几种新型传感器简介
- 格式:ppt
- 大小:484.50 KB
- 文档页数:44
1、一种高灵敏度电阻式应变式传感器从图2—17中可以看出来,当施加拉力时传感器的最大应变就在弓形弹性元件的中部,且弹性元件的上下表面的应变值符号是相反的。
钢轴受力的应变值与弓形弹性元件中部的应变值相比小了很多。
实际应用在弓形弹性元件的中部钻有小孔,则在孔的边缘有应力集中,所以应变片应该分上下贴在弓形弹性元件的中间小孔的边上,四片组成一个全桥,既可以感受到最大的应变值,又可以实现温度自补偿,从而达到提高灵敏度的目的。
上图:传感器标定装置2、电阻应变片电阻应变片工作原理是基于金属导体的应变效应,即金属导体在外力作用下发生机械变形时,其电阻值随着所受机械变形(伸长或缩短)的变化而发生变化的现象。
3、加速度传感器类型一:压电式加速度传感器某些电介质,当沿着一定方向对其施力而使它变形时,内部就产生极化现象,同时在它的两个表面产生符号相反的电荷;当外力去掉后,又重新恢复不带电的状态。
这种现象称为压电效应。
当作用力方向改变时,电荷极性也随着改变。
压电加速度传感器基于材料的压电特性,当压电传感器中压电晶体承受被测机械应力作用时,在它的两个极面出现极性相反但电量相等的电荷。
可以把压电传感器看成一个静电发生器,如图4.35(a)所示。
也可以把它视为两级板上聚集异性电荷,中间为绝缘体的电容器,如图4.35(b)类型二:力平衡式加速度传感器力平衡加速度计的敏感元件是附加在可动质量上的可变电容器。
可动质量通过两个对称的簧片与仪器支架相连,可动质量与簧片构成一个典型的弹簧—振子系统。
可动质量上有一个双面开口环状电极(动片),动片的上下各有一个与其平行的、相同形状的固定极板(定片),这三个极板构成了传感器的敏感元件—可变电容。
可动质量的下面连着一个施加平衡力的线圈,线圈正好落在一个环形磁隙中,磁隙的磁场由新型强磁材料钕铁硼永磁铁产生。
当被测物体运动时,电容器的动片和定片之间产生相对位移,该相对位移经电路变成电压信号,放大后由反馈电路以电流形式送给可动质量上的线圈,通电线圈与永磁场的相互作用产生一个与被测加速度施加给可动质量的大小相等、方向相反的安培力,这就是“力平衡”原理。
传感器简介与分类
传感器是指将非电学量转换为电学信号输出的设备,它具有广泛的应用领域,包括但不限于自动化控制、测试与测量、监测与诊断、生产与制造等。
传感器按照其测量物理量的性质可分为以下几类:
1. 光学传感器:通过光电元件或光学成像技术实现对光、热、电磁辐射等的测量。
2. 电磁传感器:主要测量电磁场的强度、磁感应强度等。
3. 声学传感器:一般应用于声压、声强、声速等的测量。
4. 热传感器:包括热电偶、热敏电阻等,能够测量物体的温度。
5. 机械量传感器:能够对压力、重量、力等机械量进行测量。
6. 流量传感器:用于测量气体或液体的流速、流量等。
7. 气体传感器:包括氧气传感器、二氧化碳传感器等,用于气体成分和浓度的检测。
传感器按照其转换方式可分为以下两类:
1. 模拟量传感器:输出模拟信号,其大小与测量量成比例。
如热电偶、电感、电容等。
2. 数字量传感器:输出数字信号,输出类型为离散的0/1信号或数字表示的模拟信号。
如光电开关、磁性编码器等。
以上是传感器的一些基本分类和简介,传感器的类型繁多,根据不同的应用需要选择不同类型的传感器进行测量和监测。
目前,被人们所关注传感器的类型: 压力传感器、光电传感器、位移传感器、超声波传感器、温度传感器、湿度传感器、光纤传感器。
一、压力传感器压力传感器、压力变送器的种类及选用压力传感器及压力变送器分为表压、绝压、差压等种类。
常见0.1、0.2、0.5、1.0等精度等级。
可测量的压力范围很宽,小到几十毫米水柱,大的可达上百兆帕。
不同种类压力传感器及压力变送器的工作温度范围也不同,常分成0~70℃、-25~85℃、-40~125℃、-55~150℃几个等级,某些特种压力传感器的工作温度可达400~500℃。
压力传感器及压力变送器基于不同的材料及结构设计有着不同的防水性能及防爆等级,接液腔体由于材料、形状的差异可测量的流体介质种类也不同,常分为干燥气体、一般液体、酸碱腐蚀溶液、可燃性气液体、粘稠及特殊介质。
压力传感器及压力变送器作为一次仪表需与二次仪表或计算机配合使用,压力传感器及压力变送器常见的供电方式为:DC 5V、12V、24V、±12V等,输出方式有:0~5V、1~5V、0.5~4.5V、0~10mA、 0~20mA、 4~20mA等及Rs232、Rs485等与计算机的接口。
用户在选择压力传感器及压力变送器时,应充分了解压力测量系统的工况,根据需要合理选择,使系统工作在最佳状态,并可降低工程造价。
压力传感器常见精度参数及试验设备传感器静态标定设备:活塞压力计:精度优于0.05% 数字压力表: 精度优于0.05% 直流稳压电源: 精度优于0.05%。
传感器温度检验设备:高温试验箱:温度从0℃~+250℃温度控制精度为±1℃,低温试验箱:温度能从0℃~-60℃温度控制精度为±1℃传感器静态性能试验项目:零点输出、满量程输出、非线性、迟滞、重复性、零点漂移、超复荷。
传感器环境试验项目:零点温度漂移、灵敏度漂移、零点迟滞、灵敏度迟滞。
(检查产品在规定的温度范内对温度的适应能力,此项参数对精度影响极为重要)压力传感器使用注意事项压力传感器及压力变送器在安装使用前应详细阅读产品样本及使用说明书,安装时压力接口不能泄露,确保量程及接线正确。
常见光电传感器介绍光电传感器是一种能将光信号转换成电信号的器件,广泛应用于自动化控制系统中。
光电传感器可以实现对物体的检测、计数、测距等功能,在工业生产、机器人领域具有重要的应用价值。
下面将介绍几种常见的光电传感器。
1.光电开关传感器:光电开关传感器是最常见的光电传感器之一、它采用发射器和接收器配对的方式工作,通过发射的红外光束被物体遮挡后,接收器能够感应到光的变化,从而输出信号,实现对物体的检测。
光电开关传感器具有高灵敏度、反应速度快等特点,广泛应用于自动门、包装线等场景中。
2.光电对射传感器:光电对射传感器是由发射器和接收器两个部件组成的。
这两个部件分别安装在被检测物体的两侧,发射器向接收器发射光束。
当被检测物体穿过光束时,光束被遮挡,接收器无法接收到光信号,从而输出一个指示信号。
光电对射传感器的优点是可以实现较大距离的检测,适用于测距、计数等应用。
3.光电反射传感器:光电反射传感器由发射器和接收器组成,发射器发射光束,反射后被接收器接收。
这种传感器可以实现对物体的检测和距离测量。
由于反射后的光束会受到环境的影响,因此光电反射传感器在应用时需要注意光线的干扰问题。
4.红外线接近开关:红外线接近开关是一种使用红外线光束进行距离检测的传感器。
它可以通过感应物体的反射光来检测物体的存在。
红外线接近开关具有灵敏度高、反应速度快等优点,广泛应用于电梯、自动门等场景中。
5.光电编码器:光电编码器是一种用于测量转速和位置的传感器。
它由发射器和接收器组成,发射器发射光束,被测物体上的编码盘会反射一部分光束到接收器上,接收器将接收到的光信号转换为电信号输出。
光电编码器在机床、汽车等行业中应用广泛。
总之,光电传感器是一类重要的自动化控制器件,广泛应用于工业生产、机器人等领域。
不同类型的光电传感器具有不同的工作原理和应用场景,用户可以根据具体的需求选择合适的光电传感器来实现各种功能。
生活中应用比较广的七大常用传感器传感器(Sensor)是一种常见的却又很重要的器件,它是感受规定的被测量的各种量并按一定规律将其转换为有用信号的器件或装置。
对于传感器来说,按照输入的状态,输入可以分成静态量和动态量。
我们可以根据在各个值的稳定状态下,输出量和输入量的关系得到传感器的静态特性。
传感器的静态特性的主要指标有线性度、迟滞、重复性、灵敏度和准确度等。
传感器的动态特性则指的是对于输入量随着时间变化的响应特性。
动态特性通常采用传递函数等自动控制的模型来描述。
通常,传感器接收到的信号都有微弱的低频信号,外界的干扰有的时候的幅度能够超过被测量的信号,因此消除串入的噪声就成为了一项关键的传感器技术。
1、物理传感器:物理传感器物理传感器是检测物理量的传感器。
它是利用某些物理效应,把被测量的物理量转化成为便于处理的能量形式的信号的装置。
其输出的信号和输入的信号有确定的关系。
主要的物理传感器有光电式传感器、压电传感器、压阻式传感器、电磁式传感器、热电式传感器、光导纤维传感器等。
作为例子,让我们看看比较常用的光电式传感器。
这种传感器把光信号转换成为电信号,它直接检测来自物体的辐射信息,也可以转换其他物理量成为光信号。
其主要的原理是光电效应:当光照射到物质上的时候,物质上的电效应发生改变,这里的电效应包括电子发射、电导率和电位电流等。
显然,能够容易产生这样效应的器件成为光电式传感器的主要部件,比如说光敏电阻。
这样,我们知道了光电传感器的主要工作流程就是接受相应的光的照射,通过类似光敏电阻这样的器件把光能转化成为电能,然后通过放大和去噪声的处理,就得到了所需要的输出的电信号。
这里的输出电信号和原始的光信号有一定的关系,通常是接近线性的关系,这样计算原始的光信号就不是很复杂了。
其它的物理传感器的原理都可以类比于光电式传感器。
2、光电传感器:光电传感器光电传感器是采用光电元件作为检测元件的传感器。
它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。
介绍传感器传感器是一种能够感知、测量或检测物理量或环境条件的设备或装置。
传感器通常将物理现象转换成电信号或其他可量化的形式,以便进行数据分析、控制系统或自动化过程。
传感器在各个领域都有广泛的应用,包括工业、医疗、军事、环境监测、汽车、消费电子和通信等。
以下是一些常见类型的传感器及其应用:1.温度传感器:测量温度,常用于气象站、热管理系统、医疗设备和食品加工等领域。
2.湿度传感器:测量空气中的湿度水平,广泛应用于气象学、温室农业、室内空气质量监测等。
3.光敏传感器:检测光线强度,用于自动照明系统、摄像机、光电子器件和太阳能应用。
4.压力传感器:测量气体或液体的压力,用于汽车制动系统、医疗监测、工业流体控制等。
5.加速度传感器:测量物体的加速度或震动,用于智能手机、汽车安全系统和航空航天。
6.磁场传感器:测量磁场强度,应用于指南针、磁导航、磁共振成像和电子罗盘等。
7.声音传感器:检测声音或声压级,用于音频录制、噪声监测、语音识别和超声波成像。
8.气体传感器:测量空气中特定气体的浓度,应用于煤气检测、环境监测和空气质量控制。
9.生物传感器:用于检测生物分子、细胞或生理参数,用于医疗诊断、生物研究和药物开发。
10.运动传感器:检测物体的运动,应用于游戏控制、体育追踪和虚拟现实。
11.图像传感器:用于捕捉图像和视频,广泛应用于数码相机、摄像机、智能监控和机器视觉。
12.激光传感器:利用激光技术进行距离测量、3D扫描和位置感知。
传感器的发展和创新不断推动着科学和工程领域的进步,它们在日常生活中也起到了关键作用,使我们能够更好地理解和控制我们周围的环境。
随着物联网(IoT)的兴起,传感器的应用将进一步扩展,将不同领域的数据和信息连接起来,实现更智能的系统和应用。
位移传感器一、简介位移传感器又称为线性传感器,是一种属于金属感应的线性器件,传感器的作用是把各种被测物理量转换为电量。
在生产过程中,位移的测量一般分为测量实物尺寸和机械位移两种。
按被测变量变换的形式不同,位移传感器可分为模拟式和数字式两种。
模拟式又可分为物性型和结构型两种。
常用位移传感器以模拟式结构型居多,包括电位器式位移传感器、电感式位移传感器、自整角机、电容式位移传感器、电涡流式位移传感器、霍尔式位移传感器等。
数字式位移传感器的一个重要优点是便于将信号直接送入计算机系统。
这种传感器发展迅速,应用日益广泛。
位移是和物体的位置在运动过程中的移动有关的量,位移的测量方式所涉及的范围是相当广泛的。
小位移通常用应变式、电感式、差动变压器式、涡流式、霍尔传感器来检测,大的位移常用感应同步器、光栅、容栅、磁栅等传感技术来测量。
其中光栅传感器因具有易实现数字化、精度高(目前分辨率最高的可达到纳米级)、抗干扰能力强、没有人为读数误差、安装方便、使用可靠等优点,在机床加工、检测仪表等行业中得到日益广泛的应用。
二、工作原理电位器式位移传感器,它通过电位器元件将机械位移转换成与之成线性或任意函数关系的电阻或电压输出。
普通直线电位器和圆形电位器都可分别用作直线位移和角位移传感器。
但是,为实现测量位移目的而设计的电位器,要求在位移变化和电阻变化之间有一个确定关系。
电位器式位移传感器的可动电刷与被测物体相连。
物体的位移引起电位器移动端的电阻变化。
阻值的变化量反映了位移的量值,阻值的增加还是减小则表明了位移的方向。
通常在电位器上通以电源电压,以把电阻变化转换为电压输出。
线绕式电位器由于其电刷移动时电阻以匝电阻为阶梯而变化,其输出特性亦呈阶梯形。
如果这种位移传感器在伺服系统中用作位移反馈元件,则过大的阶跃电压会引起系统振荡。
因此在电位器的制作中应尽量减小每匝的电阻值。
电位器式传感器的另一个主要缺点是易磨损。
它的优点是:结构简单,输出信号大,使用方便,价格低廉。
仿生传感器摘要仿生传感器是目前热门的研究领域。
人们对人或其他动物的各种感觉如视觉,听觉,感觉,嗅觉和思维等行为进行模拟,本问对仿生传感器的定义,工作原理,应用领域有初步的介绍。
并对葡萄糖传感器和生物传感器做了详细介绍,综述这两种传感器的工作原理,应用,及各自特点。
在最后。
并对仿生传感器的发展前景进行了评述。
关键词:仿生传感器,尿素传感器,生物传感器,发展前景1,仿生传感器的简介1.1仿生传感器的定义及工作原理:仿生传感器,是一种采用新的检测原理的新型传感器,它采用固定化的细胞、酶或者其他生物活性物质与换能器相配合组成,基于生物学原理设计的可以感受规定待测物并按照一定规律转换及输出可用信号的器件或装置,是一种采用新的检测原理的新型传感器,由敏感元件和转换元件组成,另外辅之以信号调整电路或电源等。
这种传感器是近年来生物医学和电子学、工程学相互渗透而发展起来的一种新型的信息技术。
下图为仿生传感技术的研究模型的建立框图:1.2仿生传感器是目前热门的研究领域日本政府计划用30年时间完成一项名为“阿童木”的机器人开发计划,计划目标是使机器人开发出具备一个5岁孩子的能力和感情,而计划投入的一半以上将用来研制各种仿生传感器。
英国研制新型机器人可实时模仿10种人类表情,情,美国美国GE 公司全球研发中心即将投入开发的仿生光敏纳米传感器,公司全球研发中心即将投入开发的仿生光敏纳米传感器,即是纳米即是纳米技术与仿生结合的典型例子,通过模仿蝴蝶翅膀鳞片中独特的纳米结构,以实现环境中的化学物质高灵敏光学探测。
又如基于纳米压印技术发展的高分子聚合物纳米透镜阵列,可以实现昆虫复眼的多角度观察功能。
机器人使用的传感器就是仿生传感器的典型应用,目前各国对此类传感器的研制和开发都非常重视。
这种传感器的特点是性能好、寿命长。
1.3仿生传感器的分类:在仿生传感器常分为视觉传感器,在仿生传感器常分为视觉传感器,嗅觉传感器,嗅觉传感器,嗅觉传感器,听听觉传感器,味觉传感器,触觉传感器,接近觉传感器,力觉传感器和滑觉传感器,比较常用的是生体模拟的传感器。
常用传感器介绍范文传感器是指能够对物理量进行检测和感知,并将其转化成可供人类或机器理解的信号或数据的装置。
传感器在日常生活中广泛应用,例如智能手机中的加速度传感器和指南针,汽车中的倒车雷达,以及工业生产中的温度传感器等。
下面将介绍一些常用的传感器。
1.温度传感器:温度传感器用于测量物体或环境的温度,可以感知室内温度、水温、空气温度等。
常见的温度传感器有热敏电阻传感器、热电偶、热电阻等。
2.光敏传感器:光敏传感器用于检测光照的强度或光照的变化。
常见的光敏传感器有光敏电阻传感器、光电二极管等。
3.湿度传感器:湿度传感器用于测量空气中的湿度水分含量。
它们可以用于测量室内湿度、土壤湿度、空气中的湿度等。
4.压力传感器:压力传感器用于测量物体的压力或压强,常见于汽车、工业控制、医学诊断等领域。
常见的压力传感器有压阻式传感器、压电式传感器、电容式传感器等。
5.加速度传感器:加速度传感器用于测量物体的加速度。
它们常被应用于智能手机、运动追踪设备、汽车安全系统等领域。
常见的加速度传感器有压阻式传感器、微机械加速度传感器等。
6.气体传感器:气体传感器用于检测空气中的化学物质或气体的浓度。
常见的气体传感器有氧气传感器、二氧化碳传感器、甲醛传感器等。
7.磁力传感器:磁力传感器用于测量磁场的强度或方向。
它们广泛应用于指南针、地磁测量、磁共振成像等领域。
常见的磁力传感器有霍尔效应传感器、磁阻传感器等。
8.接近传感器:接近传感器用于测量物体与传感器之间的接近距离。
它们被广泛应用于自动门、机器人导航、工业自动化等领域。
常见的接近传感器有红外线传感器、超声波传感器、电磁感应传感器等。
这些传感器只是常见的一部分,随着科技的发展,新型传感器也在不断涌现。
传感器在改善生活质量、提高生产效率和保障安全等方面起着重要的作用。
光纤温度传感器摘要:本文分析了光纤温度传感器在温度探测中的优势,分别介绍了分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器的工作原理,最后综述了光纤温度感器在现代工业及生活的应用。
关键字:光纤传感温度应用1引言在科研和生产中,有很多温度测量问题,传统的温度传感器有热电偶,热电阻温度传感器,热敏电阻温度传感器,半导体温度传感器等等。
光纤温度传感器是20世纪70年代发展起来的一种新型传感器。
与传统的温度传感器相比,它具有灵敏度高,体积小,质量轻,易弯曲,不产生电磁干扰,不受电磁干扰,抗腐蚀性好等等优点,特别适用于易燃,易爆,空间狭窄和具有腐蚀性强的气体,液体以及射线污染等苛刻环境下的温度检测。
2光纤温度传感器分类光纤温度传感器按照调制机理可分为相位调制,振幅调制,偏振态调制;按工作原理分,光纤温度传感器可分为功能性和传输型两种。
功能型温度传感器中光纤作为传感器的同时也是光信号的载体,而传输型温度传感器中光纤则只传输光信号。
传光型与传感型相比,虽然灵敏度稍差,但可靠性高,实用的传感器大多是这种类型。
目前主要的光纤温度传感器包括分布式光纤温度传感器、光纤光栅温度传感器、光纤荧光温度传感器、干涉型光纤温度传感器等。
2.1光纤光栅温度传感器光纤光栅温度传感器是利用光纤材料的光敏性在光纤纤芯形成的空间相位光栅来进行测温的。
光纤光栅以波长为编码,具有传统传感器不可比拟的优势,近年来光纤光栅成为发展最为迅速,最具代表性的光纤无源器件之一,已广泛用于建筑、航天、石油化工、电力行业等。
光纤光栅温度传感器主要有Bragg光纤光栅温度传感器和长周期光纤光栅传感器。
Bragg光纤光栅是指单模掺锗光纤经紫外光照射成栅技术而形成的全新光纤型Bragg光栅,成栅后的光纤纤芯折射率呈现周期性分布条纹并产生Bragg 光栅效应,其基本光学特性就是以共振波长为中心的窄带光学滤波器,满足如下光学方程:=2nA式中:为Bragg波长,A为光栅周期,n为光纤模式的有效折射率。
传感器篇|几种常用传感器解读(二)光电传感器光电传感器是采用光电元件作为检测元件的传感器。
它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。
光电传感器一般由光源、光学通路和光电元件三部分组成。
电源自由电源型光电传感器•光电传感器工作原理光电传感器是通过把光强度的变化转换成电信号的变化来实现控制的。
光电传感器在一般情况下,有三部分构成,它们分为:发送器、接收器和检测电路。
发送器对准目标发射光束,发射的光束一般来源于半导体光源,发光二极管(LED)、激光二极管及红外发射二极管。
光束不间断地发射,或者改变脉冲宽度。
接收器有光电二极管、光电三极管、光电池组成。
在接收器的前面,装有光学元件如透镜和光圈等。
在其后面是检测电路,它能滤出有效信号和应用该信号。
•光电传感器结构分析光电传感器通常由三部分构成,它们分别为:发送器、接收器和检测电路。
发射器带一个校准镜头,将光聚焦射向接收器,接收器出电缆将这套装置接到一个真空管放大器上。
在金属圆筒内有一个小的白炽灯做为光源,这些小而坚固的白炽灯传感器就是如今光电传感器的雏形。
接收器有光电二极管、光电三极管及光电池组成。
光敏二极管是现在最常见的传感器。
光电传感器光敏二极管的外型与一般二极管一样,只是它的管壳上开有一个嵌着玻璃的窗口,以便于光线射入,为增加受光面积,PN结的面积做得较大,光敏二极管工作在反向偏置的工作状态下,并与负载电阻相串联,当无光照时,它与普通二极管一样,反向电流很小称为光敏二极管的暗电流;当有光照时,载流子被激发,产生电子-空穴,称为光电载流子。
此外,光电传感器的结构元件中还有发射板和光导纤维。
角反射板是结构牢固的发射装置,它由很小的三角锥体反射材料组成,能够使光束准确地从反射板中返回。
它可以在与光轴0到25的范围改变发射角,使光束几乎是从一根发射线,经过反射后,仍从这根反射线返回。
•光电传感器分类标准类型1.漫反射型:一般型或能量型(-8),聚焦式(-8-H),带背景抑制功能型 (-8-H),带背景分析功能型 (-8-HW)2.反射板型:一般型 (-6),带偏振滤波功能型 (-54, -55),带透明体检测功能型 (-54-G),带前景抑制功能型 (-54-V)3.对射型4.槽型5.光纤传感器:塑料光纤型,玻璃光纤型6.色标传感器,颜色传感器,荧光传感器7.光通讯8.激光测距:三角反射原理型,相位差原理型,时间差原理型9.光栅10.防爆/隔爆型安全类型1.安全对射光电2.安全光栅3.安全光幕4.安全控制器门控类型1.雷达传感器:区域检测型雷达传感器2.主动式传感器:单光束型,多光束型,区域检测型3.被动式传感器:区域检测型4.电梯光幕5.通用光电:槽形,对射型等•光电传感器应用一、烟尘浊度监测仪防止工业烟尘污染是环保的重要任务之一。
详解 MEMS 传感器,不止是换马甲这么简单!在近日召开的“第三届全球传感器高峰论坛暨中国物联网应用峰会” 上, 工信部电子司集成电路处处长任爱光透露, 工信部正在制定传感器发展规划, 不久将发布。
而国家集成电路产业投资基金总经理丁文武近日也表示,大基金将支持物联网发展,重点投资传感器、 MEMS 传感器等领域。
那么, 问题来了, MEMS 传感器是什么鬼?跟普通传感器有什么不同?它有什么用?我们一一道来!1. MEMS传感器是什么?认识 MEMS 传感器之前,我们先简要介绍一下传感器的定义。
传感器,顾名思义,就是“传递感知”的器件。
所谓的感知诸如光线感知、温湿度感知、压力感知等等,这些感知信号(或者说“感觉”是非电信号,不适于硬件电路读取利用,因此需要一定的器件收集这些信息并处理成电信号(电压,电流,频率等。
外界的信息纷繁复杂, 也造就了器件迥异的外形, 加之大部分采集的信息并不是电信号, 因此普通传感器并未集成到电路中,而是作为独立的一个模块 (如下图,左边部分。
这时候的传感器穿的是“机械装”。
普通传感器模块示意图(蓝色部分为传感器数据的收集、处理和控制单元而 MEMS 传感器,就是穿了半导体工艺外衣的普通传感器!MEMS 传感器模块示意图MEMS 传感器, 全称叫微电子机械系统 (Microelectro Mechanical Systems, 是将微型传感器、微型执行器以及信号处理和控制电路, 接口、通信和电源等采用半导体工艺集中到一体的微型器件或系统。
其实质可以理解为半导体技术对传统机械加工的一种工艺升级。
所以, MEMS 传感器行业的核心就在于工艺技术,我们后面详解。
啧啧,换了个马甲,传感器就 NB 了哦!不信,你看!几种常见的传感器与对应的 MEMS 传感器对比:麦克风 :气压传感器:普通传感器与 MEMS 传感器对比实例相信您也发现了,普通的传感器船上 MEMS 的外衣后,外形一致,并且尺寸缩小了不知多少倍。
传感器种类大全引言传感器是一种能够感知、测量和转换各种物理量和化学量的设备。
它们在生活和工业中扮演着重要的角色,广泛应用于自动化、仪器仪表、工业生产、环境监测等领域。
本文将介绍一些常见的传感器种类及其应用。
1. 温度传感器温度传感器可以测量物体或环境的温度。
常见的温度传感器包括热电偶、热电阻和红外线传感器。
•热电偶:通过两种不同金属的接触产生电势差,根据电势差的变化推断温度。
•热电阻:利用金属或半导体导体材料的电阻随温度变化的特性来测量温度。
•红外线传感器:通过感知物体表面发射的红外线辐射来测量温度。
温度传感器广泛应用于空调、供暖系统、食品加工、医疗设备等领域。
2. 湿度传感器湿度传感器用于测量空气或其他气体中的湿度。
最常见的湿度传感器是电容式湿度传感器和电阻式湿度传感器。
•电容式湿度传感器:通过测量电容的变化来确定湿度水平。
•电阻式湿度传感器:利用基于吸湿材料的电阻测量湿度。
湿度传感器广泛应用于自动化温控系统、气象观测、农业温室、工厂等各个领域。
3. 压力传感器压力传感器测量介质(液体或气体)中的压力变化。
常见的压力传感器包括压电式传感器、电阻式传感器和电容式传感器。
•压电式传感器:利用介质的压力作用下,压电材料产生电荷从而测量压力。
•电阻式传感器:通过介质对电阻的作用测量压力。
•电容式传感器:通过介质对电容的影响测量压力。
压力传感器广泛应用于汽车制造、工业自动化、石油化工、医疗仪器等领域。
4. 光传感器光传感器用于检测光的强度、颜色以及检测光的频率。
常见的光传感器包括光敏电阻、光敏二极管和光电管。
•光敏电阻:根据光照的强度而改变电阻值,从而实现光的测量。
•光敏二极管:将光转化为电荷产生电流来测量光的强度。
•光电管:通过光电效应将光转化为电信号测量光的强度。
光传感器广泛应用于光电测量、图像识别、光控开关、安全监控等领域。
5. 加速度传感器加速度传感器测量物体在空间中的加速度。
常见的加速度传感器包括振动传感器、MEMS传感器和压电传感器。