蠕变及应力松弛试验
- 格式:ppt
- 大小:269.00 KB
- 文档页数:24
腰椎松质骨应力松弛蠕变实验研究腰椎的松质骨是由骨细胞和骨基质组成的,主要起到承担压力和维持脊柱稳定的作用。
然而,由于长时间的坐姿生活和缺乏运动,腰椎松质骨可能会出现松弛和蠕变的现象,导致腰椎间盘脱出或骨质增生等问题。
为了解决这一问题,本研究主要通过实验研究的方法来探究腰椎松质骨的应力松弛和蠕变情况。
本研究选择一组健康的成年人,采用主动脊柱牵引法对其进行实验处理。
首先,通过X光、MRI等影像技术获取腰椎松质骨的形态和组织结构信息。
然后,将被试者以50%的身高为跨步长度,用带有腰部支撑的设备固定站立,两腿间的距离与肩同宽。
接下来,使用电子动力牵引仪进行牵引处理,施加不同的牵引力,包括身体质量的10%、20%和30%,每个力度维持10分钟。
通过动作捕捉系统来记录实验过程中骨骼的位移和关节的变动情况。
在实验进行过程中,需要根据实际情况对应变量进行测量和记录。
首先,需要测量松质骨的变形量,通过实时观察和记录测量腰椎的位移、角度和曲率等指标,以评估松质骨的应力松弛情况。
其次,还需要测量骨基质的变形量,通过测量腰椎骨密度和骨小梁结构等指标,以评估松质骨的蠕变情况。
最后,还可以根据被试者的反馈和主观感受来评估牵引处理的效果和舒适度。
通过上述实验研究,可以得到腰椎松质骨应力松弛和蠕变的相关数据,为进一步研究和了解腰椎松质骨的生理和病理变化提供依据。
同时,还可以通过比较不同牵引力度下的实验结果,评估不同力度对腰椎松质骨的影响程度,为临床治疗和康复提供指导意义。
此外,还可以结合数学和力学模型,对实验结果进行数值模拟和预测,进一步探究腰椎松质骨应力松弛和蠕变的机理。
综上所述,腰椎松质骨的应力松弛和蠕变是目前研究的热点之一、通过实验研究可以获取腰椎松质骨的应力松弛和蠕变情况,为后续研究和临床治疗提供理论依据。
在实际操作中,需要合理选择实验方案和测量方法,并结合生理学和力学理论进行综合分析,以获得准确的研究结果。
通过不断的实验研究和理论研究,可以更好地理解和控制腰椎松质骨的应力松弛和蠕变过程,为腰椎疾病的预防和治疗提供有效的手段和措施。
混凝土蠕变与应力松弛耦合破坏及临界幂律行为混凝土是一种广泛应用于结构工程领域的材料,但其力学性质受多种因素影响,其中包括温度、湿度和时间等因素。
在实际使用中,混凝土可能存在蠕变和应力松弛等行为,这些行为可能引起破坏,影响其力学性能。
因此,深入了解混凝土的这些行为特性及其临界幂律行为具有重要意义。
混凝土的蠕变行为指的是在长期外载荷作用下,混凝土会产生变形,并维持在一定的应力水平下。
蠕变行为的发生是因为混凝土在长时间内受到应力作用,其内部的分子结构发生了持续性变化。
蠕变行为不可逆,即使消除载荷,混凝土的变形也不会完全恢复到初始状态。
除了外载荷之外,温度、湿度等因素也会对混凝土的蠕变行为产生一定的影响。
混凝土的应力松弛行为指的是在恒定应变的作用下,混凝土的应力会随时间变化而逐渐降低。
应力松弛行为与蠕变行为存在相似之处,但应力松弛是由应变作用引起的,而不是外载荷作用。
应力松弛会导致混凝土在一段时间内失去一部分强度,从而影响其总体力学性能。
蠕变和应力松弛行为在混凝土材料中的特性和临界幂律行为密切相关。
临界幂律行为是指在某些特定条件下,混凝土蠕变和应力松弛行为会呈现出与时间的幂律相关的特性。
这种幂律趋势对于预测混凝土的长期强度和耐久性具有重要意义。
通过对混凝土蠕变和应力松弛行为的临界幂律分析,可以更好地理解混凝土材料的内部结构和变形特性,从而提高混凝土的设计与应用的准确性和可靠性。
在混凝土的蠕变和应力松弛行为研究中,常用的试验方法包括等温蠕变试验和等变应力松弛试验等。
通过这些试验方法可以测量混凝土材料在长时间内的应变和应力变化特性,从而得到混凝土材料的应力松弛曲线和蠕变曲线。
同时,还可以对不同因素对混凝土蠕变和应力松弛行为的影响进行研究。
这些试验和研究可以为混凝土结构的设计和应用提供重要依据。
总之,混凝土的蠕变和应力松弛行为及其临界幂律行为对于混凝土结构的长期强度和力学性能表现具有重要意义。
深入研究这些行为的特性和机理,对于指导混凝土结构的设计和应用,提高混凝土结构的耐久性和可靠性具有重要的理论和实践意义。
蠕变定义:蠕变是在应力影响下,固体材料缓慢永久性的移动或者变形的趋势。
它的发生是低于材料屈服强度的应力长时间作用的结果。
这种变形的速率与材料性质、加载时间、加载温度和加载结构应力有关。
取决于加载应力和它的持续时间和环境温度,这种变形可能变得很大,以至于一些部件可能不再发挥它的作用。
阶段过程:1初步蠕变,形变率相对较大,但是随着应变的增加减慢。
2稳态蠕变,形变率达到一个最小值并接近常数,“蠕变应变率”就是指这一阶段的应变率。
3颈缩现象,应变率随着应变增大指数性的增长。
晶体蠕变(考虑金属)公式: Q m kTb d C e dt d εσ-=其中:ε是蠕变应变,C 是一个依赖于材料和特别蠕变机制的常数,m 和b 是依赖于蠕变机制的指数,Q 是蠕变机制的激活能,σ是加载应力,d 是材料的晶粒尺寸,k 是波尔兹曼常数,T 是绝对温度。
位错蠕变在相对于剪切模量的高应力条件下,蠕变是一个受位错控制的运动。
当应力加载在材料上时,由于滑移面中的位错移动而塑性变形发生。
位错蠕变中,self diffusion Q Q -=,46m =,0b =。
因此位错蠕变强烈依赖于加载应力而不依赖于晶粒尺寸。
引入初始应力0σ,低于初始应力时无法测量。
这样,方程就写成0()Q m kT d C e dtεσσ-=-。
Nabarro-Herring 蠕变在N-H 蠕变中,原子通过晶格扩散,造成晶粒沿着应力轴伸长。
k 和原子通过晶格的扩散系数有关,self diffusion Q Q -=,1m =,2b =。
因此N-H 蠕变是一种弱应力依赖、中等晶粒尺寸依赖的蠕变,它的蠕变形变率随着晶粒尺寸增长而降低。
故公式变化成:2Q kT d C e dt dεσ-= 上图是相关文献中的表格,按蠕变机理不一样确定指数m (在表中是n ),以及常见金属对应的激活能。
注意:金属蠕变在受力元件温度超过0.3T α(T α是熔点温度)时才开始显现出来,把常见金属熔点温度列出来。
apdl蠕变应力松弛
APDL蠕变应力松弛(APDL creep stress relaxation)是一种用于分析材料在长时间加载下应力松弛行为的方法。
APDL代表ANSYS Parametric Design Language,是ANSYS软件中的一个编程语言,可以用于控制和定制有限元分析。
蠕变是指材料在持续应力加载下会发生的时间依赖性变形。
而蠕变应力松弛是指长时间内应力持续施加后,材料的应力逐渐减小的现象。
这种行为在很多工程领域中都有重要的应用,比如材料的稳定性分析和寿命预测等。
在APDL中,可以使用蠕变应力松弛命令来模拟蠕变应力松弛行为。
该命令可以通过指定加载时间、加载应力和材料的蠕变参数来模拟材料在长时间下的应力松弛行为。
通过分析蠕变应力松弛数据,可以得到材料的蠕变特性,比如蠕变指数和松弛率等。
使用APDL进行蠕变应力松弛分析需要考虑材料的蠕变特性和加载条件等因素,同时还需要进行合理的网格划分和求解设置等。
该方法可以帮助工程师更好地理解和预测材料在长时间加载下的行为,为工程设计和材料选择提供参考。
岩石蠕变性能和徐变性能测试方法与分析岩石是地壳中的基本构造材料,其性能对于地下工程的设计和施工起着至关重要的作用。
岩石的蠕变性能和徐变性能是研究岩石长期稳定性和变形特性的重要指标。
本文将对岩石蠕变性能和徐变性能的测试方法和分析进行介绍和探讨。
一、岩石蠕变性能的测试方法与分析1. 岩石蠕变性能的定义及重要性岩石蠕变性是指在恒定的应力条件下,岩石随时间的延续而发生的不可逆性变形。
蠕变性能是岩石长期稳定性的重要指标之一,对于地下工程的安全运营和设计起着至关重要的作用。
2. 岩石蠕变性能的测试方法(1)直接剪切试验法:通过对岩石样品施加恒定剪切应力,观察岩石的剪切应变随时间的变化,以评估岩石的蠕变性能。
(2)恒定应力压缩试验法:通过施加恒定应力对岩石样品进行压缩,观察岩石的应变随时间的变化,以评估岩石的蠕变性能。
(3)恒定应力拉伸试验法:通过施加恒定应力对岩石样品进行拉伸,观察岩石的应变随时间的变化,以评估岩石的蠕变性能。
3. 岩石蠕变性能的分析方法(1)蠕变曲线分析:根据岩石蠕变性能测试获得的实验数据,构建蠕变曲线,分析曲线的特征,如蠕变速率、蠕变应变等,以评估岩石的蠕变性能。
(2)蠕变模型分析:将蠕变性能的实验数据输入到合适的蠕变模型中,通过模型仿真分析,得到岩石的蠕变特性和变形规律,以评估岩石的蠕变性能。
二、岩石徐变性能的测试方法与分析1. 岩石徐变性能的定义及重要性岩石徐变性是指在恒定应力条件下,岩石随时间的延续而发生的可逆性变形。
徐变性能是评估岩石短期变形特性和应力松弛程度的指标。
2. 岩石徐变性能的测试方法(1)应力松弛试验法:通过施加恒定应力,观察岩石应变随时间的变化,以评估岩石的徐变性能。
(2)弛豫试验法:通过施加瞬时应力,观察岩石应变随时间的变化,再施加恒定应力,观察应变的进一步变化,以评估岩石的徐变性能。
3. 岩石徐变性能的分析方法(1)弛豫-徐变模型分析:根据弛豫试验与徐变试验的实验数据,将其输入到合适的模型中,通过模型分析得到岩石的徐变特性和变形规律,以评估岩石的徐变性能。
原创:橡胶制品的应力松弛、压缩永久变形、蠕变橡胶制品受力时,使橡胶大分子聚集体离开势能变低或熵值较大的平衡,从而过度到势能变高或熵值较小的非平衡状态转变致使产生变形。
由于橡胶是黏性和弹性的结合体(液相-固体),在产生变形时需要时间,造成橡胶在应力-应变受到形变的速度和温度等条件影响。
先提出三个概念:应力松弛:在一定环境条件下,将橡胶制品拉伸到一定长度(100%或200%),观察定伸应力随着时间延长,应力逐渐变小的现象称之为应力松弛。
应力衰减的主要原因,胶条承受应力逐渐消耗与分子链运动时要克服黏性的内阻。
其特点是开始快而后变慢。
这就是我们经常见的橡皮筋初始咋扎力很大,一天过后就没有紧的缘故。
压缩永久变形:主要是受橡胶恢复能力所支配,影响恢复能力的因素有分子之间的作用力(粘性)、网络结构的变化或破坏、分子间的位移等。
当橡胶的变形是由于分子链的伸张引起的,它的恢复(或者永久变形的大小)主要由橡胶的弹性所决定,如果橡胶的变形还伴有网络的破坏和分子链的相对流动,这部分可以说是不可恢复的。
橡胶压缩永久变形的大小除了与橡胶的种类有关,其它的如填充剂的结构与粒径、硫化体系、增塑剂、硫化时间、测试的试样形状等因素都会影响到最终结果的大小。
而作为密封橡胶制品最为重要的一项指标,系统的开展各种不同因素单独或并存情况下对压缩永久变形的研究显得尤为重要。
蠕变:橡胶制品在一定温度环境中,受到拉伸、剪切或压缩力的作用下,变形会随着时间延长而逐渐变大,称之为蠕变(压缩永久变形,应力松弛从某种程度都可以归结为蠕变,个人观点理解仅供参考)。
蠕变变形回复速度:瞬间变形瞬间回复是可逆;延迟变形逐渐回复和黏流体变形不能回复。
分子链运动会使制品内部升温,延迟变形会随温度升高而加快。
所以设计配方需要注意:1、生胶的可塑度选择,要考虑制品的弹性模量,分子链断裂大小程度均以;2、生胶的并用不易过多,但胶种或两种;3、硫化体系最好选择平衡硫化体系;4、少量使用油和树脂等,避免造成应变不可回复;5、选用填充剂是,易分散,不能结团。
第7章 材料在高温下的力学性能7.1 材料在高温下力学性能的特点有许多机件是在高温下工作的,如高压锅炉,蒸汽轮机、燃气轮机、以及化工厂的反应容器等,对于这些机件的性能要求,就不能以常温下的力学性能来衡量。
材料在高温下的力学性能明显地不同于室温。
首先,材料在高温将发生蠕变现象。
即在应力恒定的情况下,材料在应力的持续作用下不断地发生变形。
这样,材料在高温下的强度便与载荷作用的时间有关了。
载荷作用的时间越长,引起一定变形速率(如)或变形量的形变抗力(蠕变极限)以及断裂抗力(持久强度)就越低。
粗略地说,发生蠕变现象的温度,对金属材料约为T>0.3-0.4TM ;(TM为材料的熔点以绝对温度K计);对陶瓷约为T>0.4-0.5TM ;对高分子材料为T>Tg,Tg为玻璃化温度,多数高分子材料在室温下就发生蠕变。
由于蠕变的产生,我们就不能笼统地说材料在某一高温下其强度是多少,因为高温强度与时间这一因素有关。
而材料在常温下的强度是不考虑时间因素的。
除非试验时加载的应变速率非常高。
材料在高温下不仅强度降低,而且塑性也降低。
应变速率越低,载荷作用时间越长,塑性降低得越显著。
和蠕变现象相伴随的还有高温应力松驰。
一个紧固螺栓在高温长时间作用下,其初始预紧力逐渐下降,这种现象也是由蠕变造成的。
另外,蠕变还会产生疲劳损伤,使高温疲劳强度下降,为此,必须研究蠕变和疲劳的交互作用。
材料在高温下的力学性能特点都是和蠕变过程紧密相连的。
第一,材料在变形时首先总是引起形变强化,蠕变之所以能发生,必然还伴随着一个变形的软化过程,这个软化过程就是高温回复。
第二,蠕变的变形机制必然与在常温下的不同。
材料在常温下的变形可通过位错的滑动产生滑移和孪晶两种变形型式。
而在高温下位错还可通过攀移,使位错遇到障碍时作垂直于滑移面的运动,如图7-0所示。
这样位错便不会阻塞在障碍面前,而使得变形能继续下去,这就是一个变形的软化过程。
可以粗略地说,蠕变就是位错的滑移和攀移交替进行的结果。
应力松弛和蠕变的模型和原理应力松弛是指材料在一定的应力作用下,随着时间的推移,应力逐渐减小的现象。
应力松弛可以在高温、高应力或长时间作用下发生,它与材料的内部结构和微观运动有关。
蠕变是指材料在一定应力作用下,在一段较长时间内会产生徐变现象,即在应力作用下,材料会慢慢地变形。
应力松弛的模型和原理可以从两个方面来解释,即弹性变形和材料内部结构变化。
首先,从弹性变形的角度来看,应力松弛可以通过弹性模型来进行描述。
材料在受到外部应力作用时,会产生一定的弹性变形。
当应力持续作用时,材料的分子和晶格内部会发生弹性畸变,从而产生内应力。
这些内应力会逐渐使材料的原始应力减小,从而产生应力松弛现象。
其次,从材料内部结构变化的角度来看,应力松弛可以通过材料的内部结构演化进行解释。
材料的内部结构由分子、原子、晶粒等微观结构组成。
当材料受到应力作用时,这些微观结构会重新排列和变形,从而引发材料的应变和变形。
随着时间的推移,材料的内部结构会重新达到平衡状态,从而使应力逐渐减小,产生应力松弛现象。
蠕变是材料在一定应力作用下,长时间内发生的徐变现象。
蠕变可以通过材料的流变模型来进行解释。
蠕变的模型和原理可以从粘弹性和塑性变形两个方面来解释。
首先,从粘弹性的角度来看,蠕变可以通过粘弹性模型进行描述。
粘弹性是指材料同时具有弹性和粘性特性。
在蠕变作用下,材料会同时发生弹性变形和粘性变形。
弹性变形主要是由于材料的分子或晶粒内部发生位移和畸变,而粘性变形主要是由于材料内部分子的滑移和相对位移引起的。
蠕变的产生主要是由于长时间的粘性变形造成的。
其次,从塑性变形的角度来看,蠕变可以通过塑性流变模型进行解释。
在蠕变过程中,材料的内部结构会发生可塑性的变形,即原子、分子或晶粒之间的相对位移会发生变化,从而引发材料的塑性流动。
长时间的塑性流动会导致材料的徐变现象,从而产生蠕变。
综上所述,应力松弛和蠕变的模型和原理可以通过弹性变形、材料内部结构演化、粘弹性和塑性变形等方式进行解释。
一、名词1. 触变性:指当液体在振动、搅拌、摇动时粘性减少,流动性增加,但静置一段时间后,又变得不易流动的现象(45页)。
2. 应力松弛:指试样瞬时变形后,在变形不变情况下,试样内部的应力随时间的延长而减少的过程(72页)。
3. 蠕变:把一定大小的应力施加于粘弹性体时,物体的变形随时间的变化而逐渐增加的现象(72页)。
4. 食品感官检验:以心理学、生理学、统计学为基础,依靠人的感觉(视、听、触、味、嗅觉)对食品进行评价、测定或检验的方法(106页)。
5. 散粒体的离析:粒径差值大且重度不同的散粒混合物料,在给料、排料或振动时,粗粒和细料以及密度大和密度小的会产生分离,这种现象称为离析(171页)。
7. 假塑性流动:非牛顿流体表观粘度随着剪切应力或剪切速率的增大而减少的流动(42页)。
8. 塑性流体:当作用在物质上的剪切应力大于极限值时,物质开始流动,否则,物质就保持即时形状并停止流动,具有这种性质的流体称为塑性流体(44页)。
9. 分辨阈:指感觉上能够分辨出刺激量的最小变化量(110页)。
10. 刺激阈:指能够分辨出感觉的最小刺激量(110页)。
11. 食品分散体系:(32页)第二章食品的主要形态与物理性质1. 构成物质的分子内原子之间的几何排列称为分子结构,分子之间的几何排列称为聚集态结构。
(4页)2. 食品材料的质构和流变性是其内部分子和原子间相互作用力的宏观表现。
键合原子间的吸收力有键合力;非键合原子间、基团间和分子间的吸收力有范德华力、氢键和其它作用力。
(5页)3. 键合力包括共价键、离子键和金属键,在食品中主要是共价键和离子键。
(5页)4. 蛋白质构象容易发生变化,是由于连接氨基酸的肽键键能较高。
5.范德华力包括静电力、诱导力和色散力。
永远存在于一切分子之间的吸引力,没有方向性和饱和性。
静电力:极性分子间的相互作用力,由极性分子的永久偶极之间的静电相互作用引起。
诱导力:当极性分子与其它分子相互作用时,其它分子产生诱导偶极。