∴∠ACD=∠1=115°∴∠2=∠180°﹣∠ACD=180°﹣115°=65°.故选:C.8.如图已知直线m∥n.三个图形的顶点均在直线m,n上,三个图形面积最大的结论正确的是()A.①最大B.②最大C.③最大D.不确定【解答】解:设m、n之间的距离为h,∴图①的面积为2+72•h=92h,图②的面积为12×8h=4h,图③的面积为5h,∴图③的面积最大.故选C.9.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么七条直线最多有()A.9个交点B.15个交点C.21个交点D.26个交点【解答】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点,而3=12×2×3,6=12×3×4,10=1+2+3+4= 12×4×5,∴七条直线相交最多有交点的个数是:12n(n﹣1)=12×7×6=21.故选:C.10.如图,将一条两边沿互相平行的纸带折叠,若∠1比∠2大12°,则∠1的度数为()A.66°B.68°C.54°D.56°【解答】解:如图所示,由题意可得:∠3=∠4,∵AB∥CD,∴∠2=∠3,∴∠2=∠4,由图可得,∠1+∠2+∠4=180°,∵∠1比∠2大12°,∴(∠2+12°)+∠2+∠2=180°,解得∠2=56°,∴∠1=∠2+12°=56°+12°=68°,故选:B.11.①如图1,AB∥CD,则∠A+∠E+∠C=180°;②如图2,AB∥CD,则∠E=∠A+∠C;③如图3,AB∥CD,则∠A+∠E﹣∠1=180°;④如图4,AB∥CD,则∠A=∠C+∠P.以上结论正确的个数是()A.①②③④B.①②③C.②③④D.②④【解答】解:①过点E作直线EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠A+∠1=180°,∠2+∠C=180°,∴∠A+∠B+∠E=360°,故本小题错误;②过点E作直线EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠A=∠1,∠2=∠C,∴∠AEC=∠A+∠C,即∠E=∠A+∠C,故本小题正确;③过点E作直线EF∥AB,,∵AB∥CD,∴AB∥CD∥EF,∴∠A+∠3=180°,∠1=∠2,∴∠A+∠AEC﹣∠1=180°,即∠A+∠E﹣∠1=180°,故本选项正确;④∵∠1是△CEP的外角,∴∠1=∠C+∠P,∵AB∥CD,∴∠A=∠1,即∠A=∠C+∠P,故本小题正确.综上所述,正确的小题有②③④共3个.故选:C.12.黑板上有一个数学问题如图所示:如图AB⊥BC,BC交CD于点C,AE平分∠BAD交BC于E,AE⊥DE,∠1+∠2=90°,M,N分别是BA,CD延长线上的点,∠EAM和∠EDN的平分线交于点F.几位同学经过研究得到以下结论:嘉嘉说:“AB∥CD”;琪琪说:“∠AEB+∠ADC=180°”;薇薇说:“DE平分∠ADC”;亮亮说:“∠F=135°”,则()A.只有嘉嘉的结论正确B.嘉嘉和琪琪的结论都正确C.只有琪琪的结论不正确D.四个人的结论都正确【解答】解:过点E作EH∥AB交AD于点H,则∠1=∠AEH,∵∠AEH+∠DEH=90°,∠1+∠2=90°,∴∠2=∠DEH,∴EH∥CD,∴AB∥CD,∵AE平分∠BAD,∴∠1=∠EAD,∵∠AED=90°,∴∠EAD+∠ADE=90°,∴∠ADE=∠2,∴DE平分∠ADC,∵∠EAM和∠EDN的平分线交于点F.根据平行线的拐点问题得:∠F=∠MAF+∠FDN=1(360°﹣45°)=135°,2∵∠AEB=∠2,∠EDN+∠2=180°,而∠EDN≠∠ADC,故选:C.二.填空题13.命题“在同一平面内,垂直于同一直线的两直线平行”的题设是在同一平面内两条直线垂直于同一条直线,结论是这两条直线平行.【解答】解:∵该命题可改写为:如果在同一平面内两条直线垂直于同一条直线,那么这两条直线平行,∴题设是:在同一平面内两条直线垂直于同一条直线,结论是:这两条直线平行.故答案为:在同一平面内两条直线垂直于同一条直线,这两条直线平行.14.为了测量古塔的外墙底角∠AOB的度数,王明设计了如下方案:作AO、BO的延长线OD、OC,量出∠COD的度数,就得到了∠AOB的度数,王明这样做的依据是对顶角相等.【解答】解:作AO、BO的延长线OD、OC,量出∠COD的度数,就得到了∠AOB的度数,王明这样做的依据是对顶角相等,故答案为:对顶角相等.15.如图,点P是直线l外一点,过点P作PO⊥l于点O,点A是直线l上任意一点,连接P A,若PO=3,则P A的长可能是4(答案不唯一)(写出一个即可).【解答】解:∵PO⊥l于点O,点A是直线l上任意一点,PO=3,∴3≤AP,∴AP的长可能是4,故答案为:4(答案不唯一).16.已知直线a、b、c,满足a∥b,a∥c,那么直线b、c的位置关系是b∥c.【解答】解:∵a∥b,a∥c,∴b∥c.故答案为:b∥c.17.如图所示,一块长为18m,宽为12m的草地上有一条宽为2m的曲折的小路,则这块草地的绿地面积是160m2.【解答】解:如图,将小路平移成两个相交的长方形,∴绿地面积为:(18﹣2)(12﹣2)=160(m2)故答案为:160m2.18.已知l1∥l2,一个含有30°角的三角尺按照如图所示的位置摆放,若∠1=65°,则∠2=25度.【解答】解:如图,过直角顶点作l3∥l1,∵l1∥l2,∴l1∥l2∥l3,∴∠1=∠3,∠2=∠4,∴∠1+∠2=∠3+∠4=90°,∵∠1=65°,∴∠2=25°.故答案为:25.三.解答题19.如图,直线AB,CD相交于点O,OA平分∠EOC,若∠EOD=88°,求∠BOD的度数.【解答】解:∵∠EOD=88°,∴∠EOC=180°﹣88°=92°,∵OA平分∠EOC,∠EOC=92°,∴∠AOC=12∠EOC=12×92°=46°,∴∠BOD=∠AOC=46°.20.如图,OB⊥OD,OC平分∠AOD,∠BOC=40°,求∠AOB的大小.【解答】解:∵OB⊥OD,∴∠BOD=90°,又∵∠BOC=40°,∴∠COD=90°﹣40°=50°,∵OC平分∠AOD,∴∠AOD=2∠COD=100°,∴∠AOB=∠AOD﹣∠BOD=100°﹣90°=10°,即∠AOB=10°.21.如图,一束平行光线AB与DE射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4.试说明BC∥EF.【解答】解:∵AB∥DE,∴∠1=∠3,∵∠1=∠2,∠3=∠4,∴∠2=∠4,∴BC∥EF.22.如图,已知直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠BOE=36°,求∠AOF的度数.【解答】解:∵直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∴∠BOE=∠DOE=36°,∠BOF=∠COF,∴∠BOD=∠AOC=2∠BOE=72°,∴∠BOC=180°﹣∠BOD=108°,∴∠COF=1∠BOC=54°,2∴∠AOF=∠AOC+∠COF=72°+54°=126°.23.如图,一条公路两次转弯后,和原来的方向相同.如果第一次的拐角∠A是135°,第二次的拐角∠B是多少度?为什么?【解答】解:∠B=135°,理由是:∵道路是平行的,∴∠B=∠A=135°.24.如图,已知直线AB∥DF,∠D+∠B=180°.(1)求证:DE∥BC;(2)如果∠AMD=70°,求∠AGC的度数.【解答】(1)证明:∵AB∥DF,∴∠D+∠BHD=180°,∵∠D+∠B=180°,∴∠B=∠DHB,∴DE∥BC;(2)解:∵DE∥BC,∠AMD=70°,∴∠AGB=∠AMD=70°,∴∠AGC=180°﹣∠AGB=180°﹣70°=110°.25.如图,点G在CD上,已知∠BAG+∠AGD=180°,EA平分∠BAG,FG平分∠AGC,请说明AE∥GF的理由.解:因为∠BAG+∠AGD=180°(已知),∠AGC+∠AGD=180°(邻补角的定义),所以∠BAG=∠AGC(同角的补角相等).因为EA平分∠BAG,∠BAG(角平分线的定义).所以∠1=12因为FG平分∠AGC,∠AGC,所以∠2=12得∠1=∠2(等量代换),所以AE∥GF(内错角相等,两直线平行).【解答】解:因为∠BAG+∠AGD=180°(已知),∠AGC+∠AGD=180°(邻补角的定义),所以∠BAG=∠AGC(同角的补角相等),因为EA平分∠BAG,∠BAG(角平分线的定义),所以∠1=12因为FG平分∠AGC,∠AGC,所以∠2=12得∠1=∠2(等量代换),所以AE∥GF(内错角相等,两直线平行).故答案为:已知;邻补角的定义;同角的补角相等;∠BAG;角平分线的定义;∠AGC;等量代换;内错角相等,两直线平行.26.如图,图①是一种网红弹弓的实物图,在两头上系上皮筋,拉动皮筋可形成平面示意图如图②和图③,弹弓的两边可看成是平行的,即AB∥CD,各活动小组探索∠APD与∠A,∠C之间数量关系时,有如下发现:(1)在图②所示的图形中,若∠A=30°,∠D=35°,则∠APD=65°;(2)在图③中,若∠A=150°,∠APD=60°,则∠D=150°;(3)有同学在图②和图③的基础上,画出了图④所示的图形,其中AB∥CD,请判断∠α,∠β,∠γ之间的关系,并说明理由.【解答】解:(1)过点P作PQ∥AB,∵AB∥CD,∴PQ∥AB∥CD,∴∠A=∠APQ,∠D=∠DPQ,∵∠A=30°,∠D=35°,∴∠APD=∠APQ+∠DPQ=∠A+∠D=30°+35°=65°.故答案为:65°;(2)过点P作PQ∥AB,∵AB∥CD,∴PQ∥AB∥CD,∴∠A+∠APQ=180°,∠D+∠DPQ=180°,∵∠A=150°,∴∠APQ=30°,∵∠APD=60°,∴∠DPQ=30°,∴∠D=180°﹣∠DPQ=180°﹣30°=150°.故答案为:150°;(3)过点P作PQ∥AB,∵AB∥CD,∴PQ∥AB∥CD,∴α+∠BPQ=180°,γ=∠DPQ,∴∠BPQ=180°﹣α,∵β=∠BPQ+∠DPQ,∴β=∠BPQ+γ,∴β=180°﹣α+γ,即α+β﹣γ=180°.27.【提出问题】若两个角的两边分别平行,则这两个角有怎样的数量关系?【解决问题】分两种情况进行探究,请结合如图探究这两个角的数量关系.(1)如图1,AB∥EF,BC∥DE,试证:∠1=∠2;(2)如图2,AB∥EF,BC∥DE,试证:∠1+∠2=180°;【得出结论】由(1)(2)我们可以得到结论:若两个角的两边分别平行,则这两个角的数量关系为相等或互补;【拓展应用】(3)若两个角的两边分别平行,其中一个角比另一个角的2倍少60°,求这两个角的度数.(4)同一平面内,若两个角的两边分别垂直,则这两个角的数量关系为相等或互补.【解答】【提出问题】(1)证明:如图1,∵AB∥EF,∴∠1=∠3,又∵BC∥DE,∴∠2=∠3,∴∠1=∠2;(2)证明:如图2,∵AB∥EF,∴∠1=∠4,又∵BC∥DE,∴∠2+∠4=180°,∴∠1+∠2=180°;【得出结论】解:由(1)(2)我们可以得到的结论是:若两个角的两边分别平行,则这两个角的数量关系是相等或互补,故答案为:相等或互补;【拓展应用】(3)解:设其中一个角为x,则另一角为2x﹣60°,当x=2x﹣60°时,解得x=60°,此时两个角为60°,60°;当x+2x﹣60°=180°,解得x=80°,则2x﹣60=100°,此时两个角为80°,100°;∴这两个角分别是60°,60°或80°,100°.(4)解:如图,这两个角之间的数量关系是:相等或互补.故答案为:相等或互补.。
图 2 A BC图7AO B 《相交线与平行线》单元测试时间:120分钟 满分:120分一、选择题(每题3分,共30分)1. 体育课上,老师测量跳远成绩的依据是( ).A 、平行线间的距离相等B 、两点之间,线段最短C 、垂线段最短D 、两点确定一条直线2. 如图1,给出了过直线外一点作已知直线的平行线的方法,其依据是( ) A 、同位角相等,两直线平行 B 、内错角相等,两直线平行 C 、同旁内角互补,两直线平行 D 、两直线平行,同位角相等3. 如图2所示是“福娃欢欢”的五幅图案,②、③、④、⑤哪一个图案可以通过平移图案①得到 ( ) A 、② B 、③ C 、④ D 、⑤ 4.如图3,若∠1=70°,∠2=110°,∠3=70°,则有( ). A 、a ∥b B 、c ∥d C 、a ⊥d D 、任两条都无法判定是否平行 5.一副三角扳按如图4方式摆放,且∠1的度数比∠2的度数大54°,则∠1=( ) A 、 18° B 、54° C 、72° D 、70° 6.如图5,图中对顶角共有( )对A 、6B 、11C 、12D 、137. 如图6,直线AB ,CD 与EF 相交于G ,H ,下列条件:①∠1=∠2;②∠3=∠6;③∠2=∠8;④∠5+∠8=180º,其中能判定AB ∥CD 的是( ) A 、①③ B 、①②④ C 、①③④ D 、②③④8.如图7,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐的角∠A 是1200,第二次拐的角∠B 是1500第三次拐的角是∠C ,这时的道路恰好和第一次拐弯之前的道路平行,则∠C 是( ) A 、1200 B 、1300 C 、1400 D 、15009. 下列命题:①两条直线相交,一角的两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③内错角相等,则它们的角平分线互相垂直;④同旁内角互补,则它们的角平分线互相垂直.其中正确的个数为( ). A 、4 B 、3 C 、2 D 、110.如图8探照灯、锅形天线、汽车灯以及其它很多灯具都与抛物线形状 有关,如图所示是一探照灯灯碗的纵剖面,从位于O 点的灯泡发出的两束光线OB OC 、经图 1图3 图4 图 5图6灯碗反射以后平行射出.如果图中ABO DCO αβ∠=∠=,,则BOC ∠的度数为( )A 、180αβ--B 、αβ+C 、1()2αβ+D 、90()βα+-二、填空题(每题3分,共18分) 11.如图9,当剪刀口∠AOB 增大21°时,∠COD 增大 。
七年级数学下册《相交线与平行线》单元测试卷(附答案)一、选择题(每题3分,共30分)1.如图1,A、B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B两个村庄的距离之和最小.如图2,连接AB,与l交于点C,则C点即为所求的码头的位置,这样做的理由是()A.垂线段最短B.两点确定一条直线C.两点之间,线段最短D.平行于同一条直线的两条直线平行2.如图,将一个含有30°角的直角三角尺放置在两条平行线a,b上.若∠1=135°,则∠2的度数为()A.95°B.110°C.105°D.115°3.如图,将△ABC沿BC方向平移1个单位得△DEF,若△ABC的周长等于10,则四边形ABFD 的周长为()A.12 B.10 C.9 D.84.下面四个图案中,能由如图经过平移得到的是()A.B. C. D.5.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm6.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是()A.垂直B.相等C.平分D.平分且垂直7.如图,下列说法错误的是()A.∠A与∠3是同位角B.∠4与∠B是同旁内角C.∠A与∠C是内错角D.∠1与∠2是同旁内角8.平面内两两相交的3条直线,其交点个数最少为m个,最多为n个,则m+n等于()A.4 B.5 C.6 D.以上都不对9.甲、乙、丙3人从图书馆各借了一本书(如下表所示),他们相约在每个星期天相互交换读完的书,经过数次交换后,他们都读完了这3本书.已知甲读的第三本书是乙读的第二本书,则丙读的第二本书是()甲乙丙书A书B书C A.书A B.书B C.书C D.无法确定10.下列各项正确的是()A.直线外一点到已知直线的垂线段叫做这点到直线的距离B.过一点有且只有一条直线与已知直线垂直C.同一平面内,两条直线的位置关系只有相交和平行两种D.有公共顶点且相等的两个角是对顶角二、填空题(每题3分,共24分)11.如图,已知∠1+∠2=180°,则图中与∠1相等的角共有_____个.12.如图,在图中标注的∠1、∠3、∠4、∠5中,当∠2 =∠_______时,AE∥BF.13.如图,已知a∥b,∠1=45°,则∠2=_________.14.“互补的两个角一定是同旁内角”是命题(填“真”或“假”).15.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠2=24°,则∠1的度数为.16.一平面内,三条直线两两相交,最多有3个交点;4条直线两两相交,最多有6个交点;5条直线两两相交,最多有10个交点;8条直线两两相交,最多有个交点.17.如图所示,l1∥l2,点A,E,D在直线l1上,点B,C在直线l2上,满足BD平分∠ABC,BD⊥CD,CE平分∠DCB,若∠BAD=128°,那么∠AEC=.18.如图,将一张长方形纸片ABCD沿EF折叠,使顶点C,D分别落在点C′,D′处,C′E 交AF于点G,若∠CEF=70°,则∠GFD′=°.三.解答题(19题6分,20、21、22、23、24题分别8分,共46分)19.如图,直线AB与CD相交于点O,OE平分∠BOC,∠AOD=110°,求∠AOE的度数.20.已知,如图a∥b,c∥d,∠1=73°,求∠2和∠3的度数.21.(8分)如图,已知AB∥CD,试再添加一个条件,使∠1=∠2成立.(1)写出两个不同的条件;(2)从(1)中选择一个来证明.22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.完成下列画图(1)如图,将△ABC向右平移4个单位,再向上平移2个单位长度,得到△A′B′C′,线段AB 与A′B′位置及数量关系是.(2)如图,一辆汽车在笔直的公路AB上由A向B行驶,M、是位于公路AB一侧的村庄.设汽车行驶到点P时,离村庄M的距离最小,请在图中公路AB上画出点P的位置,并说明数学原理.24.在ABC 中,D 是BC 边上一点,且CDA CAB ∠=∠,MN 是经过点D 的一条直线.(1)若直线MN AC ⊥,垂足为点E . ①依题意补全图1.②若70,CAB ︒∠=20DAB ︒∠=,则CAD ∠=________,CDE ∠=________. (2)如图2,若直线MN 交AC 边于点F ,且CDF CAD ∠=∠,求证:FD AB ∥.参考答案一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案 CCABCDAAAC二、填空题:11.312.413.45°. 解析:∵a∥b,∠1=45°,∴∠2=∠1=45°.14.解:如图,∠1=∠2=90°,∵∠1+∠2=180°,∴∠1与∠2互补,但它们是一对内错角,不是同旁内角,∴“互补的两个角一定是同旁内角”是假命题,故答案为:假.15.解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵GH∥EF,∴∠AEC=∠2=24°,∴∠1=∠ABC﹣∠AEC=36°.故答案为:36°.16.解:∵由已知总结出在同一平面内,n条直线两两相交,则最多有个交点,∴8条直线两两相交,交点的个数最多为=28.故答案为:28.17.【分析】根据平行线的性质和角平分线的性质,可以得到∠AEC的度数,本题得以解决.【解答】解:∵l1∥l2,∴∠BAD+∠ABC=180°,∵∠BAD=128°,∴∠ABC=52°,∵BD平分∠ABC,∴∠DBC=26°,∵BD⊥CD,∴∠BDC=90°,∴∠BCD=64°,∵CE平分∠DCB,∴∠ECB=32°,∵l1∥l2,∴∠AEC+∠ECB=180°,∴∠AEC=148°,故答案为:148°.【点评】本题考查平行线的性质、角平分线的性质、垂线,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】由AD∥BC可得∠AFE=∠CEF,∠CEF+∠DFE=180°,由翻折可得∠D'FE=∠DFE,进而求解.【解答】解:∵AD∥BC,∴∠AFE=∠CEF=70°,∵∠CEF+∠DFE=180°,∴∠DFE=180°﹣∠CEF=110°,由翻折可得∠D'FE=∠DFE=110°,∴∠GFD'=∠D'FE﹣∠AFE=110°﹣70°=40°,故答案为:40.【点评】本题考查角的相关计算,解题关键是掌握平行线的性质.三.解答题(19题6分,20、21、22、23、24题分别8分,共46分)19.【答案】解:∵∠AOD=110°,∴∠COB=110°,∠AOC=70°,∵OE平分∠BOC,∴∠COE=55°,∴∠AOE=70°+55°=125°.故答案为:∠AOE=125°.20.【答案】解:∵a∥b,∴∠1=∠2=73°,∵c∥d,∴∠3=180°-73°=107°.21.解:此题答案不唯一,合理即可.(1)添加∠FCB=∠CBE或CF∥BE.(2)已知AB∥CD,CF∥BE.求证:∠1=∠2.证明:∵AB∥CD,∴∠DCB=∠ABC.∵CF∥BE,∴∠FCB=∠CBE,∴∠DCB-∠FCB=∠ABC-∠CBE,即∠1=∠2.22.解:(1)DE∥BC,理由如下:∵∠1+∠4=180°,∠1+∠2=180°,∴∠2=∠4,∴AB∥EF,∴∠3=∠5,∵∠3=∠B,∴∠5=∠B,∴DE∥BC,(2)∵DE平分∠ADC,∴∠5=∠6,∵DE∥BC,∴∠5=∠B,∵∠2=3∠B ,∴∠2+∠5+∠6=3∠B +∠B +∠B =180°, ∴∠B =36°, ∴∠2=108°, ∵∠1+∠2=180°, ∴∠1=72°.23.(1)解:如图,△A ′B ′C ′即为所求作;线段AB 与A ′B ′位置及数量关系分别是平行且相等, 故答案为:平行且相等. (2)解:如图,点P 即为所求.数学原理是:连接直线外一点与直线上各点的所有线段中,垂线段最短, 24.(1)①如图所示.②70,CAB ︒∠=20DAB ︒∠=,50CAD ︒∴∠=.70CDA CAB ︒∠=∠=,18060C CAD CDA ︒︒∴∠=-∠-∠=.DE AC ⊥,第 11 页 共 11 页 9030CDE C ︒︒∴∠=-∠=. 故答案为50,︒30︒.(2)CDA CAB ∠=∠, 且,CDA CDF ADF ∠=∠+∠CAB CAD BAD ∠=∠+∠, CDF ADF CAD BAD ∴∠+∠=∠+∠. ,CDF CAD ∠=∠,ADF BAD ∴∠=∠FD AB ∴∥.。
相交线与平行线单元测试题含答案相交线与平行线单元测试题一、选择题1、下列说法正确的是() A. 相交的两条直线一定有一个交点 B. 同位角相等 C. 两直线平行,对角线一定相等 D. 相等的两个角一定是对顶角2、以下不能说明直线AB与CD平行的是() A. AB//CD,A与B在同一方向,C与D在同一方向 B. $\angle 3 = \angle 4$ C. $\angle A = \angle C$ D. $\angle A + \angle B = 180^{\circ}$,$\angleC + \angleD = 180^{\circ}$3、下列说法正确的是() A. 过一点有且只有一条直线与已知直线平行 B. 两直线平行,同位角相等 C. 内错角相等,两直线平行 D. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行4、下列说法正确的是() A. 两条直线被第三条直线所截,同位角相等 B. 相等的两个角是对顶角 C. 两直线平行,同旁内角互补 D. 互补的两个角不一定是邻补角5、下列说法正确的是() A. 同位角相等 B. 互补的角是邻补角 C. 两直线平行,同旁内角相等 D. 两直线平行,内错角相等二、填空题1、同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相________,简述为________.2、两直线平行,同位角________;两直线平行,内错角________;两直线平行,同旁内角________.3、两条直线的位置关系有________、________.4、若三条直线两两相交,则共有________个交点.5、在同一平面内,若两直线都垂直于第三条直线,那么这两条直线________.6、如图所示,若$\angle A + \angle B = 180^{\circ}$,$\angle A = \angle D$,则$\angle B =$________.7、如图所示,若$\angle A = \angle B$,则$\angle C =$________.8、如图所示,若$\angle A + \angle B = 90^{\circ}$,$\angle B + \angle C = 90^{\circ}$,则$\angle A =$________.9、若一个角的两边分别和另一个角的两边分别平行,则这两个角的关系是________.10、如图所示,若AB//CD,则$\angle A + \angle B + \angle C=$________.三、解答题1、已知两条平行线被第三条直线所截,则形成的同位角的数量是多少?这些同位角还具有什么性质?2、利用所给图形探究规律。
七年级数学第5章《相交线与平行线》单元测试
一、填空题
1.如图5-1,MN ⊥AB ,垂足为M 点,MN 交CD 于N ,过M 点作MG ⊥CD ,垂足为G ,EF 过点N 点,且EF ∥AB ,交MG 于H 点,其中线段GM 的长度是________到________的距离, 线段MN 的长度是________到________的距离,又是_______的距离,点N 到直线MG 的距离是___.
2.如图5-2,AD ∥BC ,EF ∥BC ,BD 平分∠ABC ,图中与∠ADO 相等的角有_______ 个,分别是___________.
3.如图5-3,给出下列论断:①AD ∥BC :②AB ∥CD ;③∠A =∠C .
以上其中两个作为题设,另一个作为结论,用“如果……,那么……”形式,写出一个你认为正确的命题是___________.
4.如图5-4,直线AB 、CD 、EF 相交于同一点O ,而且∠B O C=23∠AOC ,∠DOF =1
3
∠AOD ,那么∠FOC =______ 度.
5.如图5-5,直线a 、b 被c 所截,a ⊥l 于M ,b ⊥l 于N ,∠1=66°,则∠2=________. 6.如图5-6,∠ACB =90°,CD ⊥AB ,则图中与∠A 互余的角有 个,它们分别是 .∠A =∠ ,根据是 .
7.如图5-7,一棵小树生长时与地面所成的角为80°,它的根深入泥土,如果根和小树在同一条
直线上,那么∠2等于 °.
8.如图5-8,量得∠1=80°,∠2=80°,由此可以判定 ∥ ,它的根据
是 .
量得∠3=100°,∠4=100°,由此可以判定 ∥ ,它的根据是 . 9.a 、b 、c 是直线,且a ∥b , b ∥c , 则a ___c ; a 、b 、c 是直线,且a ⊥b , b ⊥c , 则a ___c ;
二、选择题
10.如图5-12,∠ADE 和∠CED 是( )
A .同位角
B .内错角
C .同旁内角
D .互为补角 11.如图5-13,l l 1211052140//,,∠=∠= ,则∠=α( ) A . 55
B . 60
C . 65
D . 70
12.如图5-14,能与∠α构成同旁内角的角有( ) A . 5个 B .4个 C . 3个
D . 2个
13.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30
,那么这两个角是( ) A . 42138
、
B . 都是10
C . 42138
、或4210
、
D . 以上都不对
14.如图5-17,a ∥b ,∠1与∠2互余,∠3=1150,则∠4等于( )
A .1150
B . 1550
C . 1350
D .1250
第(11)题
E
D
C B A
l 1
1
α
2 l
图5-12 图5-13 G
H N
M
F E
D
C
B
A F
E
O
D
C
B
A 图5-1 图5-2
D
C
B
A
F
E
O D
C
B
A
c
l
N
M
b a
2
1
图5-3 图5-4 图5-5
C
A
D
B
图1
1
2
80°
A B
C D
E
F G H 1
234图3
图5-6 图5-7 图5-8
F E
2
1
D
C
B
A
C
B
A
15.如图5-18,∠1=150
, ∠AOC =900
,点B 、O 、D 在同一直线上,则∠2的度数为( )
A .750
B .150
C .1050
D . 1650
16.如图5-19,能表示点到直线(或线段)距离的线段有( )
A . 2条
B .3条
C .4条
D .5条
17.下列语句:①三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中( )
A .①、②是正确的命题
B .②、③是正确命题
C .①、③是正确命题
D .以上结论皆错
18.下列与垂直相关的说法:①平面内,垂直于同一条直线的两条直线互相平行;②一条直线如
果它与两条平行线中的一条垂直,那么它与另一条也垂直;③平行内, 一条直线不可能与两条相交直线都垂直,其中说法错误个数有( ) A .3个 B .2个 C .1个 D .0个 三、解答题
19.如图5-21,过P 点,画出OA 、OB 的垂线.
20.如图5-23,是一条河,C 河边AB 外一点:
(1)过点C 要修一条与河平行的绿化带,请作出正确的示意图.
(2)现欲用水管从河边AB ,将水引到C 处,请在图上测量并计算出水管至少要多少?(本图
比例尺为1:2000)
21.如图5-25,∠1+∠2=180°,∠DAE =∠BCF ,DA 平分∠BDF . (1)AE 与FC 会平行吗?说明理由. (2)AD 与BC 的位置关系如何?为什么?
(3)BC 平分∠DBE 吗?为什么.
22.如图,CD AB //,AE 平分BAD ∠,CD 与AE 相交于
F ,E CFE ∠=∠。
求证:BC AD //。
(10分)
23.如图5-29,已知:AB //CD ,求证:∠B +∠D +∠BED =360︒(至少用两种方法)
E
A
B
C
D
24. 已知AD ⊥BC ,FG ⊥BC ,垂足分别为D 、G ,且∠1=∠2,猜想∠BDE 与∠C 有怎样的大小关系?试说明理由.
25. 如图,已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于点C 和D ,在C 、D 之间有一点P ,如果P
点在C 、D 之间运动时,问∠PAC ,∠APB ,∠PBD 之间的关系是否发生变化.若点P 在C 、D 两点的外侧运动时(P 点与点C 、D 不重合),试探索∠PAC ,∠APB ,∠PBD 之间的关系又是如何?
l 1
l C
B D
P
l 2
A
d
第(18)题4
321
c
b
a 第(20)题
D
C
B
A
O
第(19)题
D
C
B
A
2
1
图5-17 图5-18 图5-19
图5-23
图5-25
图5-26 图5-27
1. A
P
O B 2. A
O P B
2
1
F E D
C
B A。