2017_2018高中物理第十七章波粒二象性5不确定性关系检测选修3_5
- 格式:doc
- 大小:348.50 KB
- 文档页数:4
5 不确定性关系互动课堂疏导引导1.粒子位置的不确定性单缝衍射现象中,入射的粒子有确定的动量,但它们可以处于挡板左侧的任何位置,也就是说,粒子在挡板左侧的位置是完全不确定的.2。
粒子动量的不确定性微观粒子具有波动性,会发生衍射。
大部分粒子到达狭缝之前沿水平方向运动,而在经过狭缝之后,有些粒子跑到投影位置以外.这些粒子具有了与其原来运动方向垂直的动量.由于哪个粒子到达屏上的哪个位置是完全随机的,所以粒子在垂直方向上的动量也具有不确定性,不确定量的大小可以由中央亮条纹的宽度来衡量.3。
位置和动量的不确定性关系:π4h p x ≥∆∆ 由π4h p x ≥∆∆可以知道,在微观领域,要准确地测定粒子的位置,动量的不确定性就更大;反之,要准确确定粒子的动量,那么位置的不确定性就更大.如将狭缝变成宽缝,粒子的动量能被精确测定(可认为此时不发生衍射),但粒子通过缝的位置的不确定性却增大了;反之取狭缝Δx →0,粒子的位置测定精确了,但衍射范围会随Δx 的减小而增大,这时动量的测定就更加不准确了.活学巧用【例1】 人们能准确预知单个粒子的运动情况吗?思路解析:由π4h p x ≥∆⋅∆可知,我们不能准确知道单个粒子的实际运动情况,但可以知道大量粒子运动时的统计规律。
当粒子数很少时,我们不能预言粒子通过挡板上的狭缝后落在屏上的什么位置,但可以准确地知道粒子落在屏上某点的概率;概率大的位置正好是某种波通过狭缝发生衍射时产生亮条纹的位置.答案:见“思路解析".【例2】 质量为10 g 的子弹,以300 m/s 的速度射向靶子,试计算此子弹位置不确定性的范围。
(设其动量的不确定范围为0。
02 %)思路解析:Δp x =mv ×0。
02%=10×10—3×300×0.02×10—2 N·m·s —1=6×10—4 N·m·s -1由π4h p x ≥∆⋅∆知,位置的不确定性的范围是 43410614.341063.6π4--⨯⨯⨯⨯=∆⋅≥∆p h x m=9×10—28 m 。
第3节粒子的波动性1.(对应要点一)下列说法正确的是( )A.惠更斯提出的光的波动说与麦克斯韦的光的电磁说都是说光是一种波,其本质是相同的B.牛顿提出的光的微粒说与爱因斯坦的光子说都是说光是一份一份不连续的,其实质是相同的C.惠更斯的波动说与牛顿的微粒说都是说光具有波粒二象性D.爱因斯坦的光子说与麦克斯韦的光的电磁说揭示了光既具有波动性又具有粒子性解析:惠更斯提出的波动说和麦克斯韦的电磁说有着本质的不同,前者仍将光看作机械波,认为光在太空中是借助一种特殊介质“以太”传播的,而后者说光波只是电磁波而不是机械波,可以不借助于任何介质而传播,A选项错误。
牛顿提出的微粒说和爱因斯坦的光子说也是有本质区别的。
前者认为光是由一个个特殊的实物粒子构成的,而爱因斯坦提出的光子不是像宏观粒子那样有一定形状和体积的实物粒子,它只强调光的不连续性,光是由一份一份组成的,B选项错误。
惠更斯的波动说和牛顿的微粒说都是以宏观物体或模型提出的,是对立的、不统一的。
C选项错误。
据光的波粒二象性知,D选项正确。
答案:D2.(对应要点一)关于光的波粒二象性,正确的说法是()A.光的频率越高,光子的能量越大,粒子性越明显B.光的波长越长,光子的能量越小,波动性越明显C.频率高的光子不具有波动性,波长较长的光子不具有粒子性D.个别光子产生的效果往往显示粒子性,大量光子产生的效果往往显示波动性解析:从光的波粒二象性可知:光是同时具有波粒二象性,只不过在有的情况下波动性显著,有的情况下粒子性显著。
频率高、个数少时粒子性明显,波长长、量大时波动性明显。
答案:ABD3.(对应要点二)关于物质波,下列认识错误的是()A.任何运动的物体(质点)都伴随一种波,这种波叫物质波B.X射线的衍射实验,证实了物质波假设是正确的C.电子的衍射实验,证实了物质波假设是正确的D.宏观物体尽管可以看作物质波,但它们不具有干涉、衍射等现象解析:根据德布罗意物质波理论可知,任何一个运动着的物体,小到电子、质子,大到行星、太阳,都有一种波与之相对应,这种波就叫物质波,可见,A选项是正确的;由于X射线本身就是一种波,而不是实物粒子,故X射线的衍射现象,并不能证实物质波理论的正确性,故B错误;电子是一种实物粒子,电子的衍射现象表明运动着的实物粒子具有波动性,故C选项正确;由电子穿过铝箔的衍射实验知少量电子穿过铝箔后所落的位置呈现出衍射图样以及大量电子的行为表现出电子的波动性,而且干涉、衍射是波的特有现象,只要是波,都会发生干涉、衍射现象,故D错误。
2018-2019学年人教版高中物理选修3-5 第十七章波粒二象性章节测试一、单选题1.下列描绘两种温度下黑体辐射强度与波长关系的图中,符合黑体辐射规律的是()A. B. C. D.2.用某种频率的光照射锌板,使其发射出光电子.为了增大光电子的最大初动能,下列措施可行的是()A. 增大入射光的强度B. 增加入射光的照射时间C. 换用频率更高的入射光照射锌板D. 换用波长更长的入射光照射锌板3.关于光电效应现象,下列说法中正确的是()A. 在光电效应现象中,入射光的强度越大,光电子的最大初动能越大B. 在光电效应现象中,光电子的最大初动能与照射光的频率成正比C. 对于任何一种金属都存在一个“最大波长”,入射光的波长必须小于此波长,才能产生光电效应D. 对于某种金属,只要入射光的强度足够大,就会发生光电效应4.利用光子说对光电效应的解释,下列说法正确的是( )A. 金属表面的一个电子只能吸收一个光子B. 电子吸收光子后一定能从金属表面逸出,成为光电子C. 金属表面的一个电子吸收若干个光子,积累了足够的能量才能从金属表面逸出D. 无论光子能量大小如何,电子吸收光子并积累了能量后,总能逸出成为光电子5.由不确定性关系可以得出的结论是( )A. 如果动量的不确定范围越小,则与它对应位置坐标的不确定范围就越大B. 如果位置坐标的不确定范围越小,则动量的不确定范围就越大C. 动量和位置坐标的不确定范围之间的关系不是反比例函数D. 动量和位置坐标的不确定范围之间有唯一的确定关系6.图甲是光电效应的实验装置图,图乙是光电流与加在阴极K和阳极A上的电压的关系图象,下列说法不正确的是()A. 由图线①、③可知在光的颜色不变的情况下,入射光越强,饱和电流越大B. 由图线①、②、③可知对某种确定的金属来说,其遏止电压只由入射光的频率决定C. 遏止电压越大,说明从该金属中逃出来的光电子的最大初动能越大D. 不论哪种颜色的入射光,只要光足够强,就能发生光电效应7.下列说法正确的是( )A. 光子像其它粒子一样,不但具有能量,不具有动量B. 玻尔认为,原子中电子轨道是量子化的,能量也是量子化的C. 将由放射性元素组成的化合物进行高温分解,会改变放射性元素的半衰期D. 原子核的质量大于组成它的核子的质量之和,这个现象叫做质量亏损8.下列说法中正确的是()A. 不确定性关系△x△p≥ 可以理解为微观粒子的动量和位置不可同时确定B. 原子核放出β粒子后,转变成的新核所对应的元素是原来的同位素C. 升高放射性物质的温度,会缩短其半衰期D. 卢瑟福的α粒子散射实验的结果证明了原子核是由质子和中子组成的二、多选题9.黑体辐射是最简单的热辐射形式,辐射的实验规律如图所示,关于黑体辐射和辐射规律的认识,正确的是()A. 黑体辐射电磁波的强度随波长的分布只与黑体的温度有关B. 某一温度条件下,黑体辐射的电磁波对应某一波长存在一个最大的辐射强度C. 随温度升高,辐射强度的极大值向波长较短的方向移动D. 随温度降低,辐射强度的极大值向频率较低的方向移动10.太阳内部不断进行着各种核聚变反应,其中一种为H+ H→ He+ n,氘核的质量为m1,氚核的质量为m2,氯核的质量为m3,中子的质量为m4,核反应中发射一种γ光子,该γ光子照射到逸出功为W0的金属上打出的最大初动能的光电子速度为v,已知光电子的质量为m,光速为c,普朗克常量为h,则()A. 聚变反应释放的核能为(m1+m2-m3-m4)cB. γ光子来源于原子核外电子的能级跃迁C. 光电子的德布罗意波长为D. γ光子的频率为11.黑体辐射的实验规律如图所示,由图可知()A. 随温度升高,各种波长的辐射强度都有增加B. 随温度降低,各种波长的辐射强度都有增加C. 随温度升高,辐射强度的极大值向波长较短的方向移动D. 随温度降低,辐射强度的极大值向波长较长的方向移动三、解答题12.用甲、乙两种光做光电效应实验,发现光电流与电压的关系如图所示,由图可知,两种光的频率v甲________ v乙(填“<”,“>”或“=”),________(选填“甲”或“乙”)光的强度大.已知普朗克常量为h,被照射金属的逸出功为W0,则甲光对应的遏止电压为________.(频率用v,元电荷用e表示)13.在某次光电效应实验中,得到的遏制电压U c与入射光的频率ν的关系如图所示,若该直线的斜率和截距分别为k和b,电子电荷量的绝对值为e,则普朗克常量可表示为________.14.电子经电势差为U=2000v的电场加速,电子的质量m=0.9×10﹣30kg,求此电子的德布罗意波长.已知普朗克常数h=6.6×10﹣34Js.15.某同学采用如图所示的实验装置来研究光电效应现象当用某单色光照射光电管的阴极K时,会发生光电效应现象.闭合开关S,在阳极A和阴极K之间加上反向电压通过调节滑动变阻器的滑片逐渐增大电压,直至电流计中电流恰为零,此时电压表读数为U,这一电压称为遏止电压.现分别用频率为和的单色光照射阴极,测量到遏止电压分别为和,设电子电荷量为e.求:(1)普朗克常量h;(2)该阴极K金属的极限频率.16.根据玻尔原子结构理论,氦离子(He+)的能级图如图所示.当大量He+处在n=4的激发态向基态跃迁时,产生的光子照射到某种金属上,其中n=3向n=2跃迁产生的光子刚好能使该金属发生光电效应.求:(1)该金属的逸出功;(2)光电子的最大初动能.。
高中物理第十七章波粒二象性3粒子的波动性4概率波5不确定性关系同步备课学案新人教版选修3_5[目标定位] 1.知道光的波粒二象性,并会分析有关现象.2.理解德布罗意波和概率波的统计规律.3.了解经典的粒子和经典的波的基本特征.4.初步了解不确定性关系的内容.一、粒子的波动性1.光的波粒二象性(1)光的本性①大量光子产生的效果显示出波动性,比如干涉、衍射、偏振现象表明光在传播过程中具有波动性.②个别光子产生的效果往往显示出粒子性.比如光电效应、康普顿效应都体现了光的粒子性.③光既具有波动性又具有粒子性,光具有波粒二象性.(2)光子的能量和动量光子的能量ε=hν和动量p=.两式左侧的物理量ε和p描述光的粒子性,右侧的物理量ν和λ描述光的波动性,普朗克常量h架起了粒子性与波动性之间的桥梁.2.粒子的波动性(1)每一个运动的粒子都与一个对应的波相联系,这种与实物粒子相联系的波称为德布罗意波,也叫做物质波.(2)物质波的波长、频率关系式波长:λ=,频率:ν=.3.物质波的实验验证(1)1927年戴维孙和G.P.汤姆孙分别利用晶体做了电子束衍射实验,得到了电子的衍射图样,证实了电子的波动性.(2)人们陆续证实了质子、中子以及原子、分子的波动性,对于这些粒子,德布罗意给出的ν=和λ=关系同样正确.【深度思考】有一位记者曾向英国物理学家、诺贝尔奖获得者布拉格请教:光是波还是粒子?布拉格幽默地回答道:“星期一、三、五它是一个波,星期二、四、六它是一个粒子.”能看出光的本性到底是什么吗?答案光具有波粒二象性是指光既具有波动性,又具有粒子性,有时波动性明显,有时粒子性更明显,但是,波动性和粒子性是不可分割的,是从不同角度所观察到的不同性质.【例1】(多选)关于光的波粒二象性,下列说法中正确的是( ) A.波粒二象性指光有时表现为波动性,有时表现为粒子性B.光波频率越高,粒子性越明显C.能量较大的光子其波动性较显著D.个别光子易表现出粒子性,大量光子易表现出波动性解析光的波粒二象性是指光波同时具有波和粒子的双重性质,有时表现为波动性,有时表现为粒子性.大量的光子波动性比较明显,个别光子粒子性比较明显.不同频率的光,频率越高,粒子性越显著,频率越低,波动性越显著.答案ABD 对于不同频率的光,频率越高,光的粒子性越强;频率越低,光的波动性越强.【例2】下列关于德布罗意波的认识,正确的解释是( )A.光波是一种物质波B.X光的衍射证实了物质波的假设是正确的C.电子的衍射证实了物质波的假设是正确的D.宏观物体运动时,看不到它的衍射或干涉现象,所以宏观物体不具有波动性解析宏观物体由于动量太大,德布罗意波长太小,所以看不到它的干涉、衍射现象,但仍具有波动性,D项错;X光是波长极短的电磁波,是光子,它的衍射不能证实物质波的存在,B项错,只有C项正确.答案C 【例3】电子经电势差为U=200 V的电场加速,电子质量m0=9.1×10-31kg,求此电子的德布罗意波长.解析已知m0v2=Ek=eUp=hλEk=p22m0所以λ==h2em0U把U=200 V,m0=9.1×10-31 kg,代入上式解得λ≈8.69×10-2 nm.答案8.69×10-2 nm德布罗意波长的计算(1)首先计算物体的速度,再计算其动量.如果知道物体动能也可以直接用p=计算其动量.(2)再根据λ=计算德布罗意波长.二、概率波1.经典的粒子和经典的波(1)经典的粒子①粒子有一定的空间大小,有一定的质量,有的还具有电荷量,遵循牛顿运动定律.②运动的基本特征:任意时刻有确定的位置和速度,以及时空中有确定的轨道.(2)经典的波基本特征是:具有确定的频率和波长,即具有时空的周期性.2.概率波(1)光波是一种概率波光的波动性不是光子之间相互作用引起的,而是光子自身固有的性质,光子在空间出现的概率可以通过波动的规律确定,所以,光波是一种概率波.(2)物质波也是一种概率波对于电子和其他微观粒子,单个粒子的位置是不确定的,但在某点出现的概率的大小可以由波动的规律确定.对于大量粒子,这种概率分布导致确定的宏观结果,所以物质波也是概率波.【例4】物理学家做了一个有趣的双缝干涉实验:在光屏处放上照相用的底片,若减弱光的强度,使光子只能一个一个地通过狭缝.实验结果表明,如果曝光时间不太长,底片上只能出现一些不规则的点子;如果曝光时间足够长,底片上就会出现规则的干涉条纹.对这个实验结果有下列认识,其中正确的是( ) A.曝光时间不太长时,底片上只能出现一些不规则的点子,表现出光的波动性B.单个光子通过双缝后的落点可以预测C.只有大量光子的行为才能表现出光的粒子性D.干涉条纹中明亮的部分是光子到达机会较多的地方解析曝光时间不太长时,底片上只能出现一些不规则的点子,表现出光的粒子性,选项A错误;单个光子通过双缝后的落点不可以预测,在某一位置出现的概率受波动规律支配,选项B错误;大量光子的行为才能表现出光的波动性,干涉条纹中明亮的部分是光子到达机会较多的地方,选项C错误,D正确.答案D解答本类型题时应把握以下两点:(1)光具有波粒二象性,光波是一种概率波.(2)单个光子的落点位置是不确定的,大量光子的落点位置服从概率分布规律.三、不确定性关系1.定义在经典物理学中,可以同时用质点的位置和动量精确描述它的运动,在微观物理学中,要同时测出微观粒子的位置和动量是不太可能的,这种关系叫不确定性关系.2.表达式其中以ΔxΔp≥.表示粒子在Δx表示粒子位置的不确定量,以Δp方向上的动量的不确定量,xh是普朗克常量.【例5】(多选)关于不确定性关系ΔxΔp≥有以下几种理解,其中正确的是( )A.微观粒子的动量不可确定B.微观粒子的位置坐标不可确定C.微观粒子的动量和位置不可能同时确定D.不确定性关系不仅适用于电子和光子等微观粒子,也适用于其他宏观粒子解析不确定性关系表示确定位置、动量的精度相互制约,此长彼消,当粒子的位置不确定性小时,粒子动量的不确定性大;反之亦然.故不能同时准确确定粒子的位置和动量.不确定性关系是自然界中的普遍规律,对微观世界的影响显著,对宏观世界的影响可忽略,故C、D正确.答案CD理解不确定性关系时应注意的问题(1)对子弹这样的宏观物体,不确定量是微不足道的,对测量准确性没有任何限制,但对微观粒子却是不可忽略的.(2)在微观世界中,粒子质量较小,不能同时精确地测出粒子的位置和动量,也就不能准确地把握粒子的运动状态. 1.(对光的波粒二象性的理解)下列有关光的波粒二象性的说法中,正确的是( )A.有的光是波,有的光是粒子B.光子与电子是同样的一种粒子C.光的波长越长,其波动性越显著;波长越短,其粒子性越显著D.大量光子的行为往往表现出粒子性答案C 解析一切光都具有波粒二象性,光的有些行为(如干涉、衍射)表现出波动性.有些行为(如光电效应)表现出粒子性,A错误;虽然光子与电子都是微观粒子,都具有波粒二象性,但电子是实物粒子,有静止质量,光子不是实物粒子,没有静止质量,电子是以实物形式存在的物质,光子是以场形式存在的物质,所以B错误;光的波粒二象性的理论和实验表明,大量光子的行为表现出波动性,个别光子的行为表现出粒子性.光的波长越长,衍射性越好,即波动性越显著;光的波长越短,其粒子性越显著,故选项C正确,D错误.2.(对物质波的理解)关于物质波,以下说法正确的是( ) A.实物粒子具有粒子性,在任何条件下都不可能表现出波动性B.宏观物体不存在对应波的波长C.电子在任何条件下都能表现出波动性D.微观粒子在一定条件下能表现出波动性答案D 解析一切运动的粒子,包括宏观及微观粒子,都具有波动性.3.(对物质波的理解)一颗质量为10 g的子弹,以200 m/s的速度运动着,则由德布罗意理论计算,要使这颗子弹发生明显的衍射现象,那么障碍物的尺寸为( )B.1.8×10-11 mA.3.0×10-10 mD.无法确定C.3.0×10-34 m答案C 解析λ===m≈3.32×10-34 m,故能发生明显衍射的障碍物尺寸应为选项C. 4.(对概念波的理解)(多选)在单缝衍射实验中,中央亮纹的光强占从单缝射入的整个光强的95%以上.假设现在只让一个光子能通过单缝,那么该光子( )A.一定落在中央亮纹处B.一定落在亮纹处C.可能落在暗纹处D.落在中央亮纹处的可能性最大答案CD 解析根据光的概率波的概念,对于一个光子通过单缝落在何处,是不可确定的,但概率最大的是落在中央亮纹处,可达95%以上.当然也可能落在其他亮纹处,还可能落在暗纹处,只不过落在暗处的概率很小而已,故只有C、D正确.5.(对不确定性关系的理解)(多选)根据不确定性关系ΔxΔp≥,判断下列说法正确的是( )A.采取办法提高测量Δx精度时,Δp的精度下降B.采取办法提高测量Δx精度时,Δp的精度上升C.Δx与Δp测量精度与测量仪器及测量方法是否完备有关D.Δx与Δp测量精度与测量仪器及测量方法是否完备无关答案AD 解析不确定性关系表明,无论采用什么方法试图确定位置坐标和相应动量中的一个,必然引起另一个较大的不确定性,这样的结果与测量仪器及测量方法是否完备无关,无论怎样改善测量仪器和测量方法,都不可能逾越不确定性关系所给出的限度.故A、D正确.题组一对光的波粒二象性的理解1.(多选)说明光具有粒子性的现象是( )B.光的干涉A.光电效应D.康普顿效应C.光的衍射答案AD 2.(多选)关于光的波粒二象性,下列说法正确的是( )A.光的双缝干涉实验显示了光具有波动性B.光电效应现象说明光具有粒子性C.频率高的光只具有粒子性,不具有波动性D.无线电波只具有波动性,不具有粒子性答案AB 解析光电效应、康普顿效应能说明光具有粒子性;光的干涉、衍射现象能说明光具有波动性;频率高的光粒子性明显,但也具有波动性;无线电波是电磁波,既具有波动性也具有粒子性.3.(多选)在验证光的波粒二象性的实验中,下列说法正确的是( ) A.使光子一个一个地通过单缝,如果时间足够长,底片上会出现衍射图样B.单个光子通过单缝后,底片上会出现完整的衍射图样C.光子通过单缝的运动路线像水波一样起伏D.单个光子通过单缝后打在底片上的情况呈现出随机性,大量光子通过单缝后打在底片上的情况呈现出规律性答案AD 4.如图1所示,当弧光灯发出的光经一狭缝后,在锌板上形成明暗相间的条纹,同时与锌板相连的验电器铝箔有张角,则该实验( )图1A.只能证明光具有波动性B.只能证明光具有粒子性C.只能证明光能够发生衍射D.证明光具有波粒二象性答案D 解析弧光灯发出的光经一狭缝后,在锌板上形成明暗相间的条纹,这是光的衍射,证明了光具有波动性,验电器铝箔有张角,说明锌板发生了光电效应现象,则证明光具有粒子性,所以该实验证明了光具有波粒二象性,D正确.题组二对物质波的理解5.下列说法中正确的是( )A.质量大的物体,其德布罗意波长短B.速度大的物体,其德布罗意波长短C.动量大的物体,其德布罗意波长短D.动能大的物体,其德布罗意波长短答案C 解析由物质波的波长λ=,得其只与物体的动量有关,动量越大其波长越短.6.(多选)下列物理实验中,能说明粒子具有波动性的是( ) A.通过研究金属的遏止电压与入射光频率的关系,证明了爱因斯坦光电效应方程的正确性B.通过测试多种物质对X射线的散射,发现散射射线中有波长变大的成分C.通过电子双缝实验,发现电子的干涉现象D.利用晶体做电子束衍射实验,证实了电子的波动性答案CD 解析干涉和衍射是波特有的现象,由于X射线本身就是一种波,而不是实物粒子,故X射线散射中有波长变大的成分,并不能证实物质波理论的正确性,即A、B不能说明粒子的波动性.7.(多选)下表列出了几种不同物体在某种速度下的德布罗意波长和频率为1 MHz的无线电波的波长,根据表中数据可知( )AB.无线电波通常只能表现出波动性C.电子照射到金属晶体上能观察到它的波动性D.只有可见光才有波粒二象性答案ABC解析弹子球的波长相对太小,所以检测其波动性几乎不可能,A 正确;无线电波波长较长,所以通常表现为波动性,B正确;电子波长与金属晶体尺度差不多,所以能利用金属晶体观察电子的波动性,C正确;由物质波理论知D错误.8.(多选)利用金属晶格(大小约10-10 m)作为障碍物观察电子的衍射图样,方法是使电子通过电场加速后,让电子束照射到金属晶格上,从而得到电子的衍射图样.已知电子质量为m,电荷量为e,初速度为0,加速电压为U,普朗克常量为h,则下列说法中正确的是( )A.该实验说明了电子具有波动性B.实验中电子束的德布罗意波长为λ=h2meUC.加速电压U越大,电子的衍射现象越明显D.若用相同动能的质子替代电子,衍射现象将更加明显答案AB解析得到了电子的衍射图样,说明电子具有波动性,A正确;由德布罗意波长公式得λ=hp而动量p==2meU两式联立得λ=,B正确;由λ=可知,加速电压越大,电子的波长越小,衍射现象越不明显,C错误;用相同动能的质子替代电子,质子的波长小,其衍射现象不如电子的衍射现象明显,故D错误.题组三对概率波的理解9.(多选)下列各种波是概率波的是( )A.声波B.无线电波C.光波D.物质波答案CD解析声波是机械波,A错;电磁波是一种能量波,B错;由概率波的概念和光波以及物质波的特点分析可以得知光波和物质波均为概率波,故C、D正确.10.(多选)以下说法中正确的是( )A.光波和物质波都是概率波B.实物粒子不具有波动性C.光的波动性是光子之间相互作用引起的D.光通过狭缝后在屏上形成明暗相间的条纹,光子在空间出现的概率可以通过波动规律确定答案AD解析光波和物质波都是概率波,可通过波动规律来确定,故A、D 正确,B错误;光的波动性是光的属性,不是光子间相互作用引起的,C错误.11.(多选)1927年戴维逊和革末完成了电子衍射实验,该实验是荣获诺贝尔奖的重大近代物理实验之一.如图2所示的是该实验装置的简化图.下列说法正确的是( )图2A.亮条纹是电子到达概率大的地方B.该实验说明物质波理论是正确的C.该实验说明了光子具有波动性D.该实验说明实物粒子具有波动性答案ABD 解析该实验说明物质波理论是正确的,实物粒子也具有波动性,亮条纹是电子到达概率大的地方,不能说明光子具有波动性,故A、B、D正确,C错误.题组四对不确定性关系的理解12.(多选)由不确定性关系可以得出的结论是( ) A.如果动量的不确定范围越小,则与它对应位置坐标的不确定范围就越大B.如果位置坐标的不确定范围越小,则动量的不确定范围就越大C.动量和位置坐标的不确定范围之间的关系不是反比例函数D.动量和位置坐标的不确定范围之间有唯一的确定关系答案ABC 13.(多选)在单缝衍射实验中,从微观粒子运动的不确定性关系可知( )A.缝越窄,粒子位置的不确定性越大B.缝越宽,粒子位置的不确定性越大C.缝越窄,粒子动量的不确定性越大D.缝越宽,粒子动量的不确定性越大答案BC 解析由不确定性关系ΔxΔp≥知缝宽时,位置不确定性越大,则动量的不确定性越小,反之亦然,因此选项B、C正确.。
第十七章波粒二象性2 光的粒子性1.(多选)下列对光子的认识,正确的是( )A.光子说中的光子就是牛顿在微粒说中所说的粒子B.光子说中的光子就是光电效应中的光电子C.在空间中传播的光是不连续的,而是一份一份的,每一份叫作一个光量子,简称光子D.光子的能量跟光的频率成正比解析:根据光子说,在空间传播的光是不连续的,而是一份一份的,每一份叫作一个光量子,简称光子,而牛顿的微粒说中的微粒指的是宏观世界的微小颗粒,光电效应中的光电子指的是金属内的电子吸收光子后克服原子核的库仑引力等束缚,逸出金属表面的粒子,故A、B选项错误,C选项正确.由ε=hν知,光子能量ε与其频率ν成正比,故D选项正确.答案:CD2.某一金属在一束绿光的照射下发生了光电效应,则下列说法正确的是( )A.若改用红光照射也一定能发生光电效应B.若增大绿光的照射强度,则逸出的光电子的最大初动能可能变大C.若增大绿光的照射强度,则单位时间内逸出的光电子的数目一定增多D.若改用紫光照射,则单位时间内逸出的光电子的数目一定增多解析:用红光照射时,小于绿光的频率,则不一定发生光电效应,故A错误.某金属在一束绿光的照射下,发生了光电效应,增大绿光的强度,逸出的光电子的最大初动能不变,单位时间内发出的光电子数目增加,故B错误,C正确.改用紫光照射,由于紫光的频率大于绿光的频率,根据光电效应方程E km=hν-W0,则逸出的光电子的最大初动能增大,但是单位时间内逸出的光电子的数目不一定增多,故D错误.答案:C3.用紫光照射某金属恰可发生光电效应,现改用较强的太阳光照射该金属,则() A.可能不发生光电效应B.逸出光电子的时间明显变长C.逸出光电子的最大初动能不变D.单位时间逸出光电子的数目变小解析:由于太阳光中含有紫光,所以照射该金属时仍能发生光电效应且逸出的光电子的最大初动能不变,A项错误,C项正确;产生光电效应的时间几乎是瞬时的,B项错误;又因为光强变强,所以单位时间内逸出的光电子数目变大,D项错误.答案:C4.(多选)在演示光电效应的实验中,原来不带电的一块锌板与灵敏静电计相连,用弧光灯(紫外线)照射锌板时,静电计的指针就张开一个角度,如图所示,这时( )A.锌板带正电,指针带负电B.锌板带正电,指针带正电C.若用黄光照射锌板,则不能产生光电效应现象D.若用红光照射锌板,则锌板能发射光电子解析:锌板在紫外线照射下,发生光电效应现象,有光电子飞出,故锌板带正电,部分正电荷转移到灵敏静电计上,使指针带正电,B对,A错;红光和黄光的频率都小于紫外线的频率,都不能产生光电效应,C对,D错.答案:BC5.如图所示是用光照射某种金属时逸出的光电子的最大初动能随入射光频率的变化图线,普朗克常量h=6.63×10-34 J·s,由图可知( )A.该金属的极限频率为4.3×1014 HzB.该金属的极限频率为5.5×1014 HzC.该金属的逸出功为8×10-20 JD.该图线斜率的倒数表示普朗克常量解析:根据爱因斯坦光电效应方程E k=hν-W,E k-ν图象的横轴的截距大小等于截止频率,由图知该金属的截止频率为4.3×1014Hz,故A正确,B错误.当E k=hν-W=0时,逸出功为W=hν0=6.63×10-34J·s×4.3×1014Hz≈2.85×10-19J,故C错误.由E k=hν-W知,该图线的斜率表示普朗克常量h,故D错误.答案:AA级抓基础1.红、橙、黄、绿四种单色光中,光子能量最小的是( )A.红光B.橙光C.黄光D.绿光解析:按照爱因斯坦的光子说,光子的能量ε=hν,h为普朗克常量,说明光子的能量与光的频率成正比,而上述四种单色光中,绿光的频率最大,红光的频率最小,故光子能量最小的是红光,所以选项A正确.答案:A2.关于光电效应的规律,下列说法中正确的是( )A.只有入射光的波长大于该金属的极限波长,光电效应才能发生B.光电子的最大初动能跟入射光的强度成正比C.发生光电效应的时间一般都大于10-7 sD.发生光电效应时,单位时间内从金属内逸出的光电子数与入射光的强度成正比解析:由ε=hν=h cλ知,当入射光波长大于极限波长时,不能发生光电效应,故A 错.由E k=hν-W0知,最大初动能由入射光频率决定,与入射光的强度无关,故B错.发生光电效应的时间一般不超过10-9 s,故C错.答案:D3.对于任何一种金属,能发生光电效应的条件是( )A.入射光的强度大于某一极限强度B.入射光的波长大于某一极限波长C.入射光照射时间大于某一极限时间D.入射光的频率不低于某一截止频率答案:D4.(多选)如图所示是光电效应中光电子的最大初动能E k与入射光频率ν的关系图象.从图中可知( )A.E k与ν成正比B.入射光频率必须大于或等于截止频率νc时,才能产生光电效应C.对同一种金属而言,E k仅与ν有关D.E k与入射光强度成正比解析:由E k=hν-W0知B、C正确,A、D错误.答案:BCB级提能力5.现有a 、b 、c 三束单色光,其波长关系为λa >λb >λc .用b 光束照射某种金属时,恰能发生光电效应.若分别用a 光束和c 光束照射该金属,则可以断定( )A .a 光束照射时,不能发生光电效应B .c 光束照射时,不能发生光电效应C .a 光束照射时,释放出的光电子数目最多D .c 光束照射时,释放出的光电子的最大初动能最小解析:由a 、b 、c 三束单色光的波长关系λa >λb >λc 及波长、频率的关系知:三束单色光的频率关系为:νa <νb <νc .故当b 光束恰能使金属发生光电效应时,a 光束必然不能使该金属发生光电效应,c 光束必然能使该金属发生光电效应,A 对,B 错;又因为发生光电效应时释放的光电子数目与光照强度有关,光照越强,光电子数目越多,由于光照强度未知,所以光电子数目无法判断,C 错;光电子的最大初动能与入射光频率有关,频率越高,最大初动能越大,所以c 光束照射时释放出的电子的最大初动能最大,D 错.故正确选项为A.答案:A6.(多选)已知能使某金属产生光电效应的截止频率为νc ,则( )A .当用频率为2νc 的单色光照射该金属时,一定能产生光电子B .当用频率为2νc 的单色光照射该金属时,所产生的光电子的最大初动能为h νcC .当入射光的频率ν大于νc 时,若ν增大,则逸出功增大D .当入射光的频率ν大于νc 时,若ν增大一倍,则光电子的最大初动能也增大一倍解析:因入射光的频率大于极限频率时会产生光电效应,所以A 正确;因为金属的极限频率为νc ,所以逸出功W 0=h νc ,再由E k =h ν-W 0得,E k =2h νc -h νc =h νc ,故B 正确;因为逸出功是光电子恰好逸出时需要做的功,对于同种金属是恒定的,故C 错误;由E k =h ν-W 0=h ν-h νc =h (ν-νc )可得,当ν增大一倍时:E k ′E k =2ν-νc ν-νc≠2,故D 错误. 答案:AB7.以往我们认识的光电效应是单光子光电效应,即一个电子在短时间内能吸收到一个光子而从金属表面逸出.强激光的出现丰富了人们对于光电效应的认识,用强激光照射金属,由于其光子密度极大,一个电子在短时间内吸收多个光子成为可能,从而形成多光子电效应,这已被实验证实.光电效应实验装置示意如图.用频率为ν的普通光源照射阴极K ,没有发生光电效应,换同样频率为ν的强激光照射阴极K ,则发生了光电效应;此时,若加上反向电压U ,即将阴极K 接电源正极,阳极A 接电源负极,在KA 之间就形成了使光电子减速的电场,逐渐增大U ,光电流会逐渐减小;当光电流恰好减小到零时,所加反向电压U 可能是下列的(其中W 为逸出功,h 为普朗克常量,e 为电子电量)( )A .U =h νe -W eB .U =2h νe -W eC .U =2h ν-WD .U =5h ν2e -W e解析:一个电子吸收一个光子不能发生光电效应,换用同样频率为ν的强光照射阴极K ,发生了光电效应,即吸收的光子能量为nh ν=2、3、4 …,根据eU =nh ν-W ,可知U =nh νe -W e,所以B 正确. 答案:B8.(多选)如图所示为一真空光电管的应用电路,其阴极金属材料的极限频率为4.5×1014Hz ,则以下判断正确的是( )A .发生光电效应时,电路中光电流的饱和值取决于入射光的频率B .发生光电效应时,电路中光电流的饱和值取决于入射光的强度C .用λ=0.5 μm 的光照射光电管时,电路中产生光电流D .光照射时间越长,电路中的光电流越大解析:在光电管中若发生了光电效应,单位时间内发射光电子的数目只与入射光的强度有关,光电流的饱和值只与单位时间内发射光电子的数目有关.据此可判断A 、D 错误;波长λ=0.5 μm 的光子的频率ν=c λ=3×1080.5×10-6 Hz =6×1014 Hz >4.5×1014 Hz ,可发生光电效应.所以选项B 、C 正确.答案:BC9.铝的逸出功为4.2 eV ,现用波长200 nm 的光照射铝的表面.已知h =6.63×10-34 J ·s ,求:(1)光电子的最大初动能;(2)遏止电压;(3)铝的截止频率.解析:(1)根据光电效应方程E k =h ν-W 0有E k =hc λ-W 0=6.63×10-34×3.0×108200×10-9 J -4.2×1.6×10-19 J =3.225×10-19 J. (2)由E k =eU c 可得 U c =E k e =3.225×10-191.6×10-19 V =2.016 V. (3)由h νc =W 0得νc =W 0h =4.2×1.6×10-196.63×10-34 Hz =1.014×1015 Hz. 答案:(1)3.225×10-19 J(2)2.016 V (3)1.014×1015 Hz。
4~5 概率波不确定性关系基础巩固1.下列说法正确的是()A.概率波就是机械波B.物质波是一种概率波C.概率波和机械波的本质是一样的,都能发生干涉和衍射现象D.在光的双缝干涉实验中,若有一个光子,则能确定这个光子落在哪个点上,本质不同;物质波是一种概率波,符合概率波的特点;光的双缝干涉实验中,若有一个光子,这个光子的落点是不确定的,但有概率较大的位置。
2.(多选)光通过单缝所发生的现象,用位置和动量的不确定性关系的观点加以解释,正确的是()A.单缝宽,光是沿直线传播,这是因为单缝宽,位置不确定量Δx大,动量不确定量Δp小,可以忽略B.当能发生衍射现象时,动量不确定量Δp就不能忽略C.单缝越窄,中央亮纹越宽,是因为位置不确定量越小,动量不确定量大的缘故D.以上解释都是不对的Δx·Δp≥可知,A、B、C均正确。
3.(多选)关于光的性质,下列叙述中正确的是()A.在其他同等条件下,光的频率越高,衍射现象越容易看到B.频率越高的光,粒子性越显著;频率越低的光,波动性越显著C.光的波长越长,波动性就越显著;光的波长越短,粒子性就越显著D.如果让光子一个一个地通过狭缝时,它们将严格按照相同的轨道和方向做极有规则的匀速直线运动,波长越短,光的粒子性越显著;光的频率越低,波长越长,光的波动性越显著,A错误,B、C正确;光是一种概率波,光子在空间出现的概率由波动规律决定,每个光子通过狭缝后到达哪个位置是不能确定的,故D错误。
4.物理学家做了一个有趣的实验:在双缝干涉实验中,在光屏处放上照相底片,若减弱光的强度,使光子只能一个一个地通过狭缝。
实验结果表明:如果曝光时间不太长,底片上只能出现一些不规则的点子;如果曝光时间足够长,底片上就会出现规则的干涉条纹。
对这个实验结果有下列认识,其中正确的是()A.曝光时间不长时,底片上只能出现一些不规则的点,表现出光的波动性B.单个光子通过双缝后的落点可以预测C.只有大量光子的行为才能表现出光的粒子性D.干涉条纹中明亮的部分是光子到达机会较多的地方,体现了粒子性,大量光子的行为符合统计规律,受波动规律支配,体现了波动性,故只有D正确。
《波粒二象性》单元检测题一、单选题1. 已知某单色光的波长为λ,在真空中光速为c,普朗克常量为h,则电磁波辐射的能量子?的值为( ) .A. B . C . D .以上均不正确2. 下列说法正确的是( )A.爱因斯坦在光的粒子性的基础上,建立了光电效应方程B.康普顿效应表明光子只具有能量,不具有动量C.实物的运动有特定的轨道,所以实物不具有波粒二象性D.德布罗意指出微观粒子的动量越大,其对应的波长就越长3. 如图,当电键S 断开时,用光子能量为 3.1 eV 的一束光照射阴极K,发现电流表读数不为零.合上电键,调节滑动变阻器,发现当电压表读数小于0.60 V 时,电流表读数仍不为零;当电压表读数大于或等于0.60 V 时,电流表读数为零.由此可知阴极材料的逸出功为( )A.1.9 eV B .0.6 eV C .2.5 eV D .3.1 eV4. 如图所示,一验电器与锌板相连,现用一弧光灯照射锌板一段时间,关灯后,指针保持一定偏角( )A.用一带负电的金属小球与锌板接触,则验电器指针偏角将增大第1 页共10 页B.用一带负电的金属小球与锌板接触,则验电器指针偏角将减小C.使验电器指针回到零,改用强度更大的弧光灯照射锌板相同的时间,验电器的指针偏角将增大D.使验电器指针回到零,改用强度更大的红外线灯照射锌板,验电器的指针一定偏转5.下列关于光的本性的说法中正确的是( )A.关于光的本性,牛顿提出了“微粒说”,惠更斯提出了“波动说”,爱因斯坦提出了“光子说”,综合他们的说法圆满地说明了光的本性B.光具有波粒二象性是指既可以把光看成宏观概念上的波,也可以看成微观概念上的粒子C.光的干涉、衍射现象说明光具有波动性,光电效应说明光具有粒子性D.频率低、波长长的光,粒子性特征显著;频率高、波长短的光,波动性特征显著6.如图所示,某金属板M 在紫外线照射下,不停地向各个方向发射速度大小不同的电子,发射电子的最大初速度为v,在M旁放置一金属网N,如果S闭合,滑片P置于最左端时,电流表的示数不为零,向右调节滑片P,恰好使电流表的示数为零,此时M、N 间的电势差为UMN,已知电子质量为m,电荷量为-e,关于通过电流表的电流方向和UMN,下列说法正确的是( )A.从c 到d,UMN= B .从d 到c,UMN=C.从c 到d,UMN= D .从d 到c,U MN =7.颜色不同的 a 光和 b 光由媒质射向空气时,临界角分别为Ca和Cb,且Ca>Cb,当用a光照射某种金属时发生了光电效应,现改用 b 光去照射,可以断定( )第2 页共10 页A.不一定能发生光电效应B.光电子数目增大C.光电子的最大初动能增大D.光电子数目减少8.关于物质波,下列说法正确的是( )A.速度相等的电子和质子,电子的波长长B.动能相等的电子和质子,电子的波长短C.动量相等的电子和中子,中子的波长短D.甲电子的速度是乙电子的 3 倍,甲电子的波长也是乙电子的 3 倍9.一束波长为7×10-5cm 的光波,每秒钟有3×1015 个光子通过一个与光线垂直的平面.另有一束光,它传输相同的能量,但波长为4×10-5cm.那么这束光每秒钟通过这垂直平面的光子数目为( )A.0.58×1015 个 B .3×1015个 C . 1.71×1015 个 D . 5.25×1015 个10.波粒二象性是微观世界的基本特征,以下说法正确的是( )A.光电效应现象揭示了光的波动性B.热中子束射到晶体上产生的衍射图样说明中子具有波动性C.黑体辐射的实验规律可用光的波动性解释D.动能相等的质子和电子,它们的德布罗意波长也相等11.如图所示,在研究光电效应的实验中,发现用一定频率的A单色光照射光电管时,电流表指针会发生偏转,而用另一频率的 B 单色光照射光电管时不发生光电效应,则( )A.A光的强度大于B光的强度B.B光的频率大于A光的频率C.用A光照射光电管时流过电流表G的电流方向是由 a 流向bD.用A光照射光电管时流过电流表G的电流方向是由 b 流向a第3 页共10 页二、多选题12.黑体辐射的实验规律如图所示,由图可知( )A.随温度升高,各种波长的辐射强度都有增加B.随温度降低,各种波长的辐射强度都有增加C.随温度升高,辐射强度的极大值向波长较短的方向移动D.随温度降低,辐射强度的极大值向波长较长的方向移动13.以下关于辐射强度与波长的关系的说法中正确的是( )A.物体在某一温度下只能辐射某一固定波长的电磁波B.当铁块呈现黑色时,说明它的温度不太高C.当铁块的温度较高时会呈现赤红色,说明此时辐射的电磁波中该颜色的光强度最强D.早、晚时分太阳呈现红色,而中午时分呈现白色,说明中午时分太阳温度最高14. 1922 年,美国物理学家康普顿在研究石墨中的电子对X 射线的散射时发现,有些散射波的波长比入射波的波长略大.下列说法中正确的是( )A.有些X射线的能量传给了电子,因此X射线的能量减小了B.有些X射线吸收了电子的能量,因此X射线的能量增大了C.X 射线的光子与电子碰撞时,动量守恒,能量也守恒D.X 射线的光子与电子碰撞时,动量不守恒,能量守恒15.某种金属在单色光照射下发射出光电子,光电子的最大初动能( )A.随照射光强度的增大而增大B.随照射光频率的增大而增大第4 页共10 页C.随照射光波长的增大而增大D.与照射光的照射时间无关16.光通过单缝所发生的现象,用位置和动量的不确定性关系的观点加以解释,正确的是( )A.单缝宽,光是沿直线传播,这是因为单缝宽,位置不确定量Δx 大,动量不确定量Δp 小,可以忽略B.当能发生衍射现象时,动量不确定量Δp 就不能忽略C.单缝越窄,中央亮纹越宽,是因为位置不确定量小,动量不确定量大的缘故D.以上解释都是不对的三、实验题17.如图所示,这是工业生产中大部分光电控制设备用到的光控继电器的示意图,它由电源、光电管、放大器、电磁继电器等几部分组成.(1) 示意图中,a 端应是电源________极.(2) 光控继电器的原理是:当光照射光电管时,________________________________________________________________________________________________________________________________________________________________________________.(3) 当用绿光照射光电管阴极K时,可以发生光电效应,则________说法正确.A.增大绿光照射强度,光电子的最大初动能增大B.增大绿光照射强度,电路中光电流增大四、计算题18.一个带电荷量为元电荷的粒子,经206 V 的加速电压由静止加速后,它的德布罗意波长为0.002 nm,试求这个粒子的质量.19.为引起人眼的视觉,进入人眼的绿光的能量至少为每秒E=10-16J.假设在漆黑的夜晚,在距人s=100 m远处点亮一只绿光小灯泡,为使人看到它的光线,小灯泡的功第5 页共10 页率至少为多大?( 人用一只眼看,瞳孔直径为 4 mm)20.铝的逸出功是 4.2 eV ,现在将波长200 nm的光照射铝的表面.(1) 求光电子的最大初动能.(2) 求遏止电压.(3) 求铝的截止频率.第6 页共10 页答案解析21.【答案】A【解析】由光速、波长的关系可得出光的频率ν=,从而?=hν=,故 A 选项正确.22.【答案】A【解析】23.【答案】C【解析】根据题意,当电压表读数大于或等于0.60 V 时,即为反向电压为0.6 V 时,从金属出来的电子,在电场阻力作用下,不能到达阳极,则电流表示数为零;根据动能定理,则有光电子的初动能为:E k=eU=0.6 eV ,根据爱因斯坦光电效应方程有:W =hν-E k=3.1 eV -0.6 eV =2.5 eV ,C正确.24.【答案】C【解析】发生光电效应时,锌板失去电子带正电,用一带负电的金属小球与锌板接触,锌板所带的正电变小,所以验电器指针偏角将减小.若金属小球所带的负电较多,验电器指针偏角会先变小后变大,A、B 错误;入射光的强度影响单位时间内发出光电子的数目,所以锌板所带的正电变多,验电器的指针偏角将增大, C 正确;发生光电效应的条件是入射光的频率大于极限频率,红外线照射不一定发生光电效应,所以指针不一定偏转,D错误.25.【答案】C【解析】26.【答案】A【解析】由题意可知,当闭合开关S时,M产生的光电子能到达金属网N,所以电流的方向为从 c 到d;恰好使电流表的示数为零,此时光电子恰好不能到达N,若M、N 间的电势差为UMN,则由动能定理得:2 eUMN=mv得UMN=. 故A正确.第7 页共10 页27.【答案】C【解析】根据sin C=,Ca>Cb. 知a 光的折射率小于 b 光的折射率,则 a 光的频率小于b 光的频率,用 a 光照射某种金属时发生了光电效应,则 b 光照射一定能发生光电效应,A 错误;光的强度影响单位时间内光电子的数目,而频率的大小与光的强度无关,光的频率与光电子的数目无关,B、D 错误;根据光电效应方程E km=hν-W0 知,b 光照射产生的光电子最大初动能大,C正确.28.【答案】A【解析】由λ=可知,动量大的波长短,电子与质子的速度相等时,电子动量小,波长长,A 正确;电子与质子动能相等时,由动量与动能的关系p=可知,电子的动量小,波长长,B错误;动量相等的电子和中子,其波长应相等,C错误;如果甲、乙两电子的速度远小于光速,甲的速度是乙的 3 倍,甲的动量也是乙的 3 倍,则甲的波长应是乙的,D错误.29.【答案】C【解析】由题意得n1 =n2 ,代入数据得n2=1.71×1015 个,30.【答案】B【解析】光电效应现象揭示了光的粒子性, A 错误;热中子束射到晶体上产生的衍射图样说明中子具有波动性, B 正确;普朗克借助于能量子假说,解释了黑体辐射规律,破除了“能量连续变化”的传统观念, C 错误;根据德布罗意波长公式,若一个电子的德布罗意波长和一个质子的德布罗意波长相等,则动量p 也相等,动能则不相等, D 错误.31.【答案】C【解析】根据产生光电效应的条件可知选项A、B均错误;电流的方向与正电荷定向移动的方向相同,与负电荷定向移动的方向相反,故选项C正确,D错误.32.【答案】ACD【解析】温度升高,各种波长的辐射强度都会增加,随着温度的升高,辐射强度的极大值向较短波长方向移动.33.【答案】BC第8 页共10 页【解析】同一物体在一定温度下辐射不同波长的电磁波,在室温下大多数物体辐射不可见的红外光,当温度加热到500℃左右时,开始发出暗红色的可见光,温度上升到1500℃时变成白炽光, A 错,B、C 对,早晚时分太阳呈现红色与太阳和地球间距离有关.34.【答案】AC【解析】在康普顿效应中,当入射光子与晶体中的电子碰撞时,把一部分动量转移给电子,则动量减小,能量减小,根据λ=,知波长增大,碰撞过程系统不受外力,故动量守恒,光子的能量远大于电子的束缚能时,光子与自由电子或束缚较弱的电子发生弹性碰撞,故能量守恒,A、C正确.35.【答案】BD【解析】发生光电效应的条件是入射光的频率大于金属的极限频率,由公式E k=hν-W知,W为逸出功不变,所以光电子的最大初动能取决于入射光的频率,与入射光的强度、波长及光照时间无关,故B、D正确,A、C错误.36.【答案】ABC【解析】由不确定性关系可知选项A、B、C正确.37.【答案】(1) 正(2) 阴极K 发射电子,电路中产生电流,经放大器放大的电流产生的磁场使铁芯M 磁化,将衔铁N 吸住.无光照射光电管时,电路中无电流,N 自动离开M(3)B【解析】38.【答案】1.67×10-27kg【解析】粒子加速后获得的动能为E k=mv2=eU 粒子的物质波的波长λ=粒子的动量p=mv以上各式联立得m==1.67×10-27kg.39.【答案】10-6W第9 页共10 页【解析】设人眼瞳孔直径为d,由题意知E=×π( )2解得P==W=10-6W40.【答案】(1)3.3 ×10-19J(2) 遏制电压约为 2.1 V(3)1.01 ×1015Hz动能为【解析】(1) 根据爱因斯坦光电效应方程得:光电子的最大初-19J E k=-W≈ 3.3×10(2) 根据动能定理得到:遏止电压U c==V≈ 2.1 V(3) 当光电子逸出时的动能为零时,再减小照射光的频率便不能发生光电效应了,截止频率νc==Hz=1.01×1015Hz.第10页共10 页。
4 概率波5 不确定性关系学习目标知识脉络1.了解经典的粒子和经典的波的基本特征.(重点)2.了解并掌握光和物质波都是概率波.(重点)3.知道不确定性关系的具体含义.(重点、难点)概率波[先填空]1.经典的粒子和经典的波(1)经典的粒子①含义:粒子有一定的空间大小,有一定的质量,有的还带有电荷.②运动的基本特征:遵从牛顿运动定律,任意时刻有确定的位置和速度,在时空中有确定的轨道.(2)经典的波①含义:在空间是弥散开来的.②特征:具有频率和波长,即具有时空的周期性.2.概率波(1)光波是一种概率波:光的波动性不是光子之间的相互作用引起的,而是光子自身固定的性质,光子在空间出现的概率可以通过波动的规律确定,所以,光波是一种概率波.(2)物质波也是概率波:对于电子和其他微观粒子,单个粒子的位置是不确定的,但在某点附近出现的概率的大小可以由波动的规律确定.对于大量粒子,这种概率分布导致确定的宏观结果,所以物质波也是概率波.[再判断]1.经典粒子的运动适用牛顿第二定律.(√)2.经典的波在空间传播具有周期性.(√)3.经典的粒子和经典的波研究对象相同.(×)4.光子通过狭缝后落在屏上明纹处的概率大些.(√)5.电子通过狭缝后运动的轨迹是确定的.(×)[后思考]1.对于经典的粒子,如果知道其初始位置和初速度,能否确定其任意时刻的位置和速度?【提示】能.经典粒子的运动规律符合牛顿运动定律,其运动轨迹也是可以确定的,因此,某时刻的位置和速度也可以确定.2.是否可以认为光子之间的相互作用使它表现出波动性?【提示】不可以.实验说明:如果狭缝只能让一个光子通过,曝光时间足够长,仍然能得到规则的干涉条纹,说明光的波动性不是光子之间相互作用引起的,是光子本身的一种属性.[合作探讨]在光的单缝衍射实验中,在光屏上放上照相底片,并设法控制光的强度,尽可能使光子一个一个地通过狭缝,曝光时间短时,可看到胶片上出现一些无规则分布的点子;曝光时间足够长时,有大量光子通过狭缝,底片上出现一些平行条纹,中央条纹最亮最宽.探讨1:曝光时间短时,说明什么问题?【提示】少量光子表现出光的粒子性,但其运动规律与宏观粒子不同,其位置是不确定的.探讨2:曝光时间足够长时,说明什么问题?【提示】大量光子表现出光的波动性,光波强的地方是光子到达的机会多的地方.探讨3:暗条纹处一定没有光子到达吗?【提示】暗条纹处也有光子到达,只是光子到达的几率特别小,很难呈现出亮度.[核心点击]1.正确理解光的波动性光的干涉现象不是光子之间的相互作用使它表现出波动性的,在双缝干涉实验中,使光源S非常弱,以致前一个光子到达屏后才发射第二个光子.这样就排除了光子之间的相互作用的可能性.实验结果表明,尽管单个光子的落点不可预知,但长时间曝光之后仍然得到了干涉条纹分布.可见,光的波动性不是光子之间的相互作用引起的.2.光波是一种概率波在双缝干涉实验中,光子通过双缝后,对某一个光子而言,不能肯定它落在哪一点,但屏上各处明暗条纹的不同亮度,说明光子落在各处的可能性即概率是不相同的.光子落在明条纹处的概率大,落在暗条纹处的概率小.这就是说光子在空间出现的概率可以通过波动的规律来确定,因此说光是一种概率波.3.物质波也是概率波对于电子、实物粒子等其他微观粒子,同样具有波粒二象性,所以与它们相联系的物质波也是概率波.1.下列说法正确的是 ( )A.概率波就是机械波B.物质波是一种概率波C.概率波和机械波的本质是一样的,都能发生干涉和衍射现象D.在光的双缝干涉实验中,若有一个光子,则无法定这个光子落在哪个点上E.光波是一种概率波【解析】机械波是振动在介质中的传播,而概率波是粒子所到达区域的机率大小可以通过波动的规律来确定.故其本质不同.A、C错,B对;由于光是一种概率波,光子落在哪个点上不能确定.D、E对.【答案】BDE2.关于电子的运动规律,以下说法不正确的是 ( )A.电子如果表现粒子性,则无法用轨迹来描述它们的运动,其运动遵循牛顿运动定律B.电子如果表现粒子性,则可以用轨迹来描述它们的运动,其运动遵循牛顿运动定律C.电子如果表现波动性,则无法用轨迹来描述它们的运动,空间分布的概率遵循波动规律D.电子如果表现波动性,则可以用轨迹来描述它们的运动,其运动遵循牛顿运动定律E.电子如果表现出粒子性,则无法用轨迹来描述它们的运动,其运动也不遵循牛顿运动定律【解析】由于运动对应的物质波是概率波,少量电子表现出粒子性,无法用轨迹描述其运动,也不遵循牛顿运动定律,A、B错误,E正确;大量电子表现出波动性,无法用轨迹描述其运动,可确定电子在某点附近出现的概率,且概率遵循波动规律,C正确,D错误.【答案】ABD3.在做双缝干涉实验中,观察屏的某处是亮纹,则对某个光子来说到达亮纹处的概率比到达暗纹处的概率________,该光子________到达光屏的任何位置.【解析】根据概率波的含义,一个光子到达亮纹处的概率要比到达暗纹处的概率大得多,但并不是一定能够到达亮纹处.【答案】大可能对光子落点的理解1.光具有波动性,光的波动性是统计规律的结果,对某个光子我们无法判断它落到哪个位置,我们只能判断大量光子的落点区域.2.在暗条纹处,也有光子达到,只是光子数很少.3.对于通过单缝的大量光子而言,绝大多数光子落在中央亮纹处,只有少数光子落在其他亮纹处及暗纹处.不确定性关系[先填空]1.定义在经典物理学中,一个质点的位置和动量是可以同时测定的;在微观物理学中,要同时测出微观粒子的位置和动量是不太可能的,这种关系叫不确定性关系.2.表达式ΔxΔp≥h4π.其中Δx表示粒子位置的不确定量,用Δp表示在x方向上动量的不确定量,h是普朗克常量.3.物理模型与物理现象在经典物理学中,对于宏观对象,我们分别建立粒子模型和波动模型;在微观世界里,也需要建立物理模型,像粒子的波粒二象性模型.[再判断]1.经典的粒子可以同时确定位置和动量.(√)2.微观粒子可以同时确定位置和动量.(×)3.对于微观粒子,不可能同时准确地知道其位置和动量.(√)[后思考]对微观粒子的运动分析能不能用“轨迹”来描述?【提示】不能.微观粒子的运动遵循不确定关系,也就是说,要准确确定粒子的位置,动量(或速度)的不确定量就更大;反之,要准确确定粒子的动量(或速度),位置的不确定量就更大,也就是说不可能同时准确地知道粒子的位置和动量.因而不可能用“轨迹”来描述微观粒子的运动.[合作探讨]探讨1:对于宏观物体,我们能同时精确确定其位置和动量吗?【提示】可以.探讨2:对于微观粒子,我们能同时精确确定其位置和动量吗?【提示】不可以.探讨3:不确定性关系是说微观粒子的位置坐标和动量都测不准,这种说法对吗?【提示】不对,不确定性关系是说微观粒子的位置和动量不能同时测准.[核心点击]1.位置和动量的不确定性关系ΔxΔp≥h4π.由ΔxΔp≥h4π可以知道,在微观领域,要准确地确定粒子的位置,动量的不确定性就更大;反之,要准确地确定粒子的动量,那么位置的不确定性就更大.2.微观粒子的运动没有特定的轨道由不确定关系ΔxΔp≥h4π可知,微观粒子的位置和动量是不能同时被确定的,这也就决定了不能用“轨迹”的观点来描述粒子的运动.3.经典物理和微观物理的区别(1)在经典物理学中,可以同时用位置和动量精确地描述质点的运动,如果知道质点的加速度,还可以预言质点在以后任意时刻的位置和动量,从而描绘它的运动轨迹.(2)在微观物理学中,不可能同时准确地知道粒子的位置和动量.因而也就不可能用“轨迹”来描述粒子的运动.但是,我们可以准确地知道大量粒子运动时的统计规律.4.对不确定性关系ΔxΔp≥h4π有以下几种理解,其中正确的是( )A.微观粒子的动量不可能确定B.微观粒子的坐标不可能确定C.微观粒子的动量和坐标不可能同时确定D.不确定性关系不仅适用于电子和光子等微观粒子,也适用于其他宏观物体E.在微观物理学中,不可能用“轨迹来描述粒子的运动”【解析】不确定性关系ΔxΔp≥h4π表示确定位置、动量的精确度互相制约,此长彼消,当粒子位置的不确定性变小时,粒子动量的不确定性变大;当粒子位置的不确定性变大时,粒子动量的不确定性变小,故不能同时准确确定粒子的动量和坐标.不确定性关系也适用于其他宏观物体,不过这些不确定量微乎其微.【答案】CDE5.已知h4π=5.3×10-35J·s,试求下列情况中速度测定的不确定量.(1)一个球的质量m=1.0 kg,测定其位置的不确定量为10-6 m;(2)电子的质量m e=9.0×10-31 kg,测定其位置的不确定量为10-10 m(即在原子的数量级).【解析】(1)m=1.0 kg,Δx1=10-6 m,由ΔxΔp≥h4π,Δp=mΔv知Δv1≥h4πΔx1m=5.3×10-3510-6×1.0m/s=5.3×10-29 m/s.(2)m e=9.0×10-31 kg,Δx2=10-10 mΔv2≥h4πΔx2m e =5.3×10-3510-10×9.0×10-31m/s=5.89×105 m/s.【答案】(1)5.3×10-29 m/s (2)5.89×105 m/s对不确定性关系的两点提醒(1)不确定性关系ΔxΔp≥h4π是自然界的普遍规律,对微观世界的影响显著,对宏观世界的影响可忽略不计.也就是说,宏观世界中的物体质量较大,位置和速度的不确定范围较小,可同时较精确测出物体的位置和动量.(2)在微观世界中,粒子质量较小,不能同时精确地测出粒子的位置和动量,也就不能准确地把握粒子的运动状态了.学业分层测评(八)(建议用时:45分钟)[学业达标]1.有关经典物理学中的粒子,下列说法正确的是( )A.有一定的大小,但没有一定的质量B.有一定的质量,但没有一定的大小C.既有一定的大小,又有一定的质量D.有的粒子还有电荷E.可以用轨迹来描述它的运动【解析】根据经典物理学关于粒子的理论定义得C、D、E正确.【答案】CDE2.关于经典波的特征,下列说法正确的是( )A.具有一定的频率,但没有固定的波长B.具有一定的波长,但没有固定的频率C.既具有一定的频率,也具有固定的波长D.同时还具有周期性E.在空间是弥散开来的【解析】根据经典波的定义和特点进行分析可以得到C、D、E正确.【答案】CDE3.在单缝衍射实验中,从微观粒子运动的不确定关系可知( )A.不可能准确地知道单个粒子的运动情况B.缝越窄,粒子位置的不确定性越大C.缝越宽,粒子位置的不确定性越大D.缝越窄,粒子动量的不确定性越大E.缝越宽,粒子动量的不确定性越大【解析】由不确定性关系ΔxΔp≥h4π知缝宽时,位置不确定性越大,则动量的不确定性越小,反之亦然,因此选项A、C、D正确.【答案】ACD4.1927年戴维孙和革末完成了电子衍射实验,该实验是荣获诺贝尔奖的重大近代物理实验之一.如图1741所示的是该实验装置的简化图,下列说法正确的是( )图1741A .亮条纹是电子到达概率大的地方B .该实验说明物质波理论是正确的C .该实验再次说明光子具有波动性D .该实验说明实物粒子具有波动性E .该实验说明电子的运动可以用轨迹来描述【解析】 亮条纹是电子到达概率大的地方,该实验说明物质波理论是正确的及实物粒子具有波动性,该实验不能说明光子具有波动性,选项C 、E 说法不正确.【答案】 ABD5.对于微观粒子的运动,下列说法中不正确的是( ) A .不受外力作用时光子就会做匀速运动 B .光子受到恒定外力作用时就会做匀变速运动C .只要知道电子的初速度和所受外力,就可以确定其任意时刻的速度D .运用牛顿力学无法确定微观粒子的运动规律E .微观粒子具有波动性【解析】 光子不同于宏观力学的粒子,不能用宏观粒子的牛顿力学规律分析光子的运动,选项A 、B 错误;根据概率波、不确定关系可知,选项C 错误.【答案】 ABC6.如图1742所示,用单色光做双缝干涉实验.P 处为亮条纹,Q 处为暗条纹,不改变单色光的频率,而调整光源使其极微弱,并把单缝调至只能使光子一个一个地过去,那么过去的某一光子( )图1742A .一定到达P 处B .一定到达Q 处C .可能到达Q 处D .可能到达P 处E .可能到达O 处【解析】 单个光子的运动路径是不可预测的. 【答案】 CDE7.紫外线光子的动量为hνc .一个静止的O 3吸收了一个紫外线光子后将向什么方向运动?【解析】 由动量守恒定律知,吸收了紫外线光子的O 3分子与光子原来运动方向相同. 【答案】 见解析8.如图1743所示是一个粒子源,产生某种粒子,在其正前方安装只有两条狭缝的挡板,粒子穿过狭缝打在前方的荧光屏上使荧光屏发光.那么在荧光屏上将看到什么现象?图1743【解析】由于粒子源产生的粒子是微观粒子,它的运动受波动性支配,对大量粒子运动到达屏上的某点的概率,可以用波的特征进行描述,即产生双缝干涉,在屏上将看到干涉条纹.【答案】见解析[能力提升]9.下表列出了几种不同物体在某种速度下的德布罗意波波长和频率为1MHz的无线电波的波长,由表中数据可知 ( )质量/kg 速度(m·s-1) 波长/m弹子球 2.0×10-2 1.0×10-2 3.3×10-30电子(100 eV) 9.0×10-31 5.0×106 1.2×10-10无线电波(1 MHz)3.0×108 3.3×102A.B.无线电波通常情况下只表现出波动性C.电子照射到金属晶体上能观察到波动性D.只有可见光才有波动性E.只有无线电波才有波动性【解析】弹子球的波长很小,所以要检测弹子球的波动性几乎不可能,故选项A正确.无线电波的波长很长,波动性明显,所以选项B正确.电子的波长与金属晶格的尺寸相差不大,能发生明显的衍射现象,所以选项C正确,一切运动的物体都具有波动性,所以选项D、E错误.【答案】ABC10.从衍射的规律可以知道,狭缝越窄,屏上中央亮条纹就越宽,由不确定性关系式ΔxΔp≥h4π可知更窄的狭缝可以更准确地测得粒子的________,但粒子________的不确定性却更大了【解析】由ΔxΔp≥h4π,狭缝变小了,即Δx减小了,Δp变大,即动量的不确定性变大.【答案】位置动量11.一辆摩托车以20 m/s的速度向墙冲去,车身和人共重100 kg,求车撞墙时的不确定范围.【导学号:66390023】【解析】根据不确定关系ΔxΔp≥h4π得:Δx≥h4πΔp =6.63×10-344×3.14×100×20m≈2.64×10-38m.【答案】Δx≥2.64×10-38m12.氦氖激光器所发红光波长为λ=6.238×10-7 m,谱线宽度Δλ=10-18 m,求当这种光子沿x方向传播时,它的x坐标的不确定量多大?【导学号:66390024】【解析】红光光子动量的不确定量为Δp=hΔλ根据ΔxΔp≥h4π得位置的不确定量为:Δx≥h4πΔp =Δλ4π=10-184×3.14m≈7.96×10-20 m.【答案】大于或等于7.96×10-20 m高考理综物理模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……学习资料专题4 概率波5 不确定性关系1.(多选)关于光的波动性与粒子性,以下说法正确的是( )A.爱因斯坦的光子说否定了光的电磁说B.光电效应现象说明了光的粒子性C.光波不同于机械波,它是一种概率波D.光的波动性和粒子性是相互矛盾的,无法统一解析:爱因斯坦的光子说并没有否定电磁说,只是在一定条件下光是体现粒子性的,A 错;光电效应说明光具有粒子性,说明光的能量是一份一份的,B对;光波在少量的情况下体现粒子性,大量的情况下体现波动性,所以C对;光的波动性和粒子性不是孤立的,而是有机的统一体,D错.答案:BC2.下列关于概率波的说法中,正确的是( )A.概率波就是机械波B.物质波是一种概率波C.概率波和机械波的本质是一样的,都能发生干涉和衍射现象D.在光的双缝干涉实验中,若有一个粒子,则可以确定它从其中的哪一个缝中穿过解析:A.德布罗意波是概率波,它与机械波是两个不同的概念,二者的本质不同,故A 错误;B.物质波也就是德布罗意波,指粒子在空间中某点某时刻可能出现的几率符合一定的概率函数规律,故B正确;C.概率波和机械波都能发生干涉和衍射现象,但其本质是不一样的,故C错误;D.根据测不准原理,在光的双缝干涉实验中,若有一个粒子,则不能确定它从其中的哪一个缝中穿过,故D错误.答案:B3.(多选)在做双缝干涉实验时,在观察屏的某处是亮纹,则对光子到达观察屏的位置,下列说法正确的是( )A.到达亮纹处的概率比到达暗纹处的概率大B.到达暗纹处的概率比到达亮纹处的概率大C.对于某一光子,它可能到达光屏的任何位置D.以上说法均有可能解析:根据概率波的含义,一个光子到达亮纹处的概率要比到达暗纹处的概率大得多,但并不是一定能够到达亮纹处,故选项A、C正确.答案:AC4.一辆摩托车以20 m/s的速度向墙冲去,车身和人共重100 kg,则车撞墙时的不确定范围是怎样的?解析:根据不确定性关系ΔxΔp≥h4π得:Δx≥h4πΔp=6.626×10-344×3.14×100×20m=2.64×10-38 m.答案:大于等于2.64×10-38 mA级抓基础1.(多选)下列各种波中是概率波的是( )A.声波B.无线电波C.光波D.物质波解析:声波是机械波,A错.电磁波是一种能量波,B错.由概率波的概念和光波以及物质波的特点分析,可以得知光波和物质波均为概率波,故C、D正确.答案:CD2.(多选)以下说法正确的是( )A.微观粒子不能用“轨道”观点来描述粒子的运动B.微观粒子能用“轨道”观点来描述粒子的运动C.微观粒子位置不能精确确定D.微观粒子位置能精确确定解析:微观粒子的动量和位置是不能同时确定的,这也就决定了不能用“轨道”的观点来描述粒子的运动(轨道上运动的粒子在某时刻具有确定的位置和动量),故A正确.由微观粒子的波粒二象性可知微观粒子位置不能精确确定,故C正确.答案:AC3.由不确定性关系可以得出的结论是( )A.如果动量的不确定范围越小,则与它对应坐标的不确定范围就越大B.如果位置坐标的不确定范围越小,则动量的不确定范围就越大C.动量和位置坐标的不确定范围之间的关系不是反比例函数D.动量和位置坐标的不确定范围之间有唯一确定的关系解析:由不确定关系的定义分析可知C选项正确,其他三个选项只说明了基本的某个方面,而没有对不确定性关系做进一步的认识,故都不正确.答案:C4.以下说法中正确的是( )A.光波是概率波,物质波不是概率波B.实物粒子不具有波动性C.实物粒子也具有波动性,只是不明显D.光的波动性是光子之间相互作用引起的解析:光波和物质波都是概率波,选项A错误;实物粒子也具有波动性,只是不明显,选项B错误,C正确;光的波动性是光子本身的一种属性,不是光子之间的相互作用引起的,选项D错误;故选C.答案:CB级提能力5.在做双缝干涉实验时,发现100个光子中有96个通过双缝后打到了观察屏上的b 处,则b处是( )A.亮纹B.暗纹C.既有可能是亮纹也有可能是暗纹D.以上各种情况均有可能解析:由光子按波的概率分布的特点去判断,由于大部分光子都落在b点,故b处一定是亮纹,选项A正确.答案:A6.如图所示,一个粒子源产生某种粒子,在其正下方安装只有两条狭缝的挡板,粒子穿过狭缝打在下方的荧光屏上使荧光屏发光.那么在荧光屏上将看到( )A.只有两条亮纹B.有多条明暗相间的条纹C.没有亮纹D.只有一条亮纹解析:由于粒子源产生的粒子是微观粒子,它的运动受波动规律支配,对大量粒子运动到达屏上的某点的概率,可以用波的特征进行描述,即产生双缝干涉,在屏上将看到干涉条纹,所以B正确.答案:B7.(多选)根据不确定性关系ΔxΔp≥h4π,下列说法正确的是( ) A.采取办法提高测量Δx精度时,Δp的精度下降B.采取办法提高测量Δx精度时,Δp的精度上升C.Δx与Δp测量精度与测量仪器及测量方法是否完备有关D.Δx与Δp测量精度与测量仪器及测量方法是否完备无关解析:不确定性关系表明无论采用什么方法试图确定坐标和相应动量中的一个,必然引起另一个较大的不确定性,这样的结果与测量仪器及测量方法是否完备无关.无论怎样改善测量仪器和测量方法,都不可能逾越不确定性关系所给出的限度,故A、D正确.答案:AD8.已知h4π=5.3×10-35J·s,试求下列情况中速度测定的不确定量,并根据计算结果,讨论在宏观和微观世界中进行测量的不同情况.(1)一个球的质量m=1.0 kg,测定其位置的不确定量为10-6 m;(2)电子的质量m e=9.0×10-31 kg,测定其位置的不确定量为10-10 m(即在原子的数量级).解析:(1)m=1.0 kg,Δx=10-6 m,由ΔxΔp≥h4π,Δp=mΔv知Δv1=h4πΔxm=5.3×10-3510-6×1.0m/s=5.3×10-29 m/s.(2)m e=9.0×10-31 kg,Δx=10-10 m,Δv2=h4πΔxm=5.3×10-3510-10×9.0×10-31m/s≈5.89×105 m/s.答案:(1)5.3×10-29 m/s (2)5.89×105 m/s在微观世界中速度测定的不确定量远比宏观中的大。
1.对物质波的理解
(1)任何物体,小到电子、质子,大到行星、太阳都存在波动性,我们之所以观察不到宏观物体的波动性,是因为宏观物体对应的波长太小的缘故.
(2)粒子在空间各处出现的几率受统计规律支配,不要以宏观观点中的波来理解德布罗意波.
(3)德布罗意假说是光子的波粒二象性的一种推广,使之包括了所有的物质粒子,即光子与实物粒子都具有粒子性,又都具有波动性,与光子对应的波是电磁波,与实物粒子对应的波是物质波.
2.计算物质波波长的方法
(1)根据已知条件,写出宏观物体或微观粒子动量的表达式p =mv .
(2)根据波长公式λ=h p
求解. (3)注意区分光子和微观粒子的能量和动量的不同表达式.光子的能量:ε=hν,动量p =h λ
;微观粒子的动能:E k =12
mv 2,动量p =mv . 考查德布罗意波的波长计算时.一般先求出动量,再由公式λ=h p
求德布罗意波的波长.注意将各物理量统一采用国际制单位.。
第十七章 波粒二象性
4 概率波
5 不确定性关系
1.(多选)关于光的波动性与粒子性,以下说法正确的是( )
A.爱因斯坦的光子说否定了光的电磁说
B.光电效应现象说明了光的粒子性
C.光波不同于机械波,它是一种概率波
D.光的波动性和粒子性是相互矛盾的,无法统一
解析:爱因斯坦的光子说并没有否定电磁说,只是在一定条件下光是体现粒子性的,A
错;光电效应说明光具有粒子性,说明光的能量是一份一份的,B对;光波在少量的情况下
体现粒子性,大量的情况下体现波动性,所以C对;光的波动性和粒子性不是孤立的,而是
有机的统一体,D错.
答案:BC
2.显微镜观看细微结构时,由于受到衍射现象的影响而观察不清,因此观察越细小的
结构,就要求波长越短、波动性越弱.在加速电压值相同的情况下,关于电子显微镜与质子
显微镜的分辨本领,下列判断正确的是( )
A.电子显微镜分辨本领较强
B.质子显微镜分辨本领较强
C.两种显微镜分辨本领相同
D.两种显微镜分辨本领不便比较
解析:在电场中加速,有eU=12mv2=p22m;又由物质波公式λ=hp,得λ=h2meU,所以
经相同电压加速后的质子与电子相比,质子的物质波波长短、波动性弱,所以质子显微镜
分辨本领较强,B选项正确.
答案:B
3.(多选)在做双缝干涉实验时,在观察屏的某处是亮纹,则对光子到达观察屏的位置,
下列说法正确的是( )
A.到达亮纹处的概率比到达暗纹处的概率大
B.到达暗纹处的概率比到达亮纹处的概率大
C.对于某一光子,它可能到达光屏的任何位置
D.以上说法均有可能
解析:根据概率波的含义,一个光子到达亮纹处的概率要比到达暗纹处的概率大得多,
但并不是一定能够到达亮纹处,故选项A、C正确.
答案:AC
4.一辆摩托车以20 m/s的速度向墙冲去,车身和人共重100 kg,则车撞墙时的不确
定范围是怎样的?
解析:根据不确定性关系ΔxΔp≥h4π得:Δx≥h4πΔp=6.626×10-344×3.14×100×20 m=
2.64×10-38 m.
答案:大于等于2.64×10-38 m
A级 抓基础
1.(多选)下列各种波中是概率波的是( )
A.声波 B.无线电波
C.光波 D.物质波
解析:声波是机械波,A错.电磁波是一种能量波,B错.由概率波的概念和光波以及
物质波的特点分析,可以得知光波和物质波均为概率波,故C、D正确.
答案:CD
2.(多选)以下说法正确的是( )
A.微观粒子不能用“轨道”观点来描述粒子的运动
B.微观粒子能用“轨道”观点来描述粒子的运动
C.微观粒子位置不能精确确定
D.微观粒子位置能精确确定
解析:微观粒子的动量和位置是不能同时确定的,这也就决定了不能用“轨道”的观点
来描述粒子的运动(轨道上运动的粒子在某时刻具有确定的位置和动量),故A正确.由微观
粒子的波粒二象性可知微观粒子位置不能精确确定,故C正确.
答案:AC
3.由不确定性关系可以得出的结论是( )
A.如果动量的不确定范围越小,则与它对应坐标的不确定范围就越大
B.如果位置坐标的不确定范围越小,则动量的不确定范围就越大
C.动量和位置坐标的不确定范围之间的关系不是反比例函数
D.动量和位置坐标的不确定范围之间有唯一确定的关系
解析:由不确定关系的定义分析可知C选项正确,其他三个选项只说明了基本的某个方
面,而没有对不确定性关系做进一步的认识,故都不正确.
答案:C
4.关于电子云,下列说法正确的是( )
A.电子云是真实存在的实体
B.电子云周围的小黑点就是电子的真实位置
C.电子云上的小黑点表示的是电子的概率分布
D.电子云说明电子在绕原子核运动时有固定轨道
解析:由电子云的定义我们知道,电子云不是一种稳定的概率分布,人们常用小圆点表
示这种概率,小圆点的密疏代表电子在这一位置出现的概率大小,故只有C正确.
答案:C
B级 提能力
5.在做双缝干涉实验时,发现100个光子中有96个通过双缝后打到了观察屏上的
b
处,则b处是( )
A.亮纹
B.暗纹
C.既有可能是亮纹也有可能是暗纹
D.以上各种情况均有可能
解析:由光子按波的概率分布的特点去判断,由于大部分光子都落在b点,故b处一定
是亮纹,选项A正确.
答案:A
6.如图所示,一个粒子源产生某种粒子,在其正下方安装只有两条狭缝的挡板,粒子
穿过狭缝打在下方的荧光屏上使荧光屏发光.那么在荧光屏上将看到( )
A.只有两条亮纹
B.有多条明暗相间的条纹
C.没有亮纹
D.只有一条亮纹
解析:由于粒子源产生的粒子是微观粒子,它的运动受波动规律支配,对大量粒子运动
到达屏上的某点的概率,可以用波的特征进行描述,即产生双缝干涉,在屏上将看到干涉条
纹,所以B正确.
答案:B
7.如图所示是双缝干涉的图样,我们如何用光的波粒二象性来解释呢?
解析:图a表示曝光时间很短的情况,在胶片上出现的是随机分布的光点.延长胶片曝
光的时间,就会出现如图b所示的图样.从图中可以看出,光子在某些条形区域出现的概率
增大,这些区域是光波通过双缝后产生相干振动加强的区域;而落在其他一些条形区域的概
率很小,这些区域是光波通过双缝后产生相干振动减弱的区域.曝光的时间越长,图样就越
清晰(如图c所示).这说明,可以用光子在空间各点出现的概率来解释光的干涉图样,即认
为光是一种概率波.
答案:见解析
8.已知h4π=5.3×10-35 J·s,试求下列情况中速度测定的不确定量,并根据计算结果,
讨论在宏观和微观世界中进行测量的不同情况.
(1)一个球的质量m=1.0 kg,测定其位置的不确定量为10-6 m;
(2)电子的质量me=9.0×10-31 kg,测定其位置的不确定量为10-10 m(即在原子的数量
级).
解析:(1)m=1.0 kg,Δx=10-6 m,
由ΔxΔp≥h4π,Δp=mΔv知
Δv1=h4πΔxm=5.3×10-3510-6×1.0 m/s=5.3×10-29 m/s.
(2)me=9.0×10-31 kg,Δx=10-10 m,
Δv2=h4πΔxm=5.3×10-3510-10×9.0×10-31 m/s≈5.89×105 m/s.
答案:(1)5.3×10-29 m/s (2)5.89×105 m/s
在微观世界中速度测定的不确定量远比宏观中的大