当前位置:文档之家› 低本底αβ放射性检测仪系统简介

低本底αβ放射性检测仪系统简介

低本底αβ放射性检测仪系统简介
低本底αβ放射性检测仪系统简介

低本底α/β放射性检测仪系统简介

低本底α/β放射性检测仪由检测仪主机和专用计算机构成,另外还需要一套专用的气源。检测仪主机是本仪器的核心部分。低本底α/β放射性检测仪包括双导轨抽屉式样品托架、测量计数管、屏蔽计数管、铅屏蔽室和核电子学单元等五部分。

专用计算机为PENTUM(586)以上的微机,内插专用接口板。

专用气源包括气瓶、减压阀、稳压阀、稳流阀以及管道。

3.1 双导轨抽屉式样品托架

包括样品盘、盘托架、导轨等。其选用材料全部是低本底材料。设计、加工精细,使用方便。样品互换性好,只要把样品盘放入托架的圆孔内,把托架推到测量位置,便完成了样品的精确定位。测量完毕后拉出托架,换上载有新样品的样品盘,便可重新进行检测。

3.2 测量计数管

测量计数管为圆饼状薄窗流气式正比计数管,它是核辐射传感器(探测器),能将不可直接测量的辐射信息转化为可以直接测量的电脉冲信号。因其输出脉冲信号的幅度与入射粒子的能量成正比,而曰“正比”计数管。计数管的窗材料为镀Al Mylar薄膜。窗口有效直径ф60mm,薄窗厚约2μm,薄窗便于α、β等穿透能力弱的粒子进入计数管。

样品托架推到测量位置后,样品盘的中心(即待测样品的中心)正好对着计数管的窗口中心。窗薄、样品窗口距离近、测量立体角大,保证了样品测量的高效率。

3.3 屏蔽计数管

屏蔽计数管也是一只流气式正比计数管。它包围在测量计数管的四周和上部。本底辐射(包括宇宙射线和周围环境的γ射线)将会同时在两个计数管上产生脉冲,经反符合后不产生计数。

3.4 核电子学单元

电子线路包括脉冲放大器、脉冲甄别器、脉冲的成型与延迟、高压电源、α/β脉冲计数器和反符合计数器。在线路设计上采用高集成度的表面安装技术,使主机的体积重量大大减小,可靠性响应提高。它能将屏蔽计数管的计数、测量计数管的α计数和β计数分别处理后送入与之相连的计算机。为降低本底计数,采用反符合方法。凡是外界本底辐射同时在两个计数管上产生的脉冲,经过反符合单元将被消除,不会在β道产生输出计数。g-射线在测量计数管上产生的脉冲幅度很低,因而也不会在a-道产生计数。a-粒子与b-粒子的能量差别很大,在测量计数管上产生的脉冲高度差别也很大,经过脉冲甄别,理论上可以完全区分a-粒子与b-粒子。经过a与b反符合可以扣除a-粒子对b-道产生的脉冲。但是由于空气、计数管窗口和源本身的吸收和散射,使得a-粒子产生能量损失,以致部分a-粒子在β-道产生计数。a-粒子与b-粒子的的串道将通过软件进行校正。?

3.5 铅屏蔽室

屏蔽室由低放射性水平的老铅制成,平均厚度大于10cm。其中心部位是由计数管和样品托架构成的测量室。

3.6 专用计算机专用计算机中插有数字I/O接口和ADC接口。通过电缆与核电子学单元连接。系统在Windows98平台上开发了控制和数据处理软件。运行参数设置,技术数据采集与处理、高压控制都通过计算机进行操作。断电时可保存前几时间段测得的数据,还可以进行样品种类选择、测量次数选择和测量时间选择。

放射性物质的源处理

1、放射性的基本概念 某些物质的原子核能发生衰变,放出我们肉眼看不见也感觉不到,只能用专门的仪器才能探测到的射线。物质的这种性质叫放射性。 2、放射性污染来源及分类 1)、核武器试验的沉降物(在大气层进行核试验的情况下,核弹爆炸的瞬间,由炽热蒸汽和气体形成大球(即蘑菇云)携带着弹壳、碎片、地面物和放射性烟云上升,随着与空气的混合,辐射热逐渐损失,温度渐趋降低,于是气态物凝聚成微粒或附着在其它的尘粒上,最后沉降到地面。 2)、核燃料循环的“三废”排放原子能工业的中心问题是核燃料的产生、使用与回收、核燃料循环的各个阶段均会产生“三废”,能对周围环境带来一定程度的污染。 3)、医疗照射引起的放射性污染目前,由于辐射在医学上的广泛应用,已使医用射线源成为主要的环境人工污染源。同位素治疗和诊断产生放射性污水。放射性同位素在衰变过程中产生a-、β-和γ-放射性,在人体内积累而危害人体健康。 4)、其它各方面来源的放射性污染其它辐射污染来源可归纳为两类:一工业、医疗、军队、核舰艇,或研究用的放射源,因运输事故、遗失、偷窃、误用,以及废物处理等失去控制而对居民造成大剂量照射或污染环境;二是一般居民消费用品,包括含有天然或人工放射性核素的产品,如放射性发光表盘、夜光表以及彩色电视机产生的照射,虽对环境造成的污染很低,但也有研究的必要。 3、放射性对人体的危害 在大剂量的照射下,放射性对人体和动物存在着某种损害作用。如在400rad的照射下,受照射的人有5%死亡;若照射650rad,则人100%死亡。照射剂量在150rad以下,死亡率为零,但并非无损害作用,住往需经20年以后,一些症状才会表现出来。放射性也能损伤遗传物质,主要在于引起基因突变和染色体畸变,使一代甚至几代受害。 4、放射性“三废”处理 放射性废物中的放射性物质,采用一般的物理、化学及生物学的方法都不能将其消灭或破坏,只有通过放射性核素的自身衰变才能使放射性衰减到一定的水平。而许多放射性元素的半衰期十分长,并且衰变的产物又是新的放射性元素,所以放射性废物与其它废物相比在处理和处置上有许多不同之处。 1).放射性废水的处理 放射性废水的处理方法主要有稀释排放法、放置衰变法、混凝沉降法、离子变换法、蒸发法、沥青固化法、水泥固化法、塑料固化法以及玻璃固化法等。 2).放射性废气的处理 (1)铀矿开采过程中所产生废气、粉尘,一般可通过改善操作条件和通风系统得到解决。

碘131放射性监测仪

上海仁日辐射防护设备有限公司https://www.doczj.com/doc/a514498841.html,021-6951.5711 碘131放射性监测仪 碘-131是元素碘的一种放射性同位素,为人工放射性核素(核裂变产物),符号为I-131,半衰期为8.3天。正常情况下自然界是不会存在的。大量生产碘131时,要注意避免碘131挥发,以免给环境带来严重污染。操作应在设有负压和带有除碘装置的屏蔽箱室里进行。活性炭、涂银活性炭、银铜合金网、银网和碱性溶液等都是碘131的良好吸附剂。用什么仪器来检测它的放射性呢? REN600A 型α、β、γ射线表面污染检测仪可检测α、 β、γ射线,也能检测到 X 射线 , 它采用高速嵌入式微处器 作为数据处理单元,点阵式大屏幕 LCD 液晶显示,读数清晰、 操作方便,具有 800 组超大容量数据存储。仪器采用进口的大 面积 MICA 盖革探测器,具有较高探测效率,可进行α、β辐 射表面污染检测和 X 、γ辐射剂量率的监测。此外通过配套 的 RenRiCont 放射性污染管理软件可将存储的数据读出后分 析。可广泛用在制药厂、实验室、发电厂、进出口商检、采石 场、环境实验室、环境污染调查、核安全应急、紧急状况营救 站、金属处理厂、地下油田、供油管道装备、环境保护和警察 局等部门。 仪器特点 1 、采用高效率的进口 MICA 盖革探测器 2 、剂量率报警阈值设置,超阈值报警 3 、采样时间设置 4 、声光报警和粒子脉冲提示报警 5 、实时时钟功能 6 、超低功耗设计,电池电量实时指示 7 、单位显示 CPM 、 CPS 、μ Gy/h 、μ Sv/h 、 mR/h 8 、 800 组超大容量数据存储,断电后不丢失 9 、采用模拟标尺和数字显示,更清晰直观 10 、 USB 接口功能 11 、便携式手柄设计 12 、标配提供 RenRiCont 软件 主要技术指标 1 、测量范围: 剂量率 0.01 — 1000 μ Sv/h , 0.01 ~ 100mR/h 计数率 0 — 50000 CPM , 0 — 8000 CPS : 2 、探测器:进口薄窗型盖革计数管,有效直径: 45mm 3 、能量范围: 40KeV ~ 7MeV 4 、探测效率: Sr-90(546kev,2.3MeV β max) 约 75% Am-241(5.5MeV α ) 约 36% 5 、灵敏度: 3500CPM/ mR/h (对于 Cs-137 )

放射科辐射监测方案

放射科辐射监测方案 Prepared on 22 November 2020

放射科辐射监测方案 为加强对放射源管理与放射工作人员健康管理,控制放射性物质的照射,规范放射工作防护管理,保障相关员工健康和环境安全,根据《放射性同位素与射线装置安全和防护条例》要求,结合我院实际,特制定本方案。 一、个人剂量监测 1、我院辐射环境监测工作由放射防护领导小组组织,放射科、核医学科具体实施,医院预防保健科负责联系有剂量监测资质的机构对我司参与放射源管理人员进行个人剂量监测。 2、个人剂量监测期内,个人剂量计每三个月检测一次。佩戴周期第三个月份的月底各有关部门放射防护管理人员收齐本部门放射工作人员的个人剂量监测仪后交至预防保健科更换佩戴个人剂量计,预防感染科统一将个人剂量计送至有资质机构检测并领取新的个人剂量计。 3、剂量监测结果一般每季度由预防保健科向各有关部门通报一次;当次剂量监测结果如有异常,预防感染科通知具体放射工作人员及部门分管领导。 4、预防保健科和放射防护领导小组负责建立我院放射工作人员的个人剂量档案。 二、放射工作人员健康检查

我院预防保健科科联系有放射人员体检资质的医院,组织相关放射工作人员每年进行一次健康检查,并建立健康档案。未经体检和体检不合格者,不得从事放射性工作。 三、工作场所监测 后勤设备管理科负责联系有放射设备性能、工作场所防护监测资质的机构对我院放射设备进行每年一次的设备性能与防护监测。 1、外部监测:根据需要联系有监测资质的机构对我院放射工作设备性能与场所辐射防护进行监测或环境评价。 2、内部监测:由核医学科每季度初指定专人对我院存放放射物质场所进行监测,并记录档案。 3、应急监测:应急情况下,为查明放射性污染情况和辐射水平进行必要的内部或外部监测。

放射科辐射监测方案

放射科辐射监测方案 为加强对放射源管理与放射工作人员健康管理,控制放射性物质的照射,规范放射工作防护管理,保障相关员工健康和环境安全,根据《放射性同位素与射线装置安全和防护条例》要求,结合我院实际,特制定本方案。 一、个人剂量监测 1、我院辐射环境监测工作由放射防护领导小组组织,放射科、核医学科具体实施,医院预防保健科负责联系有剂量监测资质的机构对我司参与放射源管理人员进行个人剂量监测。 2、个人剂量监测期内,个人剂量计每三个月检测一次。佩戴周期第三个月份的月底各有关部门放射防护管理人员收齐本部门放射工作人员的个人剂量监测仪后交至预防保健科更换佩戴个人剂量计,预防感染科统一将个人剂量计送至有资质机构检测并领取新的个人剂量计。 3、剂量监测结果一般每季度由预防保健科向各有关部门通报一次;当次剂量监测结果如有异常,预防感染科通知具体放射工作人员及部门分管领导。 4、预防保健科和放射防护领导小组负责建立我院放射工作人员的个人剂量档案。 二、放射工作人员健康检查 我院预防保健科科联系有放射人员体检资质的医院,组织相关放射工作人员每年进行一次健康检查,并建立健康档案。未经体检和体检不

合格者,不得从事放射性工作。 三、工作场所监测 后勤设备管理科负责联系有放射设备性能、工作场所防护监测资质的机构对我院放射设备进行每年一次的设备性能与防护监测。 1、外部监测:根据需要联系有监测资质的机构对我院放射工作设备性能与场所辐射防护进行监测或环境评价。 2、内部监测:由核医学科每季度初指定专人对我院存放放射物质场所进行监测,并记录档案。 3、应急监测:应急情况下,为查明放射性污染情况和辐射水平进行必要的内部或外部监测。

放射性污染监测

第12章放射性污染监测 △本章教学目的、要求 1.了解环境放射性的来源及危害; 2.熟悉放射性测量实验室; 3.掌握放射性监测方法; 4.了解电磁辐射污染监测。 △本章重点 放射性危害、放射性监测 △本章难点 放射性监测方法 △本章教学目录 12.1概述 12.2 放射性监测方法 12.3电磁辐射污染监测 12.1 概述 12.1.1放射性 有些原子核是不稳定的,它能自发地有规律地改变其结构转变为另一种原子核,这种现象称为核衰变。在核衰变过程中总是放射出具有一定动能的带电或不带电的粒子,即α、β和γ射线,这种性质称为放射性。 凡具有自发地放出射线特征的物质称作放射性物质。 12.1.2放射性的来源 放射性污染物质来源于自然界和人工制造两个方面。 12.1.2.1天然放射性来源 ⑴宇宙射线由初级宇宙射线和次级宇宙射线组成。初级宇宙射线是指从外层空间射到地球大气的高能辐射,主要成分为质子(83%~89%)、α粒子(10%~15%)及原子序Z≥3的轻核和高能电子(1%~2%),这种射线能量很高,可达1020MeV以上。初级宇宙射线与地球大气层中的原子核相互作用,产生的次级粒子和电磁辐射称为次级宇宙射线。 ⑵天然放射性同位素 自然界中天然放射性核素主要包括以下三个方面:

①宇宙射线产生的放射线核素。如14N(n,T)12C反应产生的氚,14N(n,P)12C反应产生的14C; ②天然系列放射性核素。这种系列有三个,即铀系,其母体是238U;锕系,其母体是235U;钍系,其母体是232Th。 ③自然界中单独存在的核素。这类核素约有20种,如40K、87Rb、209Bi等。 12.1.2.2 人为放射性核素的来源 a. 核试验及航天事故 b. 核工业 c. 工农业、医学科研等部门对放射性核素的应用 d. 放射性矿的开采和利用 12.1.3放射性核素对人体的危害 途径:呼吸道吸入、消化道摄入、皮肤或粘膜侵入。 其对人体的危害主要是辐射损伤,辐射引起的电子激发作用和电离作用使机体分子不稳定,导致蛋白质分子键断裂和畸变,破坏对人类新陈代谢有重要意义的酶。辐射不仅可扰乱和破坏机体细胞组织的正常代谢活动,而且可以直接破坏细胞和组织的结构,对人体产生躯体损伤效应(如白血病、恶性肿瘤、生育力降低、寿命缩短等)和遗传损伤效应(流产、遗传性死亡和先天畸形等)。 12.2 放射性监测方法 12.2.1 监测对象和内容 监测对象: ①现场监测,即对放射性物质生产或应用单位内部工作区域所作的监测; ②个人剂量监测,即对放射性专业工作人员或公众作内照射和外照射的剂量监测; ③环境监测,即对放射性物质生产和应用单位外部环境,包括空气、水体、土壤、生物、固体废物等所作的监测。 在环境监测中,主要测定的放射性核素为: ①α放射性核素,即239Pu、226Ra、222Rn、210Po、222Th、234U、235U等; ②β放射性核素,即3H、90Sr、89Sr、134Cs、137Cs、131I和60Co等。这些核素在环境中出现的可能性较大,其毒性也较大。 对放射性核素具体测量的内容有:①放射源强度、半衰期、射线种类及能量;②环境和人体中放射性物质含量、放射性强度、空间照射量或电离辐射剂量。

放射性探测器

放射性探测器 掌门神型智能化х、γ辐射仪采用高灵敏的闪烁晶体作为探测器 , 反应速度快 , 和国内同类仪器相比,该仪器具有更宽的剂量率测量范围。该仪器除能测高能、低能γ射线外,还能对低能 X 射线进行准确的测量,具有良好的能量响应特性。此外通过配套的剂量率管理软件可将存储的数据读出后分析。该仪器广泛用于环保、冶金、石油化工、化工、卫生防疫、进出口商检、放射性试验室、废钢铁、商检、各种放射性工作场所等需进行辐射环境与辐射防护检测的场合 特 点: 1、高灵敏度,宽测量范围,良好的能量响应特性 2、高速微功耗微处理器单元 3、数字及标尺显示剂量率状态 4、全中文菜单式操作界面 5、数字式 LCD 液晶显示,高亮背光功能 6、内置 800 组剂量率储存数据,可随时查看,断电不丢失。 7、 USB 数据接口,可将数据上传到计算机。 8、剂量率,累计剂量均可测量 9、剂量率阈值报警功能 11、阻塞报警功能 12、探测器故障报警功能 13、电池电量实时显示 技术指标: 1、探 测 器: φ 30 × 25mm ,NaI(TL) 闪烁晶体 2、测量范围: 剂量率: 0.01 ~ 500.00μSv/h 累积剂量: 0.00 μ Sv ~ 9999 μ Sv 3、能量范围: 40Kev ~ 3Mev 4、灵 敏 度: 1 μ Sv/h ≥ 350CPS 5、能 量 阈: 35Kev 6、能量响应:≤± 30% (相对于 137Cs ) 7、相对误差:≤± 10% 8、测量时间: 1 ~ 120 秒可编程设置 9、报 警 阈: 0.25、 2.5、 10、 20 (μ Sv/h ) 10、显示单位 : 剂 量 率: μ Sv/h、μ Gy/h、μ R/h 累计剂量:μ Sv 计 数 率: CPS 11、电 源: 2 节标准 1 号电池

超声波液位测量系统设计

超声波液位测量系统设计阳华忠孙传友长4女学电,;学M4¨025 鞭蛹隧鞠獬黼黜裂簿螽缓灏醺戳黼{t*t☆sPcEoBl^女m●^‰,LMl812≈,《{目^《tE“&”^#&*雎*t{《.*#自&m£i”1“女T一**¨t《,”‘f#十∞}m*.mtT≈,《ttt湿度.*^.B§f#境目t*Ⅻt十¥∞#自.tm7}#《*目^#^*&镕■t十来目f&.#^i&&■t¨#*t.豳■蕾鞠积整黼燃霸麟醐黼}E#.}m*,《’女;LMlB12 1引言 n【】__超市披挂求班}K迅速.4、M渗墟刮*个镯域.¨仃军¥Ⅸ玎驯缭婶冉IIii#8有rL£的“川.漓f±☆1删*和托M也址日常t僻巾十最盛的邻j域+披ft的删*片证卉他毒。恻如羞Ⅲ往洲n液俺U锌“,删屉池位,赳胜补偿趟自浊扯删量池似等等m采邢t些方法会J、腰劣∞环境和抽悼峦‘£的坐化给删*带m#k的瞄莘…毕“;fm悼具有蝇蚀什…嘲蚀删抽越^¨埘I№-陋,奉&计性出r坫f浮rn0磐【匕浊ms},cl,∞l^.1…单Jt扎LMl8l二越r々渡々m推成,0片#【f占,l的古洼自g{kI。硅U越。水《统可蒜性-≈.近H1fj:%精度高。 2参比法液位测量原理 警比洼H娘理是利用超}"往换能8发一¨110趟-;浊忸冲]Ⅲ过’Ln《传播0g鹰崔ft转^的并【日处掰成fi针日睦f々到搀能*片搏M接收。精Ⅲ忧5超声被¨垃日十纠挡牧自坩_{,J就“J眦牯确地计算Ⅲ随Ⅻ4披体的触协。其原H圳Ⅵl,j超声藏#射Ji掳4£趟十波∞传感*就鼻m趺控憧剑州柬m泄f:号求…濉足“枉准环处r“生的删∞帅时问为【o。B求H“#是I_I_泞r灶产’p的,删址的时问山r6掉F陆触洲浦傩的披1Ⅳ峦fLm坐化超J:一被“行早以j,的7L秆m。…々播。山十越钠【d的j{罐中1怍,超F*纠K,*q■fJ}”}千肌蛳的琏鹰+H‘÷,山ft可得 咖} P止巾vf)是超,r漓到拉准环∞迹Ⅱ。V是超声涟刊iTr顺_fii自0Jl嚏.“r“推111: ⅢJ+ H一=_』 胜艟Ⅻ目演津的液化- ¨】|0_hd }r=H卜坐1一d l^?hH是储删砝液体的涟n h-挂地奇被传晦%爿存*睡带的m离;h 是超■被心堪*Ⅻ",琐部的H捕.酒过 删%的时州“弹其值?ho是超声被f々盛* 判}tt*M一的啦离.一q椒擗址日】肫m】稠整棱 挂环的r*度;d是泞r项而刊油自帕* 离。m此”rⅢ删址日f々出#艘∞谴虚£ 芏*仃枉州温睦m鹿,≮H描{啊超 Jh挫∞速疃拚呆统带沫舶m菇。 法i坑錾盛观J#功矩{【l减少i统琨 蕈麓世gm满Mmr要求苴M t管的底口?‘o№删f&体连通恒f*删陂 似进^【I|II最昔:¨’,浮于的密度90川、 T触目哺体的密嘘.JL汗子具备托惭蚀 忡;其。,抟c*环_胛丁^选有利于起} *i川nⅡ“抖;】lH,Ⅲl量管录I¨抗腐蚀 忡蝗的十诱钢村料. 囤1臆理犀 3硬件原理电路 牟系统纳简嘤碰什}b路¨RI!.性自f 和拄牧Ⅻ什电路目ⅢIM1s11趟■胜々… 鞋成oI_l。M1sl二硅种既能K进《能 接性超声波的0H呆¨』适块鞋戍,,l以简 ft№m“牿提高{统的一,J稚性。0l-内 郫乜拈:胩f-p州制c生妊落#,,*增& 接收∞,脉冲啁,¨拴删#啭自抑制≈, ‘j8%【☆j自电。Fn、f.1MI812处于发时 模式.箱】符嘟外拄c1lik亡m瞎的世蚶 矗摊投的[怍撷牛LlCI扳蒿增蚰被憾为 振荡醺走,振荡信≈!{驱r女坡★后,M13管 wⅡ6管脚输m。 ’_8管Ⅷ为Ⅱl“平时.iMl8l!处于 拉收懊文,趣声踺1々媾g摇收“连日的衄 市披1j号%电彝耦仟…4符脚输^再经 内郫哺级般^艘凡岳的f;}轴U】管删 的喈扳日路取出的竹母起送剑幢删£. 目时竹檗F一也披捡删,-4“通过l7管W外 接的电料进行滤眭。’1管M【L的电Ⅲ盘 拜小州*能触牲怪Ⅻ蝌祝j,器&蜒蚓簋 T转¥”IⅢ” 圉3主程序流程圈 图2简要磋件电路目

放射性物质监测仪

放射性物质监测仪 REN300在线x-γ辐射安全报警仪是一种新型的x- γ辐射连续 监测报警装置,它采用特殊设计的前置放大电路,具有灵敏度高、 操作方便、自动显示、数据存储和超阈报警等特点,能实时给出x γ 辐射剂量率。考虑到现场操作、应急快速响应的需要,主机安装在 辐射现场, 实现实时监测与就地报警,通过RS485 通讯实现总控 制室自动监控。可根据现场要求,选配RenRiArea 辐射区域监测软 件,该软件可连续存储30 个探头 5 年以上的历史数据, 提供实 时数据采集和图谱等。 该仪器广泛应用于放射性废物库、工业无损探伤、医院γ刀治疗、同位素应用、γ辐照、医院X 射线诊断、钴治疗、核电站等放射性场所,提醒工作人员就放射源或射线装置已处于工作或泄漏状态,使其免受辐射危害。 一、 1、采用高速嵌入式微处理器、图形点阵式液晶显示、人性化输入。 2、中、英文双语操作界面。 3、三种报警模式,适用于各种辐射安全报警场所的需要。 4、一个主机可下挂30个以上的探测器。 5、多种接口输出和输入,可与X-Ray或铅门等组成联锁系统。 6、实时采样,数据每秒快速处理刷新。 7、日历时钟功能、具有故障自恢复功能。 8、探测器故障指示 9、数据可输出到其它装置 10、挂壁式主控箱、安装方便。 11、通讯方式: (1) 标准RS485接口,MODBUS通信协议,传输距离可达800米。 (2) 可选工业无线网络通信方式,通信最远通信距离可达3千 米 (3) 可选GPRS无线网络传输,可实现远程联网(可选) 12、可与RenRiArea辐射区域监测软件组成在线x-γ辐射监测系统。 二、控制器技术指标: 1、显示方式:5.7寸LCD显示器,中文/英文界面。 2、探头配置:可与REN系列x-γ探头连接, 最多可连接30个探头。 3、显示单位:uGy/h 或 uSv/h 。 4、状态指示:正常/过载/故障。 5、报警方式:声、光同时报警方式,也可外机多个报警灯。 6、报警模式:模式一/模式二/模式三等三种方式。 7、存储功能: 自动存储超过阈值的剂量率值,和探头的异常状态。 8、报警阈值: 2.5uGy/h(出厂默认),且自行可调,具有高、低双阈值 报警功能 9、使用环境:温度-10℃~+45℃。 10、相对湿度:(在40℃温度下) ≤98%。 11、系统供电:市电220V标配。

放射性检测

一、放射性的度量单位 1、照射量X(库仑每千克/伦琴R) 表示Χ或γ射线在空气中产生电离大小的物理量(X=dQ/dm) dQ是指质量为dm的体积单元的空气中,光子释放的所有电子(负电子和正电子)在空气中全部被阻时,形成的同一种符号(正或负)的离子的总电荷的绝对值。 单位: (C. kg-1) 库伦/千克,旧单位是伦琴(R),1 R=2.58×10-4 C.kg-1 照射量率:指单位时间内的照射量。 2、吸收剂量D(戈瑞Gy/拉德rad) 吸收剂量是单位质量的物质对辐射能的吸收量(D=dε/dm) dε与dm分别代表受电离辐射作用的某一体积元中物质的平均能量与物质的质量. 单位:Gy(戈瑞),1 Gy=1 J.kg-1。 吸收剂量适用于任何电离辐射和任何物质,是衡量电离辐射与物质相互作用的一种重要的物理量。 吸收剂量率:单位时间内的吸收剂量,单位 Gy.s-1。 3、剂量当量H(希沃特SV /雷姆rem) 在人体组织中某一点处的剂量当量H等于吸收剂量与其他修正因数的乘积(H=DQN) Q为品质因子,亦称为线质系数,不同电离辐射的Q值列于表8-1;N为其它修正系数,是吸收剂量在时间或空间上分布不均匀性修正因子的乘积,对外照射源通常取N=1。 单位:SV(希沃特),1 SV=1 J.kg-1

表8-1 品质因数与照射类型、射线种类的关系 二、环境中放射性的来源 (一)天然源 1、宇宙射线初级宇宙线—高能辐射,穿透力很强;次级宇宙线—比初级弱;放射性核素-20余种。 2、天然放射性核素—与地球共生 3、天然放射本源—半衰期极长,强度弱 (二)人工源 1、核试验及航天事故-核裂变产物和中子活化产物放射性尘埃可在大气层滞留0.3—3年 2、核工业:核废弃物(核发电) 3、工农业、医学和科研等部门(医学占人工污染源的90%) 4、放射性矿的开采和利用

放射性物质的安全管理示范文本

放射性物质的安全管理示 范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

放射性物质的安全管理示范文本 使用指引:此管理制度资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 放射源贮存库(以下简称源库)应为独立的建筑,四周建 有2米高围墙,除设源库值班室、警卫室和放射性监测室 外,不能有其他建筑。 源库里面建有放射源贮存坑(以下简称贮源坑)。贮源坑 深度不小于1.2米,它的上口应高于周围地面100毫米 —150毫米,贮源坑盖由屏蔽材料制成;贮存大于 1.1X107Bq(贝克,1贝克即每秒发生一次核衰变)的中子 源和大于7.4X109Bq的伽马源的源库,应有机械提升和 传送设备。源库内应设有明示牌,明示牌应标明每个贮源 坑内放射源的编号、核素、活度等情况;源库内应有良好 的照明及通风条件;应设有防盗报警装置或监视装置,应 设警卫昼夜值班,并保持通信设施畅通;源库应设双锁,

钥匙分别保管。每年对源库进行一次安全防护性能检查,检查的内容主要包括:源库内外放射性剂量当量的测定、贮源罐防护、放射源泄漏情况等,并记录备案;要建立放射源资料台帐,定期进行核查,并记人台帐;应制定放射源防护管理的应急计划。 放射性物质的领取、运输要做到:源库工作人员进入库区工作应穿戴劳动防护用品并佩带个人剂量计;放射源出入库应有完备的手续,取源要凭通知单,交接要有检查、签字手续,应用仪器检查源,不得用眼直接观察裸源;有运源专车的测井队必须使用运源专车运输放射性源,无运源专车的测井队使用测井绞车运输放射性源时,必须确保源在运输过程中不脱出丢失,运源车上必须配有放射源检测仪器;运源车必须按指定路线行驶,不准搭乘无关人员,不准在人口稠密区和危险区段停留。中途停车、住宿必须有专人看管;测井结束返回公司后,必须直

【环境课件】第八章 放射性污染监测

Chapter8环境中放射性污染监测 教学目的 1. 放射性基础知识 2. 环境中的放射性 3. 放射性辐射防护标准 4.放射性测量实验室和检测仪器 5.放射性监测 教学重点 1 环境中的放射性 2. 放射性辐射防护标准 3.放射性监测 教学方法 课内安排2个学时。 必读教材和参考书页码 教材:369-392多媒体课件: 讲授提纲 8.1 基础知识 8.1.1放射性 有些原子核不稳定,能自发地有规律地改变其结构转变为另一种原子核,这种现象称为核衰变。在核衰变过程中会放出具有一定动能的带电或不带电粒子,即α、β和γ射线,这种性质称为放射性。放射性物质放出的粒子或光子会对周围介质产生电离作用,造成放射性污染和损伤。 放射性衰变的类型

.衰变衰变不稳定重核(一般原子序大于82)自发放出4He核(α粒子)的过程。如226Ra的。衰变可写成: 226Ra →222Rn + 4He 不同核素所放出的α粒子的动能不等,一般在2--8MeV范围内。:222Rn、218Po、210Po 等核素在衰变时放出单能α射线;231Pa 、226Ra、212Bi等核素在衰变时放出几种能量不同的α射线和能量较低的γ射线。 226Ra衰变有两种方式(分枝衰变): 第一种方式是226Ra放射出4.777MeV的α粒子后变成基态的222Rn,这种方式的几率占94.3%; 另一种方式是226Ra放射出4.589MeV的α粒子后变成激发态的222Rn,然后很快地跃迁至基态222Rn , 并放射出0.188MeV的γ射线,这种衰变方式的几率占5.7%。 α粒子的质量大,速度小,照射物质时易使其原子、分子发生电离或激发,但穿透力小,只能穿过皮肤的角质层。 衰变是放射性核素放射β粒子(即快速电子)的过程,它是原子核内质子和中子发生互变 的结果。β衰变可分为负β衰变、正β衰变和电子俘获三种类型。 (1) β-衰变:β-衰变是核素中的中子转变为质子并放出一个β-粒子和中微子的过程。β-粒子实际上是带一个单位负电荷的电子。许多β衰变的放射性核素只发射β粒子,不伴随其他的射线,如146C、3215P、9038Cs等,但更多β 衰变的核素常常伴有γ射线,如60Co衰变时,除放射出γ粒外,还放射两种γ射线。 β射线的电子速度比α射线高10倍以上,其穿透能力较强,在空气中能穿透几米至几十米才被吸收;与物质作用时可使其原子电离,也能灼伤皮肤。 (2) β+衰变:核素中质子转变为中子并发射正电子和中微子的过程。电子俘获的含义:不稳定的原子核俘获一个核外电子,使核中的质子转变成中子并放出一个中微子的过程。因靠近原子核的K层电子被俘获的几率远大于其他壳层电子,故这种衰变又称K电子俘获。 例如:5526Fe (K俘获) → 5525Mn 当K壳层电子被俘获后,该壳层产生空位;则更高能级的电子可来填充空位同时放射特征引线。 (3).γ衰变 同质异能跃迁的概念: γ射线是原子核从较高能级跃迁到较低能级或者基态时所放射的电磁辐射。这种跃迁对原

放射性同位素的检测方法和仪器

放射性同位素的检测方法和仪器 核辐射与物质间的相互作用是核辐射检测方法的物理基础。放射性同位素发出的射线与物质相互作用,会直接或间接地产生电离和激发等效应,利用这些效应,可以探测放射性的存在、放射性同位素的性质和强度。用来记录各种射线的数目,测量射线强度,分析射线能量的仪器统称为检测器。 一.核辐射的检测方法 使用相关核辐射检测仪器是检测核辐射的重要方法,利用物质衰变辐射后的电离、吸收和反射作用并结合α、β和γ射线的特点可以完成多种检测工作。对人体进行核辐射检查,主要先做物理性检测,如果发现检测指标异常,再进行生理性检测。主要采取以下方法: (一)使用核辐射在线测厚仪 核辐射在线测厚仪是利用物质对射线的吸收程度或核辐射散射与物质厚度有关的原理进行工作的。 (二)使用核辐射物位计 不同介质对γ射线的吸收能力是不同的,固体吸收能力最强,液体次之,气体最弱。若核辐射源和被测介质一定,

则被测介质高度与穿过被测介质后的射线强度将被探测器将穿过被测介质的I值检测出来,并通过仪表显示H值。 (三)使用核辐射流量计 测量气体流量时,通常需将敏感元件插在被测气流中,这样会引起压差损失,若气体具有腐蚀性又会损坏敏感元件,应用核辐射测量流量即可避免上述问题。 (四)使用核辐射探伤 放射源放在被测管道内,沿着平行管道焊缝与探测器同步移动。当管道焊缝质量存在问题时,穿过管道的γ射线会产生突变,探测器将接到的信号经过放大,然后送入记录仪记录下来。 二.核辐射的检测仪器 检测核辐射有各种不同的仪器,一般将检测器分为两大类:一是“径迹型”检测器,如照像乳胶、云室、气泡室、火花室、电介质粒子探测器和光色探测器等,它们主要用于高能粒子物理研究领域。二是“信号型”检测器,包括电离计数器,正比计数器,盖革计数管,闪烁计数器,半导体计数器和契伦科夫计数器等,这些信号型检测器在低能核物理、辐射化学、生物学、生物化学和分子生物学以及地质学等领域越来越得到广泛地应用。放射性运输从业人员所使用的检测器基本上属于“信号型”检测器。 “信号型”检测器包括电离型检测器、闪烁检测器和闪

低本底 放射性强度检测仪

、 低本底αβ测量仪 1. 用途及特点 低本底α/β检测仪是一种测量低水平α、β放射性强度的精密仪器。可用于水、土壤、建材、矿石、气溶胶、食品等的总α、总β放射性测量; 适用于辐射防护、环境保护部门、医疗、生物、农业、科研院所和高等院校等进行的低水平α/β放射性强度测量。 该仪器为系列产品,有3种型号规格: QX-1000/1 单路低本底α/β检测仪 QX-1000/2 双路低本底α/β检测仪 QX-1000/4 四路低本底α/β检测仪 QX-1000系列检测仪性能稳定、设计紧凑,使用操作方便。仪器配备计算机,测量程序在win2000以上环境中运行,全中文界面,自动测量、计算,并可打印结果。仪器使用半导体探测器为测量管及屏蔽管,省去流气式计数管更换气瓶的麻烦,是国内低本底测量仪器的新一代产品。仪器铅室由7.5cm的铅室及1.5cm的钢壳组成,可有效降低宇宙射线及周围环境放射性对测量的干扰。仪器铅室由标准铅砖组成,拆装方便。该仪器检测灵敏度高、本底低。 QX-1000系列检测仪采用计算机数控操作,通过程序控制可以自行检测仪器本底计数率,并在对样品的检测时自行扣除本底计数,对结果进行修正。结合使用标准源,可以自行校准仪器的探测效率。结合分析程序,仪器可自动处理检测结果,直接得到被测样品的放射性比活度Bq/L或Bq/Kg等。 2、主要性能指标: 2.1本底计数率(探测有效直径Ф20mm) α≤0.8cph β≤0.4cpm 2.2探测效率

α源:241Am ≥ 60% β源:90Sr-90Y ≥ 30% 2.3影响量 α对β<0.5% 241Am源 β对α<1% 90Sr-90Y源 2.4效率稳定性:仪器连续通电24小时,探测效率变化小于10%。 2.5电源:220VAC 50Hz 功耗≤250VA(包含计算机) 2.6环境温度:0-45°C 相对湿度≤90%。 2.7体积:测量箱(含铅室):270×270×280mm(二路) 2.8重量:测量箱(含铅室)≤ 300Kg(二路) 3、系统简介: 本仪器由检测仪主机和专用计算机构成,主机包括导轨式样品托架、测量探测器、屏蔽探测器、铅室和道盒等五部分。 专用计算机为PENTUM4以上的微机,数据由232串口传送。 导轨式样品托架:包括样品盘、盘托架、导轨等。其选用材料全部是低本底材料。设计、加工精细,使用方便。样品互换性好,只要把样品盘放入托架的圆孔内,把托架推到测量位置,便完成了样品的精确定位。测量完毕后拉出托架,换上载有新样品的样品盘,便可重新进行检测。

超声波液位测量系统的设计

黄河科技学院本科毕业设计任务书 信息工程学院电子与通信工程系电子信息工程专业级班学号学生指导教师王二萍 毕业设计题目超声波液位测量系统的设计 毕业设计工作内容与基本要求 一、背景和意义 液位控制问题是工业过程中的一类常见问题,目前国内在液位自动控制方面缺少长期可靠的使用范例,还没有适用于液位测量和自动控制的定型产品。因此研究出一种超声波液位传感器很有必要。传统的液位测量绝大多数都是人工控制,造成了人力资源的浪费,同时安全性可靠性都不高,采用单片机实现液位测量即可避免这种情况的发生。 二、目标和任务 本设计目标是针对现有液位传感器的不足,开发一种大量程、精度高、带有标准工业控制输出接口的超声波液位传感器,建议采用单片机作为超声液位传感器的控制核心,能够简化控制电路设计;采用单一换能器进行超声波的发射和接收以降低装置成本;采用多级二阶有源滤波器以提高信噪比,进而能较大限度地提高对微弱回波信号的放大倍数。最后根据设计原理图焊接、调试。 三、途径和方法 1.从网络上查阅此领域最新研究成果,并查阅相关理论知识,利用单片机控制技术的相关知识整理出硬件设计方案; 2.在已搭建的硬件的基础上构思软件流程,给出程序; 3.软硬件联调。 四、主要参考资料 [1] 白宗文,刘生春,白洁.基于单片机的超声波测控液位系统的设计[J].电子设计工程,2011(18):33~36. [2] 么启等. 基于DSP的超声波明渠液位测量系统[J].电子设计工程,2011(21):142~145. [3]房小翠、熊光洁、聂学俊等,单片微型计算机与机电接口技术[M].北京;

国防工业出版社,2002. [4]王质朴,吕运朋,MCS-51单片机原理、接口及应用[M].北京:北京理工大学出版社,2009. [5] 杨素行等.模拟电子技术基础简明教程[M].北京:高等教育出版社,2001. [6] 闫石.数字电子技术基础[M].第三版.北京: 高等教育出版社,1989. 毕业设计时间:2013 年 2 月10 日至2013 年 5 月25 日 计划答辩时间:2013 年 5 月22 日 工作任务与工作量要求:原则上查阅文献资料不少于12篇,其中外文资料不少于2篇;文献综述不少于3000字;文献翻译不少于3000字,理工科类论文或设计说明书不少于8000字(同时提交有关图纸和附件),提交相关图纸、实验报告、调研报告、译文等其它形式的成果。毕业设计说明书撰写规范及有关要求,请查阅《黄河科技学院本科毕业设计(论文)指导手册》。 专业(教研室)审批意见 审批人签名:

放射性同位素的检测方法和仪器

放射性同位素的检测方 法和仪器 Revised as of 23 November 2020

放射性同位素的检测方法和仪器 核辐射与物质间的相互作用是核辐射检测方法的物理基础。放射性同位素发出的射线与物质相互作用,会直接或间接地产生电离和激发等效应,利用这些效应,可以探测放射性的存在、放射性同位素的性质和强度。用来记录各种射线的数目,测量射线强度,分析射线能量的仪器统称为检测器。 一.核辐射的检测方法 使用相关核辐射检测仪器是检测核辐射的重要方法,利用物质衰变辐射后的电离、吸收和反射作用并结合α、β和γ射线的特点可以完成多种检测工作。对人体进行核辐射检查,主要先做物理性检测,如果发现检测指标异常,再进行生理性检测。主要采取以下方法: (一)使用核辐射在线测厚仪 核辐射在线测厚仪是利用物质对射线的吸收程度或核辐射散射与物质厚度有关的原理进行工作的。 (二)使用核辐射物位计

不同介质对γ射线的吸收能力是不同的,固体吸收能力最强,液体次之,气体最弱。若核辐射源和被测介质一定,则被测介质高度与穿过被测介质后的射线强度将被探测器将穿过被测介质的I值检测出来,并通过仪表显示H值。 (三)使用核辐射流量计 测量气体流量时,通常需将敏感元件插在被测气流中,这样会引起压差损失,若气体具有腐蚀性又会损坏敏感元件,应用核辐射测量流量即可避免上述问题。 (四)使用核辐射探伤 放射源放在被测管道内,沿着平行管道焊缝与探测器同步移动。当管道焊缝质量存在问题时,穿过管道的γ射线会产生突变,探测器将接到的信号经过放大,然后送入记录仪记录下来。 二.核辐射的检测仪器 检测核辐射有各种不同的仪器,一般将检测器分为两大类:一是“径迹型”检测器,如照像乳胶、云室、气泡室、火花室、电介质粒子探测器和光色探测器等,它们主要用于高能

基于单片机的超声波液位检测系统设计

编号: 审定成绩:毕业设计(论文) 设计(论文)题目: 基于单片机的超声波液位检测系统设计

摘要 液位测量及控制广泛应用于工业、生活等领域,由于许多测量环境条件及其恶劣,例如对具有腐蚀性的液体的液位测量。显然,传统的液位测量设备已不能满要求。因此,一些基于超声波的非接触式液位测量控制技术应运而生。本文利用单片机的强大功能,通过硬件和软件的完美结合,设计、实现了一种基于超声波的液位检测控制系统。系统由液位测量模块、数据显示模块、液位控制模块、超限报警模块和参数设置模块组成,通过HC-SR04超声波测距模块采集数据,经过单片机进行数据处理,然后进行实时液位显示,同时发出液位控制信号和报警控制信号。最后,对所实现的实物进行了测试。测试结果表明系统功能符合设计要求,能达到易控制、稳定性强、测量精度高、安全性高、功耗低的预期目的。 【关键词】单片机超声波液位测量液位控制

ABSTRACT Level measurement and control are widely used in the industrial field and other related fields. In the field of industry, many measurement environments are very bad such as the level measurement of corrosive liquids. Obviously, the traditional level measurement devices can not satisfy the requirements. As a result, some control based on the non-contact ultrasonic level measurement technology arises at the historic moment. This paper makes use of the powerful features of the SCM and the perfect combination of software and hardware to design and implement an advanced control system for liquid level measurement based on the ultrasonic measurement. The designed system includes level measurement module, data display module, level control module, limit alarm module, and parameter set module. The system collects data through HC-SR04 Ultrasonic Ranging Module, and then process the data, display the level in real-time and issue level control signal and the warning signal. Finally, the system was tested. The tested results show the system functions can meet the designed requirements, which achieve control easily, high stability, high accuracy, and high security. 【Key words】SCM Ultrasonic Level measurement Level control

放射性测定仪期间核查

BH12163Ⅲ型低本底αβ测量仪期间核查作业指导书 1 目的 本作业指导书规定了BH12163Ⅲ型低本底αβ测量仪的期间核查方法,使仪器设备期间核查能按规范的方法正确进行。 2 适用范围 适用于本中心使用中的和修理后的BH12163Ⅲ型低本底αβ测量仪的期间核查。 3 职责 操作人员应严格按照本期间核查方法,按期进行仪器的期间核查,并做好期间核查记录,出具期间核查结果。 复核人员复核期间核查结果。 技术质量负责人审核期间核查结果。 4 概述 低本底α β测量仪探头结构新颖,可单独测α β放射性,也可同时测量α β放射性,能广泛应用于辐射防护、环境样品、食用水、医药卫生、农业科学、地质勘探等领域中,是一种应用面广的精密仪器。 5 期间核查技术要求 仪器外观 5.1.1 仪器应有下列标志:名称、型号、制造厂名、出厂日期、系列号或编号等,仪器各种功能按钮的标志应清晰。 5.1.2 仪器要成套完整。 5.1.3仪器各种调节旋钮、按键、开关及其相应的指示灯等能正常工作,无松动。

5.1.4 电源线、信号电缆等插头插座应紧密配合。 6 期间核查条件 仪器环境条件 6.1.1 电源电压:220V±10%,频率50HZ±1HZ。 6.1.2 温度:5~35℃。 6.1.3 相对湿度:≤85%。 6.1.4 室内无强腐性气体,无强烈的机械振动和电磁干扰。 仪器安装要求 6.2.1 仪器应平稳而牢固地安装在工作台上,无机械振动。 6.2.2 电缆线的接插件应紧密配合,接地良好。 6.2.3 仪器必须安装地线。 7 期间核查项目和期间核查方法 一般核查 仪器外观及各按钮正常。 仪器性能核查 7.2.1 仪器准备 开计算机和仪器电源,预热30min,然后打开软件,进入软件界面。点击菜单栏并设置仪器参数,所有参数设置完毕后,点击“开始”,仪器进入测量状态。 7.2.2 仪器操作 选用α和β标准源,测αβ本底计数率和效率比。

基于单片机的超声波液位测量系统

摘要 超声波液位测量是一种非接触式的测量方式,它是利用超声波在同种介质中传播速度相对恒定以及碰到障碍物能反射的原理研制而成的。与其它方法相比(如电磁的或光学的方法),它不受光线、被测对象颜色的影响,对于被测物处于黑暗、有灰尘、烟雾、电磁干扰、有毒等恶劣的环境下有一定的适应能力。因此,研究超声波在高精度测距系统中的应用具有重要的现实意义。 本设计基于单片机的超声波液位测量系统主要由硬件与软件两部分组成,硬件是基于AT89C51芯片为核心的超声波液位测量,采用AT89C51单片机进行控制及数据处理,给出了超声波发射和接收电路,通过盲区的消除以及环境温度的采样,提高了测距的精确度。利用超声波传输中距离与时间的关系,设计出了能精确测量两点间距离的超声波液位检测系统。此系统具有易控制、工作可靠、测量精度高的优点,可实时检测液位。并有超声波处理模块CX20106A、CD4069组成的超声波发射电路、超声波接收电路、单片机复位电路、LED显示电路、报警电路等。软件部分由主程序、预置子程序、发射子程序、接收子程序、显示子程序组成。各探头的信号经单片机综合分析处理。 最后通过实物的调试,各项参数及功能符合设计要求,能达到预期的目的。 关键词:单片机;超声波;温度控制;高精度测距

Abstract The ultrasonic liquid level measurement is a non-contact measurement method, realized by the principle of ultrasonic wave in the same medium with relatively constant propagation velocity and being reflected when it approaches an obstacle. Compared with other methods (such as electromagnetic or optical method), it has a certain of adaptability when objects to be measured are under such harsh environment as darkness, dust, smoke, electromagnetic interference, toxicity, unaffected by the light or the color of the object to be measured. Therefore, it bears important practical significance to conduct research on the application of ultrasonic wave in high precision ranging system. In this project, SCM-based ultrasonic liquid level measuring system is mainly composed of two components, namely the hardware and the software. The hardware is ultrasonic liquid level measurement based on AT89C51 chip as the core; it adopts AT89C51 single chip microcomputer for control and data processing, provides the ultrasonic transmitting and receiving circuit, and improves ranging accuracy through elimination of blind spot and sampling of ambient temperature,. By taking advantage of the relationship between distance and time in ultrasonic transmission, an ultrasonic liquid level detecting system which can accurately measure the distance between two points is designed. This system has these advantages like easy control, reliable operation, high measurement precision, and real-time detection of liquid level. And it has ultrasonic transmitting and receiving circuit, reset circuits of SCM, LED display circuit, alarm circuit composed of ultrasonic processing module CX20106A and CD4069. The software part consists of main program, preset subroutine, transmitting and receiving subroutine, and display subroutine. The probe signal is processed by SCM through comprehensive analysis. Finally through debugging of real objects, various parameters and functions can meet the project requirements to achieve the desired objective. Key words: single chip microcomputer (SCM); ultrasonic wave; temperature control; high precision ranging

相关主题
文本预览
相关文档 最新文档