焦化汽油改质方案的比较
- 格式:pdf
- 大小:149.71 KB
- 文档页数:5
劣质汽油芳构化改质技术刘丹禾(中国石化洛阳石化工程公司炼制研究所)1 前言轻质芳烃(苯、甲苯、二甲苯)是化学工业的基础原料之一,同时又是辛烷值很高的马达燃料(RON>100)。
向汽油中掺入富含轻质芳烃组分是炼油企业提高其成品汽油辛烷值的主要手段之一。
催化重整技术是当前炼油企业获得优质石油芳烃或高辛烷值汽油调和组分的最主要工艺。
催化重整反应的重要特征是将直馏石脑油中的环烷烃经脱氢步骤转化为芳烃。
所以,无论早期的半再生重整工艺还是经催化剂及工艺改进后的连续重整工艺,均要求原料具有一定的芳烃潜含量(主要指环烷烃含量)。
对原料组成的要求事实上限制了由催化重整生产芳烃的原料资源。
随着现代工业的发展,作为基础化学工业原料和高辛烷值汽油组分的轻质芳烃的需求量不断增加,而石油资源却日益短缺,因此,立足现有石油资源,寻求新的工艺过程来拓宽生产芳烃的原料资源、增加芳烃产量具有很强的现实意义。
80年代早期美国Mobil公司提出的有别于传统催化重整过程生产芳烃的工艺。
该工艺在固定床上,以HZSM-5为催化剂,将单一低碳烃或工业原料如石脑油、C5馏份油、轻质裂解汽油等芳构化用于生产芳烃,开辟了不依赖原料芳烃潜含量生产芳烃的新过程…1‟。
直馏汽油通过42小时的反应,芳烃产率从40%(m)降至30%(m),反应结束时生焦量不超过原料的0.2%(m)。
该过程催化剂在线操作时间短,再生频繁。
之后,UOP公司与BP公司联合开发的Cyclar工艺过程,其用一步法将液化石油气(LPG)选择性地转化为高附加值的轻质芳烃(BTX),并联产大量氢气。
采用该工艺的4.0万吨/年工业示范装臵于1989年9月在苏格兰Grangemouth BP公司炼油厂开工[2],第一套工业化装臵于1990年1月在同地投产[3]。
该工艺采用UOP公司的催化剂连续再生移动床技术,避开了催化剂易生焦问题。
我国上海石化总厂研究院等单位开发,能将乙烯装臵副产裂解轻油或裂解碳五中的非芳烃组分转化为芳烃,使反应液中的芳烃总含量达到95%以上…4‟。
国内外延迟焦化技术对比李出和【摘要】对国内外延迟焦化装置的原料、操作条件、工艺流程、主要设备和安全环保设计等进行了对比,总结了国内目前延迟焦化存在的问题,提出了对国内延迟焦化技术的改进建议,诸如最大限度提高馏分油收率,采用降低循环比和缩短生焦时间的措施提高处理能力,采用馏分油循环技术改善产品分布,提高加工劣质渣油的适应性等.【期刊名称】《石油炼制与化工》【年(卷),期】2010(041)001【总页数】5页(P1-5)【关键词】延迟焦化;技术措施;述评【作者】李出和【作者单位】中国石化工程建设公司,北京,100101【正文语种】中文自1930年美国第一套延迟焦化装置投产和1938年第一套水力除焦的延迟焦化装置诞生以来,以美国为首的延迟焦化技术得到快速发展。
目前主要有Foster-Wheeler公司的可选择液体收率SYDEC技术、Conoco Phillips公司的馏分油循环ThruPlus技术、ABB-Lummus公司的低压低循环比设计技术等。
我国第一套300 kt/a延迟焦化装置于1963年在抚顺石油二厂建成投产,随着原油加工量的增加和重质原油比例的提高,导致渣油过剩。
因此,近几年国内新建和扩建了多套延迟焦化装置,使国内焦化总加工能力快速提高。
目前国内已有和在建的延迟焦化装置估计超过90套,总加工能力超过90 Mt/a,焦化装置已经成为中国最主要的渣油加工装置。
随着加工能力的增加,国内延迟焦化技术在原料的适应性、工艺流程、大型化、操作条件、安全环保等方面都有所改进,但是与国外的先进技术相比还存在一定的差距。
本文对国内外延迟焦化装置的原料、操作条件、工艺流程、主要设备和安全环保设计等进行了对比,提出了国内延迟焦化技术改进的建议。
2.1 焦化原料国外焦化装置加工的原料包括直馏常压渣油及减压渣油、减粘渣油、加氢裂化尾油、热裂解焦油、油砂、煤的衍生物、催化裂化油浆、沥青、乙烯裂化焦油、炼厂污油(泥)等60余种原料。
汽油、液化气改质装置工艺、操作法目录1装置操作概述............................................................1 1.1 操作任务和操作原则..................................................1.1.1 操作任务...................................................................................................1 1.1.2 操作原则1.2 与上下游及系统间关系................................................................................2工艺流程及控制流程说明...........................................2.1 工艺流程.........................................................2.2控制流程说明..............................................................................................................2.2.1 反应部分..................................................................................................2.2.2 气压机部分...............................................................................................2.2.3 吸收稳定部分...........................................................................................2.2.4 催化剂再生部分........................................................................................3.工艺条件叙述...........................................................................4开工步骤.......................................................4.1开工操作步骤..................................................................................4.1.1 新催化剂干燥操作...........................................................................4.1.2正常进油反应操作...............................................................4.1.3 分馏部分开工操作步骤........................................4.1.4催化剂器内烧焦再生操作.....................................4.2 开工注意事项....................................................................4.2.1 开工操作注意事项...........................................4.2.2 安全环保注意事项............................................4.停工步骤.........................................4.1 再生期间反应系统停工步骤............................................4.2 反应部分停工操作步骤..................................................4.3 分馏部分停工操作步骤.........................................................4.4 装置停工注意事项...................................................5.事故处理.................5.1 事故处理原则....................................5.2 停循环水.....................................................5.3 DCS操作站死机.........................................................5.4 DCS断电事故..............................................................5.5 停仪表风.................................................................5.6 停1.0MPA蒸汽...................................................5.7 停氮气..............5.8 晃电.......................................................5.9 停电...............................................5.10 加热炉炉管破裂.........................................5.11 装置可燃气体爆炸着火事故处理1 装置操作概述1.1 操作任务和操作原则1.1.1 操作任务1)保持本装置安全平稳生产,可燃物料无泄漏,污染物零排放,加热炉、压缩机等重要设备操作安全、平稳。
延迟焦化delayed coking石油裂化的一种方法。
其主要目的是将高残碳的残油转化为轻质油。
所用装置可进行循环操作,即将重油的焦化馏出油中较重的馏分作为循环油,且在装置中停留时间较长。
可提高轻质油的收率和脱碳效率。
有操作连续化、处理量大、灵活性强、脱碳效率高的优点。
延迟焦化是一种石油二次加工技术,是指以贫氢的重质油为原料,在高温(约500℃)进行深度的热裂化和缩合反应,生产气体、汽油、柴油、蜡油、和焦炭的技术。
所谓延迟是指将焦化油(原料油和循环油)经过加热炉加热迅速升温至焦化反应温度,在反应炉管内不生焦,而进入焦炭塔再进行焦化反应,故有延迟作用,称为延迟焦化技术。
渣油先经加热进入焦炭塔后再进行焦化反应的过程。
是一种半连续工艺过程。
一般都是一炉(加热炉)二塔(焦化塔)或二炉四塔,加热炉连续进料,焦化塔轮换操作。
它是目前世界渣油深度加工的主要方法之一。
原料油(减压渣油或其他重质油如脱油沥青、澄清油甚至污油)经加热到495~505℃进入焦炭塔,待陆续装满(留一定的空间)后,改进入另一焦炭塔。
热原料油在焦炭塔内进行焦化反应,生成的轻质产物从顶部出来进入分馏塔,分馏出石油气、汽油、柴油和重馏分油。
重馏分油可以送去进一步加工(如作裂化原料)也可以全部或部分循环回原料油系统。
残留在焦炭塔中的焦炭以钻头或水力除焦卸出。
焦炭塔恢复空塔后再进热原料。
该过程焦炭的收率随原料油残炭而变,石油气产量一般10%(质量)左右,其余因循环比不同而异,但柴/汽比大于1。
编辑本段延迟焦化工艺延迟焦化与热裂化相似,只是在短时间内加热到焦化反应所需温度,控制原料在炉管中基本上不发生裂化反应,而延缓到专设的焦炭塔中进行裂化反应,“延迟焦化”也正是因此得名。
延迟焦化装置主要由8个部分组成:(1)焦化部分,主要设备是加热炉和焦炭塔。
有一炉两塔、两炉四塔,也有与其它装置直接联合的。
(2)分馏部分,主要设备是分馏塔。
(3)焦化气体回收和脱硫,主要设备是吸收解吸塔,稳定塔,再吸收塔等。
防止装置压降增加过快的焦化汽油加氢技术1 前言焦化汽油加氢后可做乙烯、重整和合成氨的原料,因此,焦化汽油加氢为这些工业拓宽了原料来源,特别是随着我国乙烯工业的发展,乙烯原料紧张,焦化汽油加氢既为乙烯工业增加了原料又为劣质的焦化汽油派上用场,所以焦化汽油加氢装置和加工能力在不断增加。
在焦化汽油加氢技术发展过程中,曾由于对焦化汽油加氢过程的特点认识不充分,技术上存在缺陷,造成焦化汽油加氢装置床层及系统压降增加过快。
需要频繁的进行停工处理,连续开工周期短。
长春惠工净化工业有限公司针对焦化汽油加氢过程中存在的问题进行研究,从2001年开始到现在,经过近10年的不懈努力,开发出一整套防止装置压降增加过快的焦化汽油加氢技术,这些技术包括:(1)焦化汽油加氢活性高、反应启动温度低的焦化汽油加氢专用催化剂;(2)容污能力强的保护剂系列及级配装填技术;(3)防止装置压降增加过快的工艺技术。
实践证明,综合运用这些技术能有效防止焦化汽油加氢装置压降增加过快,延长连续运转周期。
2 焦化汽油加氢专用催化剂2.1催化剂的开发焦化汽油加氢装置床层压降增加过快的主要原因是床层顶部结盖。
焦化汽油中含有约50﹪(v﹪)烯烃,同时还含有少量二烯烃。
烯烃、特别是二烯烃聚合是形成结盖固体物质的重要原因之一。
降低反应器入口温度可以减少二烯烃聚合。
焦化汽油加氢反应热大,床层总温升可达100℃以上,所以焦化汽油加氢反应器入口温度降到200℃左右,依靠反应热升高床层温度可以使精制深度达到要求,关键是制备出能在200℃左右启动焦化汽油加氢反应的催化剂。
根据焦化汽油加氢反应的特点,烯烃加氢反应是主反应,而且反应热大,通过活性金属的合理组合,优化原子配比,使催化剂具有很强的加氢饱和能力,同时兼顾脱硫脱氮。
长春惠工净化工业有限公司开发出焦化汽油加氢专用催化剂,牌号为HPH-06,使用HPH-06催化剂,反应器入口温度最低为200℃,比其它应用在焦化汽油加氢装置上的催化剂低20℃-30℃。
焦化汽油氯含量超标原因分析及控制措施薛海峰(中国石油化工股份有限公司镇海炼化分公司,浙江省宁波市315207)摘要:中国石油化工股份有限公司镇海炼化分公司焦化汽油氯含量超标,引起下游石脑油加氢装置换热器氯化铵结晶和设备氯腐蚀。
对其原因进行了分析,查找了氯的来源、存在形态。
逐一排查,最终确定气柜凝缩油进焦化回炼是引起焦化汽油氯化物超标的主要原因。
采取常减压闪顶低瓦回收、重整脱氯罐与低瓦隔离等措施,气柜凝缩油中氯含量逐步降低,焦化汽油中氯质量分数降至1.1μg/g以下,满足了工艺要求。
关键词:焦化装置 加氢装置 焦化汽油 氯化物 中国石油化工股份有限公司镇海炼化分公司是以加工中东高硫、高酸劣质油为主的炼化一体化企业,具有加工链长、物料移动复杂、装置间关联度大等特点。
2020年7月27日开始Ⅱ加氢(焦化汽油+非芳为原料的石脑油加氢装置)焦化汽油原料氯质量分数为2.3μg/g,超标(不大于1.1μg/g)。
8月5日开始Ⅱ加氢装置高压换热器有铵盐结晶,管程压力降开始上升,装置受氯化物的影响慢慢显现。
为了彻底解决Ⅱ加氢装置高压换热器压力降上升和氯腐蚀带来的安全隐患,对焦化汽油原料中氯超标原因进行排查,及时采取措施。
1 Ⅱ加氢装置焦化汽油原料中氯含量2020年以来Ⅱ加氢装置焦化汽油原料中氯质量分数一直处于工艺卡片1.1μg/g以内的较低水平,始终控制在指标范围之内。
但7月27日开始氯质量分数连续出现超标现象,最高上升至3.4μg/g。
2 焦化汽油中氯化物的来源该公司目前有2套焦化装置(Ⅱ焦化设计能力2.0Mt/a,Ⅲ焦化设计能力2.1Mt/a),焦化装置反应过程完全是在封闭的塔器内进行,没有任何化学助剂加入,因此焦化汽油中的氯化物可能是原料带入。
2.1 化验分析氯化物形态氯化物在原油中的存在形式分为无机氯与有机氯。
其中无机氯主要是氯化钙、氯化镁、氯化钠等从底层中带出的无机盐,他们溶解在原油的微量水中或者存在于原油的油水乳化液中,原油到港后通过原油罐沉降脱水,除去部分无机氯,大部分无机氯是在原油进入常减压装置的电脱盐罐中被高压电场除盐脱除。