蠕变、应力松弛、滞后和内耗讲解
- 格式:ppt
- 大小:2.40 MB
- 文档页数:33
第二章名词解释1.凝聚态:根据物质的分子运动在宏观力学性能上的表现来区分为固体、液体、气体。
2.单分子链凝聚态:大分子特有现象,高分子最小单位。
3.内聚能:1mol凝聚体汽化时需要的能量,△E = CE =△HV-RT(△HV——摩尔蒸发热,RT——汽化时做膨胀功)4.晶胞:晶体结构中具有周期性排列的最小单位。
5.晶系:晶体按其几何形态的对称程度。
ler指数:是一种特殊的,以结晶学单胞三条棱为坐标系时确定的指数。
7.单晶:晶体的整体在三维方向上由同一空间格子组成。
8.球晶:浓溶液中析出或熔体中析出,在不存在应力的条件下,形成圆球形的晶体。
9.片晶厚度:结晶聚合物的长周期与结晶度的乘积。
10.结晶度:试样中结晶部分所占的质量分数或体积分数。
11.高分子链的缠结:高分子链之间形成物理交联点,构成网络结构,使分子链的运动受到周围分子的羁绊和限制。
12.聚合物液晶:一些物质的结晶结构受热熔融或被溶剂溶解后,表观上失去了固体物质的刚性,具有流动性,结构上仍保持有序结构,表现各向异性,成为固体-液体过渡状态。
13.溶致液晶:一种包含溶剂化合物在内的两种或多种化合物形成的液晶。
14.热致液晶:加热液晶物质时,形成的各向异性熔体。
15.液晶晶型:向列相(N相):完全没有平移有序手征性液晶(胆甾相,手征性近晶相)层状液晶(近晶A,近晶C )一维平移有序盘状液晶相(向列相ND)16.取向:在某种外力作用下,分子链或其他结构单元沿着外力作用方向择优排列的结构取向度:f=1/2(3cos2θ-1)(θ:分子链主轴与取向方向之间的夹角,称为取向角)17.双折射:一条入射光线产生两条折射光线的现象。
18.相容性:共混物各组分彼此相互容纳,形成宏观均匀材料的能力。
19.多组分聚合物:多组分聚合物又称高分子合金,指该体系中存在两种或两种以上不同的聚合物组分,不论组分之间是否以化学键相互连接。
20.自组装:基本结构单元(分子,纳米材料,微米或更大尺度的物质)自发形成有序结构的一种技术。
材料的阻尼性能(内耗)一.内耗的概念大家都有这样的经验,振动的固体会逐渐静止下来。
如我们用一个铜丝吊一个圆盘使其扭动,即使与外界完全隔绝,在真空环境下也会停止下来。
这说明使振动得以停止的原因来自物体内部,物质不同会有不同的的表现,如改用细铅丝悬挂,振动会较快停下来。
我们把“机械振动能量由于内部的某种物理过程而引起的能量耗损称为内耗”能量损耗的大小对应着内耗损耗的大小,上面铅丝的内耗就比铜丝大(损耗大,衰减快,停得快)。
对于高频振动(兆赫芝以上),这种能量损耗又称超声衰减。
在工程领域又称内耗为阻尼。
在日常生活中,内耗现象相当普遍。
例如,古代保留下来的一些大钟,制造水平很高,敲击后余音不绝,这反映铸钟用的合金材料的内耗很低。
不过一旦钟出现裂纹,其声音便会很快停止下来,表明内耗已大为增加。
又如,人的脊椎骨的内耗很大,这样人走动时脚下的剧烈振动才不会传到人的大脑,而引起脑震荡。
在社会生活中,则常借用内耗概念来比喻一个单位内部因相互不配合使工作效率下降的现象。
关于内耗的研究主要集中在两个方面,一是寻求适合工程应用的有特殊阻尼本领的材料(通常用在两头。
内耗极小的材料,如制备钟表游丝,晶场显微镜的探针材料;内耗很大的材料,如隔音材料,潜艇的螺旋桨及风机)。
二是内耗的物理研究,由于内耗对固体中缺陷的运动及结构的变化敏感(上面大钟内的微裂纹),因此,常利用内耗来研究材料中各种缺陷的弛豫及产生相变的机制。
缺陷有点缺陷(零维):杂质原子替代原子空位缺陷有线缺陷:位错缺陷有面缺陷:晶界、相界、缺陷有体缺陷:空洞具体实验中常通过改变温度、振动频率或振幅、变温速度、试样组分及加工、热处理、辐照条件等研究各种因素对内耗的影响规律及产生内耗的机制。
上面两方面的研究是相辅相成的。
需求刺激研究,如国防军工需求,潜艇降噪的需要推动了对高阻尼材料的研究;反之,研究有助于开发,如Mn-Cu合金的内耗研究,发现材料在某一温存在一个马氏体相变,可引起很大的内耗峰,此内耗峰的峰位随材料的组分变化,故可通过调节,改变合金组成使这个内耗峰的峰温移至室温附近,以此增加合金在室温条件下的阻尼,现已用在潜艇螺旋桨的制造。
第7章 聚合物的粘弹性本章教学目的:1、熟悉聚合物的粘弹性现象和分子机理(包括蠕变现象、应力松弛现象、滞后现象、力学损耗)。
2、了解粘弹性的力学模型理论(Maxwell 模型、Kelvin 模型和多元件模型)。
3、了解储能模量、损耗模量、损耗角正切之间关系。
4、了解分子运动与动态力学谱之间的关系。
5、了解时温等效原理(WLF 方程)及应用。
6、了解Boltzmann 叠加原理及应用。
7.1 普通粘弹概念7.1.1 基本概念弹:外力→形变→应力→储存能量外力撤除→能量释放→形变恢复能量完全以弹性能的形式储存,然后又全部以动能的形式释放,没有能量的损耗。
粘:外力→形变→应力→应力松弛→能量耗散外力撤除→形变不可恢复1、理想弹性体其应力-应变关系服从虎克定律,即ζ=E·ε。
应力与应变成正比(即应力只取决于应变),普弹模量E 只与材料本质有关,不随时间改变。
应变在加力的瞬时达到平衡值,除去外力时,普弹形变ε瞬时完全回复。
应力恒定,故应变恒定,见图7-1。
图7-1 聚合物普弹形变ε-时间关系2、理想粘性液体(牛顿流体)其应力-应变行为服从牛顿定律 理想粘性液ζ∝η为常数,等于单位速度梯度时的剪切应力,反映了分子间由于相互作用而产生的流动阻力,即内摩擦力的大小,单位为Pa·s 。
形变ε随时间线性变化,当除去外力时形变不可回复。
应力恒定,故η为常数,应变以恒定速γ率增加,见图7-2。
图7-2 聚合物粘性形变ε-时间关系弹性与粘性比较:弹性 粘性能量储存能量耗散 形变回复 永久形变E(σ,ε,T) 模量与时间无关 模量与时间有关高分子液体,除了粘度特别大以外,其流动行为往往不服从牛顿定律,即η随剪切速率而变化。
原因:流动过程中伴随着构象的改变,η不再是常数;而当外力除去时,链分子重新卷曲(解取向)。
高分子液体在流动过程中仍包含有熵弹性形变,即含有可回复的弹性形变。
高分子固体 力学行为不服从虎克定律。
名词解释θ温度:在某一温度下聚合物溶于某一溶剂中,其分子链段间的相互吸引与溶剂化以及排斥体积效应所表现出的相斥力相等,无远程相互作用,高分子处于无扰状态,排斥体积为0,该溶液的行为符合理想溶液行为,此时溶液的过量化学为为0,溶液为θ溶液,此时温度称为θ温度。
内聚能密度与溶度参数:内聚能密度定义为单位体积凝聚体汽化时所需要的能量。
溶度参数定义为内聚能密度的平方根。
时温等效原理:升高温度与延长时间对分子运动是等效的,对聚合物的粘弹行为也是等效的力学松弛:高聚物的力学性质随时间的变化,它包括蠕变、应力松弛、滞后、力学损耗。
泊松比:材料拉伸时横向应变与纵向应变比值之负数,是一个反映材料性质的重要参数。
构型与构象:构型是指分子中由化学键所固定的原子的空间排列。
构象是指由于单键的内旋转而产生的分子中原子的空间位置上的变化。
液晶:一些物质的结晶结构受热溶融或被溶剂溶解之后,表观上虽然失去了固体物质的刚性,变成了具有流动性的液体物质,但结构上仍然保持着一维或二维有序排列,从而在物理性质上呈现出各向异性,形成一种兼有部分晶体和液体性质的过度状态(液晶状态),处在这种状态下的物质称为液晶。
银纹:聚合物在张应力的作用下,在材料某些薄弱的地方出现应力集中而产生的局部的塑性形变和取向,以至于在材料的表面或者内部垂直于应力方向出现微细凹槽的现象。
内聚能密度:定义克服分子间作用下,1mol的凝聚体汽化时所需的能量为内聚能密度,表征分子间作用力的强弱。
应力松弛:在恒定温度和形变保持不变的情况下,聚合物内部的应力随时间的增加而逐渐衰减的现象。
链段:高分子链上能独立运动(或自由取向)最小单元。
溶胀:高聚物溶解前吸收溶剂而体积增大的现象。
蠕变:在一定的温度和较小的恒定应力作用下,材料的应变随时间的增加而增大的现象。
构象:由于单键内旋转而产生的高分子链在空间的不同形态。
泊松比:材料拉伸时横向应变与纵向应变比值之负数,是一个反映材料性质的重要参数。
三种力学状态:玻璃态Tg以下分子链几乎无运动,链段处于冻结状态,受力变形很小类似玻璃。
高弹态Tg-Tf链段运动激发,但分子链间无滑移,聚合物表现为橡胶行为。
粘流态Tf以上,受外力作用时,大分子链与大分子链间发生相对位移,无法回复,行为与小分子液体类似两种转变:玻璃态转变为高弹态,转变温度称为玻璃化温度Tg,整个大分子链还无法运动,但链段开始发生运动。
高弹态转变为粘流态,转变温度称为粘流温度Tf,聚合物既呈现橡胶粘弹性又呈流动性玻璃化转变:指非晶态高聚物从玻璃态到高弹态的转变,对晶态分子来说玻璃化转变是指非晶部分的转变。
测量方法,膨胀剂法,差热分析法,力学方法,NMR,介电松弛应变,应力:当材料受到外力作用而所处的条件却使其不能产生惯性移动时,它的几何形状和尺寸将发生变化,这种变化称为应变,定义单位面积撒很难过的附加内力为应力模量:表征材料抵抗变形能力的大小(弹性模量)蠕变:是指在一定的温度和较小的恒定应力作用下,材料的应变随时间的增加而增大的现象应力松弛:在恒定的温度和形变保持不变的情况下,聚合物内部的应力随时间增加而逐渐衰减的现象松弛过程:由于高分子运动时,运动单元之间的作用力很大,因此高分子在外场下,会由一种平衡状态通过分子运动过渡到与外场相适应的新的平衡态,这一过程慢慢完成,完成这一过程需要时间-松弛时间滞后现象,内耗:聚合物在交变应力作用下落后于应力的现象。
由于发生滞后现象,在每一循环变化中,作为热损耗掉的能量与最大储存能量之比Ψ=2πtanσ称为力学内耗分子理论:从高分子的结构特点出发,研究聚合物的力学松弛过程,其核心问题是提出合理的分子模型,应用分子的微观物理量(原子半径,键长,键角,内旋转位垒,均方末端距,分子量,内外摩擦因子等)通过统计力学方法,推导出聚合物的松弛时间分布,溶液和本体的复数黏度,复数模量,复数柔量等宏观黏性弹性的表达式。
主要有RBZ理论和蛇形理论滞后现象:高聚物在应变力作用下,往往发生应变落后于应力的现象。