互相关时延估计与基于LMS自适应时延估计对比
- 格式:pdf
- 大小:268.34 KB
- 文档页数:2
1.3.1相关类时延估计方法
相关类相关分析是比较两个信号在时间域相似程度的基本方法。
假设接收到两列离散时间信号x(n)和y(n),
X( n)=s( n)+v1( n)
Y(n )=as( n-D)+v2( n)
通过求取其互相关函数Rxy( ■),当.值达到最大,也就是两列信号的相关性
达到最大,那么.值就是两列信号间的时延估计值。
基本相关法的优点比较简单,而且也容易实现,但同时也存在不足之处,比如: 如果信号与噪声之间不相互独立,或者信噪比太低,那么算法就会出现误差这也限制了相关类时延估计算法在实际中的应用范围。
RLS和LMS自适应算法分析RLS(Recursive Least Squares)自适应算法和LMS(Least Mean Squares)自适应算法是常见的自适应滤波算法,在信号处理、通信系统等领域有广泛应用。
本文将对这两种算法进行详细分析比较,并对它们的优缺点进行评价。
首先,我们先介绍一下这两种算法的基本原理。
RLS算法是一种递归估计算法,通过估计系统的权值并逐步修正的方式逼近期望响应。
根据最小二乘估计准则,RLS算法通过最小化滤波器输出与期望响应之间的均方误差来更新权值。
该算法以过去的输入和期望响应作为参考,通过不断修正权值,逼近最佳解。
常用的RLS算法有全选信号算法、选择性部分信号退化算法等。
LMS算法则是一种基于梯度下降的迭代算法,通过不断修正权值,使得滤波器输出的均方误差逐渐减小。
该算法的优势在于计算简单、适合实时应用。
LMS算法通过使用当前输入和期望响应对滤波器权值进行更新,更新步长由算法的学习速率参数确定,步长过大会导致算法发散,步长过小会降低收敛速度。
接下来,我们以几方面来分析比较这两种算法。
1.性能比较:在滤波效果方面,RLS算法由于基于历史输入和期望响应进行计算,能够更好地估计权值,提高滤波性能。
而LMS算法则在计算简单、实现容易的基础上,性能相对较差。
在噪声较大的环境下,RLS算法的性能相对更为优秀。
2.计算复杂度:RLS算法需要存储历史输入和期望响应,并进行矩阵运算,因此计算复杂度较高。
而LMS算法只需要存储当前输入和期望响应,并进行简单的乘法和加法运算,计算复杂度较低。
在资源受限的环境下,LMS算法更加适用。
3.收敛速度:RLS算法在每次迭代时都通过递归方式重新计算权值,因此收敛速度较快。
而LMS算法只通过当前输入和期望响应更新权值,因此收敛速度较慢。
在需要快速适应的应用场景下,RLS算法更为适合。
4.算法稳定性:由于RLS算法需要存储历史输入和期望响应,内存消耗较大。
前言自适应信号处理的理论和技术经过40 多年的发展和完善,已逐渐成为人们常用的语音去噪技术。
我们知道, 在目前的移动通信领域中, 克服多径干扰, 提高通信质量是一个非常重要的问题, 特别是当信道特性不固定时, 这个问题就尤为突出, 而自适应滤波器的出现, 则完美的解决了这个问题。
另外语音识别技术很难从实验室走向真正应用很大程度上受制于应用环境下的噪声。
自适应滤波的原理就是利用前一时刻己获得的滤波参数等结果, 自动地调节现时刻的滤波参数, 从而达到最优化滤波。
自适应滤波具有很强的自学习、自跟踪能力, 适用于平稳和非平稳随机信号的检测和估计。
自适应滤波一般包括3个模块:滤波结构、性能判据和自适应算法。
其中, 自适应滤波算法一直是人们的研究热点, 包括线性自适应算法和非线性自适应算法, 非线性自适应算法具有更强的信号处理能力, 但计算比较复杂, 实际应用最多的仍然是线性自适应滤波算法。
线性自适应滤波算法的种类很多, 有RLS自适应滤波算法、LMS自适应滤波算法、变换域自适应滤波算法、仿射投影算法、共扼梯度算法等[1]。
其中最小均方(Least Mean Square,LMS)算法和递归最小二乘(Recursive Least Square,RLS)算法就是两种典型的自适应滤波算法, 它们都具有很高的工程应有价值。
本文正是想通过这一与我们生活相关的问题, 对简单的噪声进行消除, 更加深刻地了解这两种算法。
我们主要分析了下LMS算法和RLS算法的基本原理, 以及用程序实现了用两种算法自适应消除信号中的噪声。
通过对这两种典型自适应滤波算法的性能特点进行分析及仿真实现, 给出了这两种算法性能的综合评价。
1 绪论自适应噪声抵消( Adaptive Noise Cancelling, ANC) 技术是自适应信号处理的一个应用分支, 年提出, 经过三十多年的丰富和扩充, 现在已经应用到了很多领域, 比如车载免提通话设备, 房间或无线通讯中的回声抵消( AdaptiveEcho Cancelling, AEC) , 在母体上检测胎儿心音, 机载电子干扰机收发隔离等, 都是用自适应干扰抵消的办法消除混入接收信号中的其他声音信号。
广义互相关时延估计gcc程序
广义互相关时延估计(GCC)是一种用于测量信号在不同位置之间传输的时间延迟的方法。
该方法可以用于音频、视频和其他类型的信号。
GCC算法基于计算两个信号之间的相互关系,并通过比较它们之间的时间差来估计信号的传输时间。
在音频应用中,GCC经常用于测量信号在不同麦克风之间传输的时间延迟,以便对信号进行同步和声源定位。
在GCC算法中,首先将两个信号进行滤波,以便提取它们的频率组成。
然后计算它们之间的互相关函数,并找到互相关函数的峰值。
峰值的位置表示两个信号之间的时延。
通过将峰值位置与信号的采样率相除,可以计算信号的时间延迟。
GCC算法具有良好的精度和可靠性,并已广泛应用于音频和视频信号处理领域。
总之,广义互相关时延估计是一种有效的方法,可以用于测量信号在不同位置之间传输的时间延迟。
它在音频和视频信号处理领域中广泛应用,并具有良好的精度和可靠性。
- 1 -。
第2卷第2期2009年6月上海电气技术JOURNA L OF SH AN GH AI ELECTRIC TECH NOLOGYVol.2No.2J un.2009文章编号:1674-540X(2009)01-055-04收稿日期:2009-01-20作者简介:叶一枝(1980-),男,硕士研究生,主要从事机器人技术的研究应用工作,E -mail:Jlxuanwu@声源定位技术在工业领域中研究与应用叶一枝1,2,黄建民2(1.上海交通大学,上海200030;2.上海电气集团股份有限公司中央研究院,上海200070)摘要:简单介绍了声源定位技术的研究现状以及现有的声源定位的关键技术,并分析了当前声源定位所面临的难题和挑战,最后介绍了声源定位技术的应用现状和发展趋势。
关键词:声源定位;时延估计技术;双曲线定位原理中图分类号:TB 5文献标识码:AResearch and Application of Sound Source Localization Technology in Industrial FieldY E Y izhi 1,2,H UAN G J ia nmin 2(1.Shanghai Jiaotong U niversit y,Shanghai 200030,China;2.Shanghai Electric Group Co.,Ltd.Central Academe,Shanghai 200070,China)A bstract:A br ief account of the sound source localization technology research,the existing key technology for Sound Source Localization done a brief introduction on the problems and challenges facing the analysis done,and finally introduced the sound source positioning technology status and development tr end.Key Words:sound source localization technology;time delay estimation;hyperbola locating在各种电子设备高度智能化的今天,语音增强与声源定位技术成为语音通信领域中2种不可缺少的技术。
LMS及RLS自适应干扰抵消算法的比较LMS(Least Mean Square)和RLS(Recursive Least Squares)是两种常用的自适应滤波算法,用于干扰抵消。
它们在不同场景下有着不同的特点和适用性。
LMS算法是一种迭代算法,通过不断调整滤波器的权值来最小化误差信号的均方差。
它的优点是实现简单,计算量较小,适用于大多数实时应用。
它采用梯度下降法来更新权值,根据误差信号和输入信号的乘积来调整权值,使得误差不断减小。
然而,LMS算法有一个较大的问题,就是收敛速度较慢,因为它只基于当前样本进行权值更新,对数据的统计特性要求较高。
另外,LMS算法对噪声的功率估计不准确,容易导致性能退化。
与LMS算法相比,RLS算法是一种递推算法,通过不断更新逆协方差矩阵来获得最佳权值。
它的优点是收敛速度快,稳定性好,适用于非平稳环境下的信号处理。
RLS算法通过在线估计输入信号的统计特性,能够更准确地抵消干扰。
然而,RLS算法的计算量较大,实时性不如LMS算法,而且对初始参数的选择要求较高,误差传播的问题可能会导致性能下降。
虽然LMS算法和RLS算法在特点和适用性上存在差异,但在实际应用中,可以根据具体的场景选择合适的算法。
如果系统对实时性要求较高,并且希望实现简单,LMS算法是一个合适的选择。
如果系统需要更准确的干扰抵消,并且可以容忍一定的计算复杂度,RLS算法是一个更好的选择。
另外,也可以考虑将两种算法结合使用,利用它们各自的优点来提高干扰抵消的性能。
总结起来,LMS算法和RLS算法是两种常用的自适应干扰抵消算法。
LMS算法具有实现简单、计算量小的特点,适用于实时应用;RLS算法具有收敛速度快、稳定性好的特点,适用于非平稳环境下的信号处理。
在实际应用中可以根据具体的场景选择合适的算法,或者结合两种算法来提高干扰抵消的性能。
互相关函数求时延原理互相关函数是一种用于衡量两个信号之间相似程度的数学工具。
它在信号处理、通信系统、图像处理等领域得到广泛应用。
互相关函数的计算方法是将两个信号进行卷积运算,并求得其结果的绝对值。
在信号处理中,时延是一个重要的概念。
时延表示信号在时间上的偏移量,也可以理解为信号到达目标的时间差。
在通信系统中,时延是指信号从发送端到接收端所需的时间。
时延的测量对于信号的同步和系统性能的评估非常重要。
互相关函数可以用来求解信号之间的时延。
假设有两个信号x(t)和y(t),它们之间存在一个固定的时延τ。
我们可以通过计算互相关函数来找到这个时延τ。
具体的计算步骤如下:1. 首先,将信号x(t)和y(t)进行归一化处理,使其均值为0,方便后续计算。
2. 接下来,计算信号x(t)和y(t)的互相关函数Rxy(t)。
互相关函数的计算公式为:Rxy(t) = ∫[x(t) * y(t-τ)] dt其中,* 表示卷积运算,τ 表示时延。
3. 然后,对互相关函数Rxy(t)进行归一化处理,得到互相关系数。
互相关系数的计算公式为:ρ(t) = Rxy(t) / √(Rxx(0) * Ryy(0))其中,Rxx(0) 和 Ryy(0) 分别表示信号x(t)和y(t)的自相关函数。
4. 最后,找到互相关系数的峰值位置,即可得到信号之间的时延τ。
通过以上步骤,我们可以利用互相关函数求解信号之间的时延。
这种方法在信号处理和通信系统中具有广泛的应用。
例如,在无线通信系统中,利用互相关函数可以对接收到的信号进行时延估计,从而实现信号的同步。
除了求解时延,互相关函数还可以用于信号的相似性分析和模式识别。
通过计算信号之间的互相关系数,我们可以判断两个信号之间的相似程度。
在图像处理中,互相关函数常用于目标检测和跟踪。
互相关函数是一种重要的信号处理工具,可以用于求解信号之间的时延和衡量信号的相似性。
通过计算互相关函数,我们可以得到信号之间的相关性,进而实现信号同步、目标检测等应用。
RLS和LMS自适应算法分析RLS (Recursive Least Squares) 和 LMS (Least Mean Squares) 是两种常见的自适应滤波算法。
它们在信号处理、通信系统和自适应控制等领域得到广泛应用。
本文将对这两种算法进行分析比较。
首先,我们来看看RLS算法。
RLS算法使用最小均方误差准则来自适应调整滤波器系数。
它利用递归方式计算出均方误差的最小值。
RLS算法基于Wiener-Hopf方程,通过解析方法来计算最优系数。
这种方法计算量较大,但是提供了更好的性能。
RLS算法根据观测数据和期望输出之间的误差信号来不断调整滤波器的权重,并且在递归过程中更新这些权重。
相比于LMS算法,RLS算法具有更快的收敛速度和更高的精度。
但是,RLS 算法也存在一些问题,比如计算复杂度高、存储要求大以及对噪声和系统不确定性敏感。
接下来,我们来看看LMS算法。
LMS算法是一种基于随机梯度下降的自适应算法。
在LMS算法中,滤波器的系数通过逐步调整以减小误差标准差。
LMS算法利用误差信号和输入信号之间的乘积来更新滤波器系数。
这种算法简单易于实现,计算复杂度低,并且对存储要求不高。
LMS算法适用于非平稳环境下的自适应滤波问题。
然而,LMS算法的收敛速度较慢,需要一定的迭代次数才能达到最优解,而且对于高阶滤波器,可能存在稳定性问题。
此外,LMS算法对输入信号的统计特性有一定的要求。
综上所述,RLS算法和LMS算法都是常见的自适应滤波算法,它们在不同的应用领域有不同的适用性和特点。
RLS算法在计算复杂度和存储要求上较高,但是具有更快的收敛速度和更高的精度。
LMS算法计算复杂度低,存储要求小,但是收敛速度较慢。
一般情况下,对于较小的系统和较简单的滤波器,可以使用LMS算法,而对于复杂的系统和高阶滤波器,可以使用RLS算法。
在实际应用中,需要根据具体的要求和约束来选择合适的算法。
此外,还可以根据实时计算需求和系统资源限制等因素,对RLS 和LMS算法进行优化和改进,如考虑快速RLS算法和正则化LMS算法等。
论文第三章LMS和RLS自适应滤波器的仿真实现与比较自适应滤波器是一种能够根据输入信号的特性自动调整其滤波器性能的滤波器。
LMS(最小均方)和RLS(递归最小二乘)是两种常用的自适应滤波器算法。
本文将对这两种算法进行仿真实现,并对其性能进行比较。
首先,我们实现了LMS自适应滤波器的仿真。
LMS自适应滤波器通过不断调整滤波器系数来最小化预测误差的均方误差。
在仿真中,我们生成了一个包含噪声的信号作为输入信号,并设置了一个期望的滤波器响应。
然后,我们使用LMS算法来自适应调整滤波器的系数,使其逼近期望的响应。
最后,我们比较了实际和期望的滤波器响应,并计算了均方误差。
接下来,我们实现了RLS自适应滤波器的仿真。
RLS自适应滤波器使用递归最小二乘算法来调整滤波器的系数。
在仿真中,我们同样生成了一个包含噪声的输入信号,并设置一个期望的滤波器响应。
然后,我们使用RLS算法来递归地更新滤波器的系数,使其逼近期望的响应。
最后,我们比较了实际和期望的滤波器响应,并计算了均方误差。
在比较LMS和RLS自适应滤波器的性能时,我们主要关注以下几个方面:收敛速度、稳定性和计算复杂度。
收敛速度是指自适应滤波器达到期望的响应所需要的时间。
稳定性是指自适应滤波器在逼近期望的响应时是否会出现不稳定的情况。
计算复杂度是指实现自适应滤波器算法所需要的计算量。
根据我们的仿真结果,我们可以得出以下结论:LMS自适应滤波器的收敛速度较快,但在达到期望的响应后可能会出现振荡的情况,所以在实际应用中需要设置合适的步长参数来平衡收敛速度和稳定性。
RLS自适应滤波器的收敛速度较慢,但在达到期望的响应后相对稳定,不容易出现振荡的情况。
然而,RLS算法的计算复杂度较高,需要大量的计算资源。
总的来说,LMS和RLS自适应滤波器都有各自的优势和劣势。
在实际应用中,我们需要根据具体的需求来选择合适的自适应滤波器算法。
如果追求较快的收敛速度和较低的计算复杂度,可以选择LMS算法;如果追求较稳定的滤波器性能并且有充足的计算资源,可以选择RLS算法。
基于广义互相关各类加权时延估计下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!基于广义互相关各类加权时延估计引言随着通信技术的不断发展和普及,对于时延估计的需求也日益增加。
基于SCOT双加权二次相关的时延估计算法
张宇;严天峰
【期刊名称】《全球定位系统》
【年(卷),期】2018(43)5
【摘要】在研究时延估计中二次相关法的基础上,为了进一步提升二次相关法在更低信噪比条件下的可用性,结合广义互相关中的广义权函数,对二次相关法中的两次互相关分别进行平滑相干变换(SCO T )加权处理 .实验仿真结果表明,与二次相关法以及广义二次相关法相比,基于SCO T双加权二次相关的时延估计算法在信噪比低时仍具有较高的时延估值精度 .
【总页数】5页(P53-57)
【作者】张宇;严天峰
【作者单位】兰州交通大学电子与信息工程学院,甘肃兰州730070 ;甘肃省无线电监测及定位行业技术中心,甘肃兰州 730070;兰州交通大学电子与信息工程学院,甘肃兰州730070 ;甘肃省高精度北斗定位技术工程实验室,甘肃兰州 730070 ;甘肃省无线电监测及定位行业技术中心,甘肃兰州 730070
【正文语种】中文
【中图分类】TN911
【相关文献】
1.基于改进二次相关算法的TDOA时延估计 [J], 严天峰;张宇;赵亚楠;杨志飞
2.基于LMS自适应滤波和希尔伯特差值的二次相关时延估计算法 [J], 陈霄;徐慨;
杨海亮
3.基于 SCOT加权广义互相关算法的船舶管系泄漏定位研究 [J], 韩雪峰;刘跃冲;彭中波
4.基于二次相关的语音信号时延估计改进算法 [J], 刘敏;曾毓敏;张铭;李晨
5.基于广义二次相关的稀疏傅里叶变换时延估计算法 [J], 张宇;严天峰
因版权原因,仅展示原文概要,查看原文内容请购买。
垂直长基线阵被动目标定位的缩比试验付学志;刘忠;崔麦会【摘要】在水文条件优良的深海中垂直布放长基线阵实施被动目标定位具有重大意义,但限于现有设备的结构耐压性、布放难度等条件的限制,海试难以实施.消声水池具有与深海类似的声场环境,可以在消声水池中利用短基线阵实施缩比模拟试验.首先分析论证了影响目标定位精度的两个关键参数(时延估计精度和阵元间距)的设置,为深海垂直长基线阵和水池缩比试验平台的设计提供参考;然后给出了试验平台设计、试验步骤及试验数据处理分析方法;最后利用消声水池试验数据对深海中垂直长基线阵的目标定位精度、作用距离等指标做出了性能预报.【期刊名称】《数据采集与处理》【年(卷),期】2013(028)006【总页数】7页(P777-783)【关键词】被动目标定位;长基线阵;时延估计;消声水池【作者】付学志;刘忠;崔麦会【作者单位】中国人民解放军91635部队,北京,102249;海军工程大学电子工程学院,武汉,430033;中国人民解放军91635部队,北京,102249【正文语种】中文【中图分类】TN911引言迄今为止,对水下目标的远程被动定位主要有3种方法:长基线阵定位、目标运动分析(Target motion analysis, TMA)[1-2]和匹配场处理(Matched field processing,MFP)[3]。
TMA 和MFP是正在发展中的远程被动测距技术,测距性能对海深、海底声学参数及水文条件极为敏感,对海洋声学环境参数的预估精度要求高,而且运算量较大[4]。
而长基线阵定位法作为一种传统的被动定位方法,理论成熟结果可靠,应用方式灵活[5-6]。
长基线阵定位法常见于水平布阵,利用球面波或柱面波波前曲率的变化,通过测量各基元的相对时延,估计目标的距离和方位[4,7]。
限于基阵孔径和安装精度等因素的限制,长基线垂直阵在被动声纳中的应用并不多见[5]。
另外,由于浅海海洋环境的复杂性[8],以及被动测距声纳使用水深的限制,水下目标被动定位还受到表面声道“声影区”、浅海声道多途干扰和衰减强等局限[9-10],从而使得浅海中基于水平或垂直长基线阵的目标被动定位距离和精度受很大限制[11]。
LMS自适应线性预测算法LMS(最小均方)自适应线性预测算法是一种常用的信号处理算法,用于估计未知信号的值。
它基于线性模型,通过逐步地调整权重以最小化预测误差的均方差来实现预测。
在该算法中,自适应性体现在权重的自适应更新上,使得算法能够适应不断变化的信号环境。
LMS算法的基本思想是,通过输入信号的相关性来构造一个线性模型,并使用已知的输入信号和相应的输出信号来估计模型的权重。
这样,当没有给定输出信号时,我们可以使用该模型来预测未知信号的值。
预测误差被定义为实际输出信号与预测输出信号之间的差异。
LMS算法的核心是权重的自适应更新。
为了通过最小化均方误差来优化权重,算法使用了梯度下降的思想。
具体来说,算法使用误差信号(预测输出与实际输出的差异)来调整每个权重的值,使得误差信号的均方差尽可能小。
LMS算法的更新规则如下:w(n+1)=w(n)+μ*e(n)*x(n)其中,w(n)是上一次权重的值,w(n+1)是当前权重的值,μ是步长参数(控制权重更新的速度),e(n)是误差信号,x(n)是输入信号。
LMS算法的步骤如下:1.初始化权重w(0)为一个适应信号长度的零向量。
2.对于每一个时间步n,计算输出y(n):y(n)=w^T(n)x(n),其中x(n)是输入信号,w^T(n)是权重向量的转置。
3.计算误差信号e(n):e(n)=d(n)-y(n),其中d(n)是实际输出信号。
4.更新权重w(n+1):w(n+1)=w(n)+μ*e(n)*x(n)。
5.重复步骤2-4,直到达到预定的停止条件(如达到最大迭代次数、误差信号小于一些阈值等)。
LMS算法的性能取决于步长参数μ的选择。
如果步长参数过小,算法收敛速度较慢;如果步长参数过大,算法可能发散。
因此,在实际应用中,需要仔细选择适当的步长参数。
LMS算法的优点是简单、易于实现,对于大多数实时信号处理应用而言,具有较高的计算效率。
此外,LMS算法对于非线性系统也能够进行利用,但是需要注意对非线性情况下的模型做一定的适应。
时延估计简介及国内外研究现状1时延估计简介 (1)2国内外时延估计现状 (2)1时延估计简介时间延迟估计是表征信号的一个基本参量,生活中人们所谓的时延是指从说话人开始讲话到受话人听到所说的内容的时间。
一般人能忍受小于250ms的时延,若时延太长,会使通信双方都不舒服。
自1976年,Knapp和Carter关于广义相关的时延估计的论文发表以来,对时间延迟及其有关参量的估计一直是信号处理领域中活跃的研究方向。
时间延迟估计在雷达、声纳、语音信号处理、地球物理勘探、故障诊断和生物医学工程等领域都有广泛的应用。
它主要指利用信号处理的理论和方法对不同接收器所接收信号的时间差进行估计,来确定其它相关参量,如信源的距离、方位、速度和移动方向等。
根据不同的测量环境、测量要求和不同信号的特性,分别有不同的时延估计方法,通常用到的时延估计方法有相位法、双谱法、相关法、自适应滤波器参数模型法等。
随着信号处理方法不断发展和完善,现代信号处理的各种算法引入到时延估计方法中,对多径时延、可变时延提高时延估计的精度、减小了计算量。
下图分别为目前国际上对时延估计的学术关注度和用户关注度,充分的显示了人们对时延估计的理解和应用情况。
图1 学术关注度图2 用户关注度2国内外时延估计现状目前国际上主要的基本时延估计方法有相关法、广义加权相关时延估计算法、相关函数和功率谱密度函数、自适应时延估计算法等不同的方法。
在时延估计算法中,相关法是最经典的时延估计方法,它通过信号的自相关函数滞后的峰值估计信号之间延迟的时间差。
这种方法简单易懂,容易实现,但它的不足之处是要求信号和噪声、噪声和噪声互不相关,对非平稳信号和可变时延估计的估计误差大,甚至不能估计。
广义加权相关时延估计算法(GCC)。
GCC在作相关之前对接收信号进行预白处理,增强了信号中信噪比较高的频率成分,提高了信噪比,从而提高了时延估计精度。
由于广义相关法是相关法的一种扩展,它仍然是统计学意义上的相关,实现起来有一定的难度,所以广义加权相关法一般用有限时间的函数值代替统计学上的时延真值,作为相关函数的估值进行时延估计。
一种基于幅值加权的互相关时延估计新方法张宇;严天峰;许富馨;李帅;郑礼【摘要】针对无源时差定位中的互相关法时延估计在低信噪比条件下准确度低的问题,文中提出了一种新的幅值加权方法对互相关法进行改进.幅值加权是利用输入信号的幅频特性扩大互相关功率谱函数信号频点处的幅值,相对弱化信号频点外的功率谱小尖峰的影响,近似满足准确估计时延值所需的理想的互相关功率谱条件,进而提高时延估计的准确度.实验仿真表明,在信噪比较低时,与传统互相关法相比,采用幅值加权的互相关法能够更为准确地计算出时延值.该方法对时延估计研究具有一定参考价值.【期刊名称】《电子科技》【年(卷),期】2019(032)008【总页数】6页(P46-50,60)【关键词】时延估计;信噪比;功率谱函数;幅值加权;互相关;估值准确度【作者】张宇;严天峰;许富馨;李帅;郑礼【作者单位】兰州交通大学电子与信息工程学院,甘肃兰州730070;兰州交通大学电子与信息工程学院,甘肃兰州730070;兰州交通大学电子与信息工程学院,甘肃兰州730070;兰州交通大学电子与信息工程学院,甘肃兰州730070;兰州交通大学电子与信息工程学院,甘肃兰州730070【正文语种】中文【中图分类】TN911时延估计是研究雷达信号、生物医学信号、地理勘探信号及非法干扰源的主要手段[1-4],现阶段使用的时延估计方法有:LMS时延估计[5-6]、希尔伯特时延估计[7-8]和自适应时延估计[9]等。
这些方法的核心都是传统互相关[10](即广义相关)法。
然而,传统互相关法在低信噪比时时延估值性能下降明显,研究人员针对此问题提出了许多提升信号信噪比的方法,如:奇异值分解法[11]、二次相关法[12]和广义二次相关法[13]等。
本文在深入研究互相关功率谱及互相关函数之间关系的基础上,提出了一种新的互相关幅值加权法,该方法能够优化互相关功率谱,得到较为理想的互相关函数,进而提升时延估值的准确度。
LMS与RLS自适应滤波算法对比研究
一、背景介绍
自适应滤波是现代通信和信号处理中非常重要的技术,它可以有效的
去除信号中的突发噪声,提取出有效的信号。
传统的滤波方法是基于给定
的滤波器参数来完成,无法适应环境变化,难以达到较好的过滤效果,所
以传统的滤波方法的性能不能满足视频真实环境下的实时过滤要求。
LMS
和RLS算法便是一种自适应滤波算法,它们能够适应复杂、随机的信号环境,以获取较高的滤波效率和单位突发噪声的抑制能力。
两者具有共同之处,又能够满足特定的应用需求,因此在信号处理方面有其特有的应用价值。
二、LMS算法介绍
LMS算法是由 Widrow和Hoff于1960年提出的一种自适应滤波算法,它是一种局部最小二乘法。
它通过一系列的参数更新,以实时的方式用最
小均方误差的原则,尽可能接近实时输入信号的期望值。
LMS算法速度快,不需要额外的矩阵求逆操作,而且只用到了一个小型矩阵,对于实时性能
要求高的应用是一个较好的选择。
三、RLS算法介绍
RLS算法是由Park和Kendall于1960年提出的一种自适应滤波算法,它实现了局部最小二乘估计。
与LMS算法不同的是,RLS算法引入了一个
状态变量,可以单独对待每一个输入信号,从而可以更新滤波器的参数,
以实现快速的收敛性。