蠕变、应力松弛、滞后和内耗讲解
- 格式:ppt
- 大小:2.41 MB
- 文档页数:33
第二章名词解释1.凝聚态:根据物质的分子运动在宏观力学性能上的表现来区分为固体、液体、气体。
2.单分子链凝聚态:大分子特有现象,高分子最小单位。
3.内聚能:1mol凝聚体汽化时需要的能量,△E = CE =△HV-RT(△HV——摩尔蒸发热,RT——汽化时做膨胀功)4.晶胞:晶体结构中具有周期性排列的最小单位。
5.晶系:晶体按其几何形态的对称程度。
ler指数:是一种特殊的,以结晶学单胞三条棱为坐标系时确定的指数。
7.单晶:晶体的整体在三维方向上由同一空间格子组成。
8.球晶:浓溶液中析出或熔体中析出,在不存在应力的条件下,形成圆球形的晶体。
9.片晶厚度:结晶聚合物的长周期与结晶度的乘积。
10.结晶度:试样中结晶部分所占的质量分数或体积分数。
11.高分子链的缠结:高分子链之间形成物理交联点,构成网络结构,使分子链的运动受到周围分子的羁绊和限制。
12.聚合物液晶:一些物质的结晶结构受热熔融或被溶剂溶解后,表观上失去了固体物质的刚性,具有流动性,结构上仍保持有序结构,表现各向异性,成为固体-液体过渡状态。
13.溶致液晶:一种包含溶剂化合物在内的两种或多种化合物形成的液晶。
14.热致液晶:加热液晶物质时,形成的各向异性熔体。
15.液晶晶型:向列相(N相):完全没有平移有序手征性液晶(胆甾相,手征性近晶相)层状液晶(近晶A,近晶C )一维平移有序盘状液晶相(向列相ND)16.取向:在某种外力作用下,分子链或其他结构单元沿着外力作用方向择优排列的结构取向度:f=1/2(3cos2θ-1)(θ:分子链主轴与取向方向之间的夹角,称为取向角)17.双折射:一条入射光线产生两条折射光线的现象。
18.相容性:共混物各组分彼此相互容纳,形成宏观均匀材料的能力。
19.多组分聚合物:多组分聚合物又称高分子合金,指该体系中存在两种或两种以上不同的聚合物组分,不论组分之间是否以化学键相互连接。
20.自组装:基本结构单元(分子,纳米材料,微米或更大尺度的物质)自发形成有序结构的一种技术。
高分子物理作业-2-答案聚合物的力学状态及转变1. 解释名词:(1)聚合物的力学状态及转变由于高分子链之间的作用力大于主链的价键力,所以聚合物只具有固态和液态力学状态。
随着温度的升高,分子热运动能量逐渐增加,当达到某一温度时,即可发生两相间的转变。
(2)松弛过程与松弛时间松弛过程:在一定温度和外场(力场、电场、磁场等)作用下,聚合物由一种平衡态通过分子运动过渡到另一种与外界条件相适应的、新的平衡态,这个过程是一个速度过程。
松弛时间τ是用来描述松弛快慢的物理理。
在高聚物的松弛曲线上,∆x t ()变到等于∆x o 的1/e 倍时所需要的时间,即松弛时间。
(3)自由体积与等自由体积状态 分子中未被占据的体积为自由体积;在玻璃态下,由于链段运动被冻结晶,自由体积也被冻结,并保持一恒定值,自由体积“孔穴”的大小及其分布也将基本上维持固定。
因此,对任何高聚物,玻璃温度就是自由体积达到某一临界值的温度,在这临界值以下,已经没有足够的窨进行分子链的构象调整了。
因而高聚物的玻璃态可视为等自由体积状态。
(4)玻璃态与皮革态当非晶态高聚物在较低的温度下受到外力时,由于链段运动被冻结,只能使主链的键长和键角有微小的改变,因此从宏观上来说,高聚物受力变形是很小的,形变与受力和大小成正比,当外力除去后形变能立刻回复。
这种力学性质称为普弹性,非晶态高聚物处于具有普弹性的状态,称为玻璃态;部分结晶聚合物,存在玻璃化转变与高弹态,但由于晶区链段不能运动,此时玻璃化转变不再具有很大弹性的高弹态,而表现为具有一定高弹性、韧而硬的皮革态,即皮革态。
2. 试定性地绘出下列聚合物的形变—温度曲线(画在一张图上)1) 低分子玻璃态物质 2) 线性非晶态聚合物(1M )3) 线性非晶态聚合物(212,M M M 〉212,M M M 〉>1M ) 4) 晶态聚合物(1M )5) 晶态聚合物(212,M M M 〉212,M M M 〉>1M ) 6) 交联聚合物(交联度较小) 7) 交联聚合物(交联度较大)3. 判断下列聚合物(写出分子式)的Tg 的高低,阐述其理由:1) 聚乙烯、聚对苯二甲酸乙二酯、聚苯、聚二甲基硅氧烷 2) 聚氯乙烯、聚氯丁二烯、聚偏二氯乙烯、顺式1,4聚丁二烯 3) 聚乙烯、聚异丁烯、聚苯乙烯、聚乙烯基咔锉 4) 聚乙烯、聚丙烯、聚氯乙烯、聚丙烯腈5) 聚甲基乙烯基醚、聚乙基乙烯基醚、聚正丙基乙烯基醚、聚正丁基乙烯基醚1) 聚乙烯、聚对苯二甲酸乙二酯、聚苯、聚二甲基硅氧烷CH 2CH 2n聚乙烯CO C OO CH 2CH 2On聚对苯二甲酸乙二酯n聚苯Si CH 33On聚二甲基硅氧烷聚二甲基硅氧烷<聚乙烯<聚对苯二甲酸乙二酯<聚苯理由:当主链中引入苯基、联苯基、萘基和均苯甲酸二酰胺基等芳杂环以一,链上可以内旋转的单键比例相对减少,分子链的刚性增大,因此有利于玻璃化温度的提高。
力学性能指标及定义:脆性材料:弹性变形,然后断裂塑性材料:弹性变形,塑性变形低塑性变形材料:无颈缩高塑性材料:有颈缩弹性:是材料的可逆变形。
本质:晶体点阵内的原子具有抵抗相互分开、接近或剪切移动的性质。
弹性模量Ε:表明材料对弹性形变的抗力,代表了材料的刚度。
(斜率)弹性极限ζe:材料发生最大弹性形变时的应力值。
弹性比功W e:材料吸收变形功而又不发生永久变形的能力。
W e=1/2ζeεe=εe2/2Ε(面积)普弹形变(高分子):应力与应变的关系符合胡克定律,变形由分子链内部键长和键角发生变化产生。
高弹形变(高分子):分子链在外力作用下,原先卷曲的链沿受力方向逐渐伸展产生,伸展长度与应力不成线性关系。
弹性的不完整性:应变滞后于应力。
本质:组织的不均匀性,使材料受应力作用时各晶粒的应变不均匀或应变明显受时间的影响。
弹性后效:加载时应变落后于应力而和时间有关的现象称为正弹性后效;反之,卸载时应变落后于应力的现象称为反弹性后效。
弹性滞后:由于正反弹性后效使得应力-应变得到的封闭回线内耗:加载时消耗于材料的的变形功大于卸载时材料所放出的变形功,因而有部分变形功被材料所吸收,这被吸收的功为内耗。
(例子:①音响效果好的元件要求内耗小such as音叉、琴弦等②机件在运转时常伴有振动,需要良好的消振材料such as灰口铸铁)包申格效应:金属材料预先经少量塑性变形后再同向加载,弹性极限升高,反之降低的现象。
与位错运动所受阻力有关。
(例子:高速运转部件预先进行高速离心处理,有利于提高材料的抗变形能力。
)超弹性材料:材料在外力作用下产生远大于其弹性极限时的应变量,外力去除自动恢复其变形的现象。
脆性:弹性极限前断裂(断裂前不产生塑性变形的性质)韧性:断裂前单位体积材料所吸收的变性能和断裂能,即外力所作的功①弹性变形能②塑性变形能③断裂能塑性:材料在断裂前发生的永久型变形(不可逆变形)塑性变形:位错在外力的作用下发生滑移和孪生。
聚合物的黏弹现象及理解———蠕变及应力松弛概念解析李丽萍(东北林业大学理学院,黑龙江哈尔滨150040)摘要:针对《高分子物理》课程中黏弹现象难于理解,作者根据教学经验对聚合物的黏弹性进行解析,通过理论联系实际,让学生加深对黏弹现象的理解,对于提高学生对课程的整体认识,强化学生对课程的理解,取得了良好的教学效果。
关键词:黏弹性;蠕变;应力松弛中图分类号:G642文献标志码:A文章编号:1674-9324(2015)11-0206-02同一物体即可以是弹性的,也可以是黏性的,主要因环境温度或外力作用速率不同,在某些条件下主要表现为弹性,而在其他条件下主要表现黏性。
聚合物的这种特性称为黏弹性,对于黏性材料,应力不能保持恒定,而是以某一速率减小到零,其速率取决于施加的起始应力值和材料的性质。
这种现象称为应力松弛[1,2]。
在应力保持不变的情况下,材料可随时间继续变形,这种性能就是蠕变或流动,因此高分子材料具有黏弹性。
材料的黏弹性能主要表现在蠕变和应力松弛两个方面。
蠕变与力学松弛是材料在加载完成能够以后的力学反应,或衡量材料在使用过程中的尺寸稳定性[3,4],本文结合聚合物的分子运动,阐述聚合物的蠕变和应力松弛过程。
一、蠕变(Creep)1.蠕变概念解析。
蠕变,是在一定温度及应力下,固体材料缓慢永久性的移动或者变形的趋势。
即在较小的恒定外力作用下,应变随时间延长而慢慢增加的现象。
它的发生是低于材料屈服强度的应力长时间作用下,材料内部通过链段与网链的蠕动、变形、调整位置,逐步达到与外应力相平衡的过程。
它不同于塑性变形,塑性变形通常在应力超过弹性极限之后才出现,发生塑性形变时,微观结构相邻部分产生永久性位移,在外力去除后形变不能恢复,而蠕变只要应力的作用时间相当长,它在应力小于弹性极限时也能出现,当卸去载荷时,材料的变形部分地回复或完全地回复到起始状态。
由于高聚物既有弹性又有黏性,所以外力对他所做的功一部分以弹性能的形式储存起来,另一部分又以热的形式消耗掉。
第7章聚合物的粘弹性1.举例说明聚合物的蠕变、应力松弛、滞后和内耗现象。
为什么聚合物具有这些现象?这些现象对其的使用性能存在哪些利弊?2.简述温度和外力作用频率对聚合物内耗大小的影响。
画出聚合物的动态力学普示意图,举出两例说明谱图在研究聚合物结构与性能方面的应用。
3.指出Maxwell模型、Kelvin模型和四元件模型分别适宜于模拟哪一类型聚合物的那一种力学松弛过程?答:Maxwell模型适宜于模拟线形聚合物的应力松弛过程,Kelvin模型适宜于模拟交联聚合物的蠕变过程,四元件模型适宜于模拟线形聚合物的蠕变过程。
4.什么是时温等效原理?该原理在预测聚合物材料的长期使用性能方面和在聚合物加工过程中各有哪些指导意义?答:(1)升高温度与延长时间对分子运动是等效的,对聚合物的粘弹行为也是等效的,这就是时温等效原理。
(2)需要在室温条件下几年甚至上百年完成的应力松弛实验实际上是不能实现的,但可以在高温条件下短期内完成;或者需要在室温条件下几十万分之一秒或几百万分之一秒中完成的应力松弛实验,可以在低温条件下几个小时甚至几天内完成。
5.定量说明松弛时间的含意。
为什么说作用力的时间相当时,松弛现象才能被明显地观察到?答:(1)松弛时间是粘性系数和弹性系数的比值;(2)如果外加应力作用时间极短,材料中的粘性部分还来不及响应,观察到的是弹性应变。
反之,若应力作用的时间极长,弹性应变已经回复,观察到的仅是粘性流体贡献的应变,材料可考虑为一个简单的牛顿流体。
只有在适中的应力作用时间,材料的粘弹性才会呈现,应力随时间逐渐衰减到零,这个适中的时间正是松弛现象的内部时间尺度松弛时间τ。
6.简述聚合物粘弹理论的研究现状与展望。
答:略。
7.一某种聚合物材料作为两根管子接口法兰的密封垫圈,假设该材料的力学行为可以用Maxwell模型来描述。
已知垫圈压缩应变为0.2,初始模量为3e6N/m2,材料应力松弛时间为300d,管内流体的压力为0.3e6N/m2,试问多少天后接口处将发生泄露?答:208d。
一、 名词解释1、 织态结构:在聚合物中掺杂添加剂或其他杂质,或将性质不同的两种聚合物混合起来成为多组分复合材料,这种不同聚合物之间或聚合物与其他成分之间的堆砌排列称织态结构。
2、 玻璃化转变温度:聚合物从玻璃态到高弹态之间的转变称为玻璃化转变,对应的转变温度称为玻璃化转变温度,以Tg 表示。
3、 逐步聚合反应:逐步聚合反应反映大分子形成过程中的逐步性。
反应初期单体很快消失,形成二聚体、三聚体、四聚体等低聚物,随后这些低聚物间进行反应,相对分子质量随反应时间逐步增加。
在逐步聚合全过程中,体系由单体和相对分子质量递增的一系列中间产物所组成。
绝大数的缩聚反应属逐步聚合反应。
4、 凝胶点:体型缩聚反应的特点是当缩聚反应进行到一定反应程度时,反应体系的粘度突然增加,出现凝胶现象,产生既不溶解也不熔融的体型高聚物,此时的反应程度为凝胶点。
5、 粘弹性:粘弹性是高分子材料的重要性质之一,是指聚合物既具有粘性又具有弹性的性质,实质是聚合物的力学松弛行为。
6、 弹性模量:弹性模量=应力/应变 材料受力方式不同,对于理想的弹性固体,应力σ与应变ε成正比,即服从虎克定律:E=【σ/ε】ε→0 =【(F /Ao)/(△l/lo)】△l→0 式中:E为比例常数,称为弹性模量,或杨氏模量,简称模量,反应高聚物的硬度或刚性,E越大,刚性越大,越不易变形。
Ao是表面积;F是不断在改变的力;△l为系统厚度的改变值;lo是系统原有厚度。
7、 内耗:如果形变的变化落后于应力的变化,发生滞后损耗现象,则每次循环变化中要消耗功,称为内耗。
聚合物的内耗大小与聚合物本身的结构有关,同时还受温度的影响。
8、 蠕变:在一定温度和应力作用下,材料的形变随时间的延长而增加的现象称为蠕变。
一切集合物在形变时都有蠕变现象,蠕变和应力松弛一样,都是因为分子间的黏性阻力使形变和应力达到平衡需要一段时间,因此,蠕变是松弛现象的另一种表现形式。
9、 昙点:某些含聚氧乙烯基的非离子表面活性剂的溶解度开始随温度上升而加大,到某一温度后其溶解度急剧下降,使溶液变浑浊,甚至产生分层,但冷却后又可恢复澄明。
蠕变应力松弛相关介绍百若试验仪器服务范围:全系列电子萬能试验机、全系列电液伺服萬能试验机、全系列电液伺服压力试验机、全系列电液伺服疲劳试验机、应力腐蚀裂纹扩展速率试验机、应力腐蚀慢应变速率试验机、板材成形试验机、杯突试验机、紧固件横向振动疲劳试验机、多功能螺栓紧固分析系统、扭矩轴力联合试验机、松弛试验机、锚固试验机、扭转试验机、冲击试验机、压剪试验机、液压卧式拉力试验机、光缆成套试验设备等。
百若试验仪器就来说说蠕变应力松弛相关介绍蠕变定义:蠕变是在应力影响下,固体材料缓慢永久性的移动或者变形的趋势。
它的发生是低于材料屈服强度的应力长时间作用的结果。
这种变形的速率与材料性质、加载时间、加载温度和加载结构应力有关。
取决于加载应力和它的持续时间和环境温度,这种变形可能变得很大,以至于一些部件可能不再发挥它的作用。
阶段过程:1初步蠕变,形变率相对较大,但是随着应变的增加减慢。
2稳态蠕变,形变率达到一个最小值并接近常数,“蠕变应变率”就是指这一阶段的应变率。
3颈缩现象,应变率随着应变增大指数性的增长晶体蠕变(考虑金属)公式: Q m kTb d C e dt d εσ-=其中:ε是蠕变应变,C 是一个依赖于材料和特别蠕变机制的常数,m 和b 是依赖于蠕变机制的指数,Q 是蠕变机制的激活能,σ是加载应力,d 是材料的晶粒尺寸,k 是波尔兹曼常数,T 是绝对温度。
位错蠕变在相对于剪切模量的高应力条件下,蠕变是一个受位错控制的运动。
当应力加载在材料上时,由于滑移面中的位错移动而塑性变形发生。
位错蠕变中,self diffusion Q Q -=,46m =:,0b =。
因此位错蠕变强烈依赖于加载应力而不依赖于晶粒尺寸。
引入初始应力0σ,低于初始应力时无法测量。
这样,方程就写成0()Q m kT d C e dtεσσ-=-。
Nabarro-Herring 蠕变在N-H 蠕变中,原子通过晶格扩散,造成晶粒沿着应力轴伸长。
01聚合物蠕变蠕变在恒定温度、较小的恒定外力作用下,材料的形变随时间的增加而逐渐增大的现象,称为形变。
蠕变过程中包括三种形变:(1)瞬时普弹形变(虎克弹性)特征:施加应力,形变瞬时产生,除去外力,立即恢复。
(2)高弹形变特征:通过链段的运动逐渐展开,形变量大,且形变的发展与时间有关,恢复也是逐渐进行的。
(3)黏性形变——永久变形特征:黏性形变的发展与时间呈线性关系,外力除去后,不能恢复。
例如,软PVC丝悬挂一定重量的砝码,就会慢慢地伸长,解下砝码后,又会慢慢缩回去,这就是典型的蠕变现象。
对于工程塑料,要求蠕变越小越好,对于蠕变严重的材料,使用时需采取必要补救措施。
如硬PVC有良好的抗腐蚀性能,可用于加工化工管道、容器等设备,但它容易蠕变,使用时必须增加支架以防止蠕变.PFTE是塑料中摩擦系数最小的,由于其蠕变现象严重,所以不能用作机械零件,但却是很好的密封材料.为探究GFRP锚杆在循环荷载下的黏结锚固性能,在软岩地基边坡开展GFRP 锚杆现场拉拔试验,通过光纤光栅应变传感器测量技术进行研究。
结果表明:循环荷载作用下锚杆杆体与锚固体的黏结蜕化深度小于锚杆的有效锚固长度,黏结蜕化深度以上锚杆杆体与锚固体界面提供摩擦力,黏结蜕化深度以下提供黏聚力。
当锚固界面受到破坏时,黏聚力将失去作用。
锚杆同-锚固深度处循环荷载作用的次数越多,锚固界面的黏结蜕化现象越严重;不同锚固深度处循环荷载作用的次数越多,黏结蜕化现象反而越不明显。
图7为GFRP锚杆杆体应变时程曲线,表明不同循环荷载对锚杆杆体黏结蜕化作用的影响。
通过多变量控制下的GFRP锚杆静载和反复荷载试验发现:在静载和反复荷载试验下,GFRP锚杆的破坏形式均为杆体拔出破坏;在反复荷载作用下,较少的循环次数对GFRP筋与混凝土黏结强度和锚杆滑移量影响不明显,当在低应力水平、反复荷载循环次数较少时,GFRP锚杆黏结强度退化不显著,反而在一定程度上有所增加;而在高应力反复荷载作用下,GFRP筋与混凝土间的黏结强度降低,黏结性能退化比较明显。
弹簧的蠕变和松弛蠕变和弹簧松弛当弹簧两端施加一定的拉应力(低于弹性极限)时,弹簧会产生一定的伸长量,但随着时间的推移,伸长量会缓慢增加,称为蠕变。
钢丝的蠕变通常由缓慢到加速再到断裂。
常温下钢丝的蠕变不明显,但随着温度的升高会加速。
工程使用弹簧在一定温度下一段时间内产生一定程度的变形。
增加应力以定义蠕变极限。
例如,200002.0s / 10000 = A表示弹簧在200℃下工作1小时,导致0.002%的变形。
需要一个(MPa)的应力。
当弹簧发生一定的变形时,会产生一定的应力,但随着时间的推移,应力会逐渐减小,称为应力松弛。
例如,要用螺栓紧固一个零件,你需要转动螺母使螺栓变长,产生一些弹性变形和相应的压缩应力。
在较高的温度下,经过一段时间,螺栓位置虽然没有改变,但压应力逐渐减小,称为应力松弛。
随着时间的推移,弛豫是由弹性变形的零件转变为塑性变形而引起的。
松弛率:经过一段时间后,应力降低值与原始应力之比为(Ro- rn / Ro) 100%。
残余应力:一般为105几小时后残余应力Rr值越高,材料的抗松弛性能越好。
蠕变和松弛是弹簧稳定性的指标。
其共同的特点是随着温度的升高和时间的延长,性能变得更加明显。
蠕变性能的影响因素有:①钢中气体和夹杂物的含量较低,而蠕变很小。
②粒度:粗晶粒钢具有较高的抗蠕变性。
③合金元素的固溶强化效果:少量的各种合金可以提高抗蠕变性。
④分散降水在第二阶段可以提高抗蠕变性。
松弛是弹性滞后的一种反映。
主要取决于钢的化学成分和微观结构。
当然,即使你了解弹簧在这个产品中的重要作用,如果弹簧的质量不好,影响也会很大。