车身结构碰撞安全性设计
- 格式:pptx
- 大小:1.78 MB
- 文档页数:32
汽车碰撞安全CAE仿真分析汽车的碰撞安全性是汽车设计开发过程中必不可少的环节,车身结构是碰撞安全的基础,设计出具有良好碰撞吸能性能的安全车身是汽车设计的一个主要目标。
汽车的碰撞安全性能最终要经过实车的碰撞试验来检验,但实车试验成本高昂,在设计过程中不可能为验证某一设计的合理性而反复试验。
CAE仿真分析因其可重复性、低费用、方便性等优点成为检验某一设计是否合理的有效方法。
同捷在12年发展中设计开发了几百款车型,积累了各类型、各级别车型丰富的设计经验。
同时,由于CAE分析已成为设计中的一项不可或缺的流程,几乎每一款车型都要进行碰撞安全CAE仿真分析,也积累了丰富的标杆车和设计车分析经验和数据,完全可以根据不同需求设计出合理的安全车身结构,满足法规及C-NCAP要求。
以下从最常见的几个碰撞性能分析项介绍汽车碰撞安全CAE仿真分析的主要内容。
正面刚性墙碰撞分析根据法规和C-NCAP要求,在正面刚性墙碰撞中,汽车以50km/h的速度正面垂直撞击刚性墙。
车身主要的吸能结构为前保险杠、吸能盒、左右前纵梁等前舱结构,因此,前纵梁上各支架(如纵梁上蓄电池支架、发动机悬置支架等)的布置对碰撞过程中纵梁的吸能弯折型式有很大影响。
由于正面碰撞侧重对约束系统的考察,这就要求车身结构,特别是乘员舱的结构既要设计得比较刚强,保证乘员生存空间的完整性,又要合理的分散碰撞能量,降低传递到乘员舱的力。
利用CAE仿真分析方法,不仅可以输出碰撞过程中B柱、中央通道的加速度,前围板、踏板、方向盘的侵入量,门框变形量及各主要力传递路径结构的截面力等信息,还可以根据分析结果快速地修改主要吸能结构的材料、料厚及特征等,达到优化的目的。
40%偏置碰撞分析40%偏置碰撞与正面刚性墙碰撞最大的区别是偏置碰撞中只有一侧的纵梁结果参与变形吸能,因此,偏置碰撞更多的是对车身结构刚强程度的考察,碰撞力必须很快地通过A柱、门槛梁、车门腰线、地板、中央通道等传递分散,设计中不仅要综合考虑正面刚性墙碰撞的分析结果,还需重点关注A柱、门框及上边梁等结构的变形特点。
基于CAE模拟技术的汽车碰撞安全性研究汽车碰撞安全性一直是汽车行业的重要研究领域,而基于CAE模拟技术的汽车碰撞安全性研究则成为了近年来的热点。
CAE(Computer-Aided Engineering,计算机辅助工程)模拟技术可以通过数值计算和仿真模拟来评估汽车在碰撞中的安全性能,为汽车的设计和制造提供重要参考。
本文将对基于CAE模拟技术的汽车碰撞安全性研究进行探讨和分析。
首先,基于CAE模拟技术的汽车碰撞安全性研究的重要性不言而喻。
在过去,汽车碰撞测试主要依靠实际车辆进行,成本高昂且效率低下。
而现在,通过CAE模拟技术,可以在计算机中建立汽车的虚拟模型,通过各种仿真分析来模拟真实的碰撞情况,从而更加快速和经济地评估汽车的碰撞安全性能。
这不仅可以提高汽车的设计效率,还可以降低开发成本和生产周期。
其次,基于CAE模拟技术的汽车碰撞安全性研究可以帮助汽车制造商评估和改进车辆的结构和材料。
通过建立车辆的虚拟模型,并运用CAE软件进行碰撞仿真分析,可以得到车辆在碰撞中的受力情况、应力分布、变形变化等重要参数,从而评估车辆的结构和材料的可靠性。
如果在模拟分析中发现了某个部位的受力过大或变形严重,汽车制造商可以及时进行结构设计和材料选择的改进,提高车辆在碰撞中的安全性能。
此外,基于CAE模拟技术的汽车碰撞安全性研究还可以评估不同碰撞条件下的乘员保护性能。
汽车制造商可以通过虚拟仿真分析,研究不同角度、不同速度、不同碰撞类型等各种碰撞条件对乘员的影响。
通过模拟分析,可以得到乘员在碰撞过程中的受力情况、身体部位的受伤程度等信息,进而评估车辆的乘员保护性能。
这为汽车制造商改进车辆的乘员安全装置、调整车身结构等提供了重要的依据。
另外,基于CAE模拟技术的汽车碰撞安全性研究也有助于优化汽车的被动安全系统。
被动安全系统是指在发生碰撞时起到保护乘员和减轻伤害的设备和装置,如安全气囊、安全带等。
通过仿真分析,可以评估被动安全系统在碰撞中的性能表现,如安全气囊的充气时间和力度、安全带的松紧程度等,从而优化被动安全系统的设计和功能,提高乘员的安全防护水平。
AUTOMOBILE DESIGN | 汽车设计正面碰撞车身设计基本思路张路 杨志刚 林祥辉极氪汽车(宁波杭州湾新区)有限公司 浙江省宁波市 315336摘 要: 本文以正面碰撞的结构设计为出发点,阐述正面碰撞设计的基本思路。
包含:由外向内逐级加强的设计,以保证生存空间的设计基本要点;整车受力传递路径的规划与截面力规划的设计要点;同时,还阐述了材质及料厚的选取、焊接质量对于碰撞安全的影响以及设计或选取的方法。
关键词:正面碰撞 耐撞性 逐级溃缩 截面力规划1 前言被动安全设计开发涉及两个主要方面:车身结构耐撞性和约束系统开发。
车身耐撞性结构设计是整车被动安全设计的基础,其中,车身结构刚度和强度这两个指标是车身耐撞性考察的重要指标。
车身刚度指的是车身的抗冲击能力或抗变形能力,指在低速碰撞过程中零部件不损坏的特性,这一点能够保证维修经济性;强度是抵抗外力的塑性变形或抵抗车身被破坏的能力。
在碰撞安全中,刚度影响低速碰、强度影响高速碰。
车身的这两个指标,主要是由车身的结构设计、材料强度、钣金料厚、焊接工艺和粘胶连接质量决定。
本文是以高速碰撞下车身结构设计为重点进行阐述。
2 生存空间与变形区域车身结构设计,首先要保证的是车内乘员的有效生存空间,也就是要将车内乘员舱设计成整个车身骨架结构中最强的区域;而乘员舱之外的部分(发舱、后备箱)主要用于碰撞变形吸能。
乘员舱内外需要共同作用、相互配合,才能在汽车发生高速碰撞时,为乘员提供安全的提前(生存空间),后由约束系统约束住乘员,确保人员低损伤或不受损伤。
高速碰撞中,决定汽车的安全因素不是车身外部钢板的厚度,而是带有逐级吸能及具有良好抗变形能力的车身结构,使乘员舱不发生形变(见图1)。
同时,良好的变形形式,是确保整车加速度曲线及曲线走势的基础,也就是整个碰撞过程都需要进行有序控制。
图1 吸能车身结构示意图事故对于正面高速碰设计,发动机舱加上仪表板区域可划分为三大块,如下图2所示。
奔驰碰撞技巧教学设计奔驰碰撞技巧教学设计一、教学目标:1. 了解奔驰车辆的碰撞安全设计原理和技术特点。
2. 掌握奔驰碰撞事故时的正确反应和应对措施。
3. 提高学员的自我保护意识和安全驾驶技能。
二、教学内容:1. 奔驰碰撞安全设计原理:a. 高强度钢结构:奔驰车辆采用高强度钢材料制作车身结构,提供更大的碰撞安全空间。
b. 安全气囊系统:针对不同碰撞方向设计多个安全气囊,并配备碰撞传感器,实现灵敏的气囊触发。
c. 主动安全技术:奔驰车辆配备多种主动安全技术,如刹车辅助系统、防抱死刹车系统等,提高车辆在紧急情况下的稳定性和制动效果。
d. 电子稳定程序(ESP):通过感知车辆的方向和横向加速度,ESP系统能够自动对车辆进行制动,保持车辆稳定和方向控制。
2. 碰撞事故时的正确反应和应对措施:a. 首先保持镇定,尽量减小事故的危害。
b. 如果是追尾事故,在发现前方车辆突然停车时,要迅速踩下刹车以保持安全距离,并尽量避免碰撞。
c. 如果是侧面碰撞事故,要时刻注意左右两侧的交通情况,避免被突然冲出来的车辆撞击。
d. 无论何种碰撞事故,及时拨打紧急电话报警,同时向后方车辆示意减速以避免连环事故的发生。
e. 在车辆停稳后,尽量呆在车内,等待救援人员的到来。
三、教学方法:1. 讲授与讨论:通过讲解奔驰车辆的碰撞安全设计原理,引导学员了解奔驰车辆的安全性能,并与学员进行相关问题的讨论,提高学员的分析问题和解决问题的能力。
2. 视频展示:播放奔驰车辆在各种碰撞测试中的情况,展示车辆在碰撞时的保护措施和效果,增加学员对奔驰碰撞安全设计的认知和信心。
3. 模拟实践:使用驾驶模拟器进行模拟碰撞情景的实践,让学员亲自体验碰撞发生时的反应和应对措施,提高学员的应急反应和驾驶技能。
四、教学评估:1. 通过课堂讨论和问答,检查学员对奔驰碰撞安全设计原理的理解程度。
2. 对学员在模拟实践中的驾驶表现进行评估,检查其在碰撞发生时的反应和应对措施是否正确。
2024版电动汽车碰撞后安全要求随着电动汽车的快速发展,碰撞后的安全问题日益受到人们的关注。
为了保障乘客在碰撞事故发生后的安全,制定了2024版电动汽车碰撞后安全要求,具体要求如下:一、结构合理性要求1. 在车身结构方面,电动汽车应采用合理布局的车身框架和加强材料,确保在碰撞中能够有效承受冲击力,并保护乘客的生命安全。
2. 牵引电池系统应具备优良的结构安全性,以防止碰撞中对电池系统产生严重影响。
二、被动安全要求1. 座椅和安全带的设计应符合人体工程学原理,提供良好的支撑和保护,减轻碰撞时的冲击力和伤害。
2. 气囊系统应覆盖乘员的重要部位,能够在碰撞发生时及时充气,并在适当时机缓解冲击力,保护乘客免受严重伤害。
三、主动安全要求1. 电动汽车应配备先进的安全辅助系统,如碰撞预警系统、自动制动系统等,能够在碰撞事件发生前及时预警,并采取相应措施避免碰撞。
2. 车辆应配备完善的智能驾驶辅助系统,提供准确的行驶信息和反馈,有效减少驾驶员的疲劳和操作失误,降低碰撞风险。
四、维修和救援要求1. 电动汽车碰撞后的维修和救援应由专业人员进行,确保车辆能够及时修复,并保障乘客的安全。
2. 维修和救援人员应受过专业培训,并熟悉电动汽车碰撞后的处理流程,以避免二次伤害的发生。
五、评估和监测要求1. 制定科学的碰撞安全评估标准,定期对电动汽车的碰撞安全性进行评估和监测,及时发现问题并加以改进。
2. 对电动汽车碰撞事故进行深入调查和分析,总结经验教训,并加以应用,提高电动汽车的碰撞后安全性水平。
以上就是2024版电动汽车碰撞后安全要求的主要内容。
通过采取合理的车身结构设计、优化的被动安全装置、先进的主动安全系统以及专业的维修和救援措施,我们将能够不断提高电动汽车碰撞后的安全性能,确保乘客的生命安全。
同时,定期评估和监测将为我们提供改进的方向,为电动汽车行业的可持续发展提供有力支持。
乘用车车身结构安全要求及评价方法
乘用车车身结构的安全要求主要包括以下几个方面:
1. 车身结构强度:车身结构应具有足够的强度,能够承受来自各个方向的碰撞力,以保护车内乘员的安全。
2. 车身结构刚度:车身结构应具有足够的刚度,能够在受到外力作用时保持形状稳定,防止乘员因车身变形而受伤。
3. 碰撞能量吸收:车身结构应设计有能量吸收区,以在发生碰撞时吸收部分碰撞能量,减少碰撞对乘员的冲击。
4. 乘员保护:车身结构应能有效保护乘员,包括提供足够的生存空间、减少乘员受伤的可能性等。
评价方法主要包括以下几个方面:
1. 碰撞试验:通过进行实车碰撞试验,模拟不同情况下的碰撞场景,评估车身结构的安全性能。
2. 有限元分析:利用计算机仿真技术,对车身结构进行有限元分析,预测车身在不同碰撞场景下的变形和受力情况。
3. 安全性评价:根据碰撞试验和有限元分析的结果,对车身结构的安全性进行评价,包括乘员保护性能、能量吸收性能等。
4. 国际标准对比:将评价结果与国际上的相关安全标准进行对比,以评估车身结构的安全性能是否达到国际水平。
需要注意的是,乘用车车身结构的安全性能是一个综合指标,需要考虑多个方面的因素。
因此,在评价车身结构的安全性时,需要采用多种方法和技术手段,以确保评价的准确性和可靠性。
车辆碰撞安全性与设计优化的研究进展探讨一、关键信息1、研究目的:深入探讨车辆碰撞安全性与设计优化的最新研究进展,为提高车辆安全性提供理论支持和实践指导。
2、研究范围:涵盖车辆结构设计、材料应用、碰撞仿真技术、安全法规标准等方面。
3、研究方法:包括文献综述、实验研究、数据分析和案例分析等。
4、研究成果预期:形成具有创新性和实用价值的研究报告,提出可行的设计优化建议。
5、时间安排:明确各个研究阶段的时间节点,确保研究按时完成。
6、责任分工:明确各参与方在研究中的具体职责和任务。
二、研究背景与意义11 车辆碰撞事故的严重性车辆碰撞事故是造成人员伤亡和财产损失的重要原因之一。
每年全球范围内因车辆碰撞导致的死亡和伤残人数众多,给社会和家庭带来了巨大的痛苦和负担。
111 车辆碰撞安全性的重要性提高车辆的碰撞安全性对于保护乘车人员的生命安全、减少事故损失具有至关重要的意义。
112 设计优化的必要性通过对车辆结构和设计的优化,可以有效地提高车辆在碰撞中的抗冲击能力,降低碰撞对人员的伤害风险。
三、研究内容与重点12 车辆结构设计与碰撞安全性研究车辆的车架、车身、保险杠等结构部件的设计对碰撞安全性的影响,探索优化结构设计的方法和策略。
121 材料应用与碰撞性能分析不同材料(如高强度钢、铝合金、复合材料等)在车辆碰撞中的性能表现,研究如何合理选用材料以提高碰撞安全性。
122 碰撞仿真技术的应用利用先进的碰撞仿真软件和工具,对车辆碰撞过程进行模拟和分析,为设计优化提供依据。
123 安全法规标准与车辆设计研究国内外车辆安全法规标准的发展趋势,确保车辆设计符合相关要求,并探讨法规标准对车辆碰撞安全性的推动作用。
四、研究方法与技术路线13 文献综述广泛收集和整理国内外关于车辆碰撞安全性与设计优化的研究文献,了解研究现状和前沿动态。
131 实验研究开展车辆碰撞实验,获取实际碰撞数据,验证理论分析和仿真结果的准确性。
132 数据分析对实验和仿真获得的数据进行深入分析,提取有价值的信息,为设计优化提供数据支持。
第1篇一、实验背景随着我国汽车工业的快速发展,汽车交通事故频发,给人民生命财产安全带来严重威胁。
为了提高汽车安全性能,降低交通事故发生率,我国对汽车碰撞实验提出了更高的要求。
本实验旨在通过模拟真实交通事故场景,对某款汽车进行碰撞实验,评估其安全性能。
二、实验目的1. 评估汽车在正面碰撞、侧面碰撞、尾部碰撞等不同碰撞场景下的安全性能;2. 分析汽车在碰撞过程中的结构变形、乘员舱完整性、安全气囊展开等方面的情况;3. 为汽车设计和改进提供依据,提高汽车安全性能。
三、实验方法1. 实验车型:某款中型轿车;2. 实验设备:碰撞实验台、碰撞传感器、数据采集系统、安全气囊模拟系统等;3. 实验方案:按照GB 11551-2017《汽车碰撞试验方法》和GB 11551-2017《汽车侧面碰撞试验方法》进行实验。
(一)正面碰撞实验1. 实验条件:车速50km/h,碰撞角度为90°;2. 实验步骤:将实验车型固定在碰撞实验台上,调整碰撞角度和车速,进行正面碰撞实验;3. 实验结果:汽车在正面碰撞过程中,乘员舱结构保持完整,安全气囊正常展开,乘员保护系统发挥作用。
(二)侧面碰撞实验1. 实验条件:车速50km/h,碰撞角度为45°;2. 实验步骤:将实验车型固定在碰撞实验台上,调整碰撞角度和车速,进行侧面碰撞实验;3. 实验结果:汽车在侧面碰撞过程中,乘员舱结构保持完整,安全气囊正常展开,乘员保护系统发挥作用。
(三)尾部碰撞实验1. 实验条件:车速64km/h;2. 实验步骤:将实验车型固定在碰撞实验台上,调整车速,进行尾部碰撞实验;3. 实验结果:汽车在尾部碰撞过程中,乘员舱结构保持完整,安全气囊正常展开,乘员保护系统发挥作用。
四、实验结果分析1. 汽车在正面碰撞、侧面碰撞、尾部碰撞实验中,乘员舱结构保持完整,乘员保护系统发挥作用,表明汽车具有良好的安全性能;2. 汽车在碰撞过程中,安全气囊正常展开,为乘员提供有效保护;3. 实验结果表明,该款汽车在安全性能方面达到国家标准要求。