电子管的调整
- 格式:doc
- 大小:35.00 KB
- 文档页数:4
胆机电路调试要点胆机电路调试要点(曾发表于2004《电子报》合订本副刊)一、胆机电路的基本组成:1,电源供给:(1)电源变压器是一种通过电磁的作用把交流电压升高或降低的器件,它担负着整机电源能量的供给。
要求它:所供给每级负载的电压值要准确、稳定,允许偏差不得超过所需值的5% ,带负载的能力要强,电源内阻要小,即使负载工作在峰值状态时电压也应该保持不变或基本不变。
在长时间工作时,不得有过热、振动或其他异常现象。
电源变压器在整机担负着重要使命,它的品质优劣直接影响了放大器的安全性稳定度以及信躁比、动态范围的指标。
使用在胆机中的电源变压器,大多以环型、E I型、C 型等种类,这几种铁芯对功率的转换效率有所不同,在设计和运用时应加以注意。
(2)整流器是利用二极管的单向导电特性,把交流电压转换为脉动的直流电。
它可分为电子管整流和晶体管整流。
电子管整流分为半波整流(图 1 .1 )和全波整流(图1 .2 )。
电子管全波整流需要两个高压绕组,还要一组电流较大的整流管灯丝电压,这样增加了变压器的功耗;半波整流器效率低,在胆机电路里只适用于电流波动较小的栅极电路里。
由于电子管自身的特性(内阻较大、热损消耗大),所以现在商品机大多不采用。
当然也有追求纯胆(无半导体器件)放大器的发烧友仍在使用。
晶体管整流则分为半波整流(图1.3),全波整流(图1.4 ),桥式整流(图1.5)及倍压整流(图1.6 )。
桥式整流和全波整流则以效率高(输出的电压是交流电压有效值的0.9 倍)、内阻小(压降0.7 伏)、反应速度快,桥式整流只需一个高压绕组等优点。
目前使用较为广泛。
(3)滤波器是把经过整流后的脉动直流电变为较平稳的直流电。
它的电路组成有;单只电容式又称C 型滤波器(图2 .1);即在负载两端并联一只容量较大的电容器,这种滤波器的滤波效果与电容器的容量、负载电流大小有关,容量越大它所储存的电荷能量就越大,释放给负载的能量越大;相反,电容量越小,加在负载两端的脉动成分越大。
制作一部电子管机,要想获得好声,在线路的设计或选用,元件的搭配,制作工艺和调校工作等方面都有一定的要求。
本文就谈谈这方面的体会,供焊机者参考。
线路电子管放大器要想出好声,设计的线路应简单、阻容元件少、放大线路级数少,以减少失真,因此早年的单端输出功放机只有一级电压放大和一级功率放大,前级放大器只有两级共阴极电压放大,甚至只有一级电压放大和一级阴极输出器。
阴极输出器(又称缓冲级)虽然没有电压增益,但有很好的过滤缓冲作用和阻抗转换性能,使输出阻抗降低,能与后级功放很好的匹配,还将前级电压放大管与后级功放加以隔离,消除相互干扰杂声,避免工作不稳定现象。
如果功率放大器的输入级是阴极输出器,还能提供足够的推动电流(因阴极输出器一般用屏极较大的胆管),可减少失真,所以有的古董名机(如Marantz 9)输入级就设计为缓冲级。
级间尽量采用直接耦合的方式,因为耦合电容的容量和素质对频响和音色的影响较大。
用直接耦合则信号的传递非常轻松自如,且微弱信号的损失也小,为整机有出色的表现创造了条件。
虽然各种电子管机线路基本相同,但选管却不尽相同,如有的爱用EL34,有的则喜欢用6L6,只要设计、校声得法,都可以制造出音色独特的放大器。
电子管放大器常用的功放电路,有A类放大单端输出电路,B类或AB类推挽放大输出电路,还有无输出变压器的OTL电路等。
A类放大单端输出电路简单,元件少,并且无交越失真。
若从听音乐的角度,单端A类放大的胆机声最靓、最纯美。
虽然输出功率较小,但控制力好、反应快,音色细幼、清晰,频响较宽。
单端输出机比较适合直热式三极功放管,如2A3、300B、211、845等。
因为三极功放管线性好,谐波失真低。
当用2A3、300B单端输出嫌输出功率小时,可用两管并联的方法增加输出功率,但输出阻抗也会降低一半。
现有高手用并联输出,而仍用原输出变压器,同样获得靓声,推挽式输出机要求两只功放管特性要相同,并且为了得到正负相反的两个信号,必须有一个分相器,所以电路比较复杂。
电子管负反馈的常见电路图及处理流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!电子管负反馈的常见电路图及其处理流程解析电子管负反馈是电子工程中的一种重要技术,它能改善放大器的性能,提高其稳定性、线性和频率响应。
可调电阻102阻值范围可调电阻是电子元器件中比较常见的一种,它可以根据需要调节其阻值大小,以达到控制电路中流过的电流的目的。
可调电阻一般由阻值元件和转动机构(也有的是推杆机构)组成,通过对转动机构的调整来改变阻值大小。
常见的可调电阻有可变电阻器、可调电位器、压敏电阻等,下面我们就以可变电阻器为例,就其阻值范围进行详细介绍。
可变电阻器的阻值范围,主要分为两种,一种是线性调整的,即阻值可以根据一定的线性规律变化,一种是非线性调整的,阻值变化规律并不符合线性规律。
一般情况下,可变电阻器的阻值范围都是由生产厂家事先设计并制造好的,用户在购买的时候可以根据需要来选择适合自己使用的可变电阻器。
首先是线性可变电阻器,其阻值范围一般为20欧姆到10兆欧姆,可以满足一般电路中对于阻值精度的要求。
线性可变电阻器根据阻值变化规律可以分为两种,一种是单圈式,另一种是多圈式。
单圈式可变电阻器一般用在阻值较小的情况下,多圈式可变电阻器则用在阻值较大的情况下。
其阻值调节范围一般为1KΩ-100KΩ.其次,非线性可变电阻器,其阻值范围主要用于电子管、半导体器件的偏置、偏流、限幅、放大等各种电路中,其特性分为指数型、对数型、正切型和反正切型等几种。
这类可变电阻器的阻值范围一般为几百欧姆到数兆欧姆,不存在所谓的“标准值”,只有特定的功能,所以其阻值的检测也相对困难,需要采用一些特殊的检测手段。
总的来说,可调电阻的阻值范围是相对宽泛的,通过选择合适的可调电阻,可以在不同的电路中实现各种不同的控制需求。
值得注意的是,由于可调电阻的调节精度依赖于工作条件和制造工艺等多方面因素,因此需要在实际选型时结合具体的使用情况来进行选择,以达到最佳的控制效果。
电子管(的基本原理)与吉他音色产生的关系!多年来,由各种品牌,各种型号,不同形状,尺寸,构造的电子管(又叫真空管)总是与一些很著名的音箱。
例如:"Marshall"音色一起被提及,并且有着很好的理由--他们是“Marshall之声”所有组成部分中的精髓(?).在此,希望我们一起来讨论研究下,电子管与我们吉他音色产生的必要联系!先这些炽热的玻璃小管子是怎样工作的开始说起...1背景摘要诞生于1904年的电子管可以称的上是当今电子工业的祖父了,到了上世纪40年代末期时,电子管更是随处可见--在收音机,电视,工业制造业的机器,电话系统,甚至第一台电脑。
(顺便说一句,世界上第一台电脑可跟现在的笔记本电脑有着天壤之别,它有令人难以置信的30吨重,并且有一整间屋子那么大!)之后,在1948年,可以在较低的温度下工作并且免维修的晶体管的出现使得电子管逐步退出了历史舞台。
到了70年代中期的时候,几乎所有现代电子设备的身上已经找不到电子管的踪影了,当然这不包括那些昂贵的HI-FI器材和一些摇滚乐所用的音箱——尤其是象Marshall这种的2名字的来源?电子管(valve)一词是热电子管(thermionic valve)的缩写,现在英国人称之为“valve”,而大西洋彼岸的美国人则叫它“tubes” ,凑巧的是“tubes” 又是“electron tube”的简称,有意思的是这两个词组合在一起很好的解释了电子管的工作原理,即电子管(Valve)控制电子(Electrons )在玻璃管(tubes)中流动从而产生热电子效应(Thermionic [heat] action)3电子关是怎样工作的?最简单的电子管就是二极管(diode),这个词是由dielectrode一词衍生而来的,dielectrode的意思按字面解释就是“两个活跃的元件” (在希腊语中di代表二)这两个元件分别被称为“阴极”和“阳极”,他们被放在一个密封好的真空玻璃管中,挨着阴极的地方有一个发热器(就是灯丝啦哈),不管你信不信,这个加热器的任务就是加热阴极,当阴极被加热到适合工作的温度时,它将稳定的放射出电子云,不要指望在电子管工作的时候你可以看见这种“云”,电子是极其微小的,人的肉眼根本不可能看到现在让我们回忆一下在学校上过的物理课吧,电由电子组成,电子的定向移动产生电流,由于电子带的是负电荷所以电流永远都是从负极流向正极的那么现在有一个显而意见的问题:在我们的二极管上的负极所放射出的电子云中究竟发生了什么?4力的相互作用在二极管的正极上接有一个较高的电压,顺便提及用于制作二极管正极的是一种在正常的工作温度下不会放射电子的金属材料.相信大家都知道,我们在家里墙插上所能得到交流电(AC)之所以被称为交流电是因为它在正负极之间不断交换,频率为50次每秒就是我们常说的50Hz在全球范围内,包括英国在内的大多数地区都是这样,但在美国是60Hz(所以我们托朋友从美国带回的效果器什么的需要换电源)总之,使用交流电的结果之一就是接到二极管阳极端的电流在正负之间不断变换,当阳极的电为正时,阴极周围的电子云就被其吸引致使二级管内电流产生流动,当接阳极的电为负时,电子云就保持不动,正如小标题所说,力的作用是相互的,异性互相吸引,同性互相排斥...5单行线这就是说,电子管中的电流只向着一个方向运动,我们称之为直流电(DC),其实我们的二极管所做的正是把交流转换成直流,由于二极管能够有效的将交流电“调整”为直流电,我们也叫它半波整流器,为什么叫“半波”呢?回想一下,由于交流电是不断变化的所以整流器有一半的时间是处于休眠状态的!Marshall 的JTM45 和Vox的AC30 所使用的GZ34 型电子管包含有两个半波整流器他们跟变压起一起工作提供了更大数量的可用直流电,这种电子管也叫做全波整留器。
6n2 屏极电阻
6N2的屏极电阻可以影响它的工作点和输出声音的大小。
在电子管放大器设计中,屏极电阻(也称为板极电阻)是决定电子管工作状态的关键元件之一。
它与电子管的屏极电流(板流)一起决定了电子管的工作点,进而影响到放大器的增益、输出功率和音质。
以下是关于6N2屏极电阻的一些详细信息:
屏极电阻的选择:屏极电阻的选择取决于所期望的屏极电流和屏极电压。
例如,如果Vbb(屏极供电电压)为250V,选择一个120KΩ的屏极电阻,可以得到大约2mA的屏极电流。
调整声音大小:有些爱好者可能会根据自己的需求调整屏极电阻的值来改变声音的大小。
例如,将屏极电阻从10KΩ增加到78KΩ,可以使声音变大。
栅极电阻的配置:6N2的栅极电阻通常配置为470KΩ,并与100KΩ电位器并联,这样可以调节栅极电流,从而调整放大器的增益。
在实际调整屏极电阻时,需要确保电子管的其他工作参数(如栅极电流、阴极电阻等)也要相应匹配,以保证电子管能够在最佳状态下工作。
同时,调整任何电阻值都应该注意不要超过电子管的最大额定值,以免损坏电子管或影响其寿命。
对于6N2这样的电子管,屏极电阻的调整是一个可以优化性能和音质的重要环节,但需要根据具体的电路设计和使用需求来谨慎进行。
新做的FU811
玩电子管有近两年了,做的基本都是一些不值钱的管子,耳朵不够灵敏,
有几只进口管子也听不出好多少,所以一直以来基本是玩国产管。
这次用的是6J1做电压放大,6P6P阴极直偶FU811(换上美国的WL-811还是没听出有太大的变化所以就用国产的了)。
还没有最后调试好所以电路晚点上,不过调试各管的工作点对声音的影响确实不小,特别是第一级的调整,调整负反馈也很重要。
变压器的输出电压比较高,本来是为电子管整流准备的,由于机壳太小就用了晶体管,现在的高压是460V,屏流100mA,屏耗达46W,输出管竟然没有红屏,看来国产的管子还是挺抗折腾得啊。
上图tqs03 内部等调试好了再整理一下。
[本帖最后由 qml2205 于 2009-3-22 18:00 编辑]
1.jpg(41.46 KB, 下载次数: 9)
2.jpg(40.44 KB, 下载次数: 10)
3.jpg(4
4.11 KB, 下载次数: 9)
4.jpg(44.96 KB, 下载次数: 8)。
电子行业电子管基础知识什么是电子管?电子管,也被称为真空管,是一种用于控制电流的电子设备。
它由一个或多个电子极和一个真空腔组成,极内有阴极、阳极和控制极。
与半导体设备相比,电子管具有更高的功率和更好的线性特性。
电子管的结构和工作原理结构电子管的基本结构由以下几个主要部分组成:1.阴极(Cathode):阴极是电子管内的一个金属电极,它发射电子并用于提供电子到其他极的流动。
2.阳极(Anode):阳极是电子管内的另一个电极,它用于吸收来自阴极的电子流并产生输出信号。
3.控制极(Grid):控制极用于控制电子流的大小和方向,以调整阴极和阳极之间的电流。
4.真空腔(Vacuum chamber):真空腔包围着阴极、阳极和控制极,提供高真空环境以防止电子的散射和损失。
工作原理电子管是通过控制极上的外部电压来控制电子的流动。
当控制极施加正电压时,它排斥阴极上的电子,从而减少电子流到阳极的数量。
反之,当控制极施加负电压时,它吸引阴极上的电子,增加电子流的数量。
通过调整控制极的电压,可以精确地控制电子管的输出。
常见的电子管类型三极管三极管是一种最常见的电子管类型之一。
它由三个电极:阴极、阳极和控制极组成。
三极管通常用于放大信号和控制电流。
其中最常见的三极管类型是晶体管,它使用半导体材料构建。
二极管二极管是另一种常见的电子管类型。
它只有两个电极,即阴极和阳极。
二极管通常用于整流电流,将交流信号转换为直流信号。
它也常常用于保护电路免受反向电压的损害。
五极管五极管是一种包含五个电极的特殊电子管类型。
它们通常用于复杂的电路应用,可以实现更复杂的功能。
电子管的优缺点优点1.较高的功率:电子管可以处理高功率电流,适用于需要放大信号的应用。
2.良好的线性特性:电子管在放大信号时具有较好的线性特性,能够保持输入信号的准确度。
3.耐压能力强:电子管可以处理较高的电压,对电压变化较为稳定。
缺点1.较大尺寸:相比半导体器件,电子管的体积较大,需要更多空间进行安装。
直热管应用的关键点——灯丝供电-基础电子设计用于电池供电的直热式电子管(包括1.2V~1.4V的干电池供电管和2V~2.4V蓄电池供电管),为了延长灯丝电池的使用时间,灯丝电流都极小(一般为25mA~200mA)。
因此灯丝直径极细,热惰性(热容量)极小,电压稍有改变,灯丝表面温度就明显变化,导致阴极放射电流的变动,必须用稳定的纯直流供给灯丝电压。
此类电子管的灯丝电子放射能力不仅对50/60Hz正弦电压极为敏感,即使是持续时间极短的脉冲,也会使灯丝温度瞬间升高,轻则形成电子流的波动,增大输出噪声,重则使灯丝超温而放射效率大减,电子管提前老化报废,严重时灯丝被烧断。
所以,用于灯丝供电的稳压器应有较高稳定度和更强的纹波抑制能力。
显然,单纯无源LC、RC滤波器是难以达到的。
另一类直热式电子管,是电子管进入市电应用领域后开发的部分型号,由于旁热式电子管初期制造技术的欠缺,功率较大、电压较高的电子管,如功率放大管、发射机用高压供电功率管,大部分保留了直热式阴极结构。
大功耗电子管灯丝放射能力较强,灯丝功耗必然较大,因而灯丝热隋性也大。
一旦灯丝加热到电子放射的必需温度,即使灯丝电压、电流有瞬时降低,几乎对灯丝温度无影响。
对50Hz/60Hz工频交流电而言,瞬时为零也无影响,这一点为此类直热管允许采用灯丝交流供电的理论根据。
事实上2A3、300B等直热功率管在早期胆机中,也广泛采用交流电作为灯丝电源,但此举并非说明交流灯丝供电对电子管板流完全无影响。
实际上,由于电子管灯丝电流、本体结构、热惰性的差别,交流电瞬时值的变化对放射电流的影响依然存在,只是程度不同而已。
当此类功率管用于输出级,不会有明显的噪声输出,特别是放大系数极低的三极管,由灯丝供电引起的噪声几乎达到可忽视的程度,也是2A3、300B等直热输出管可用交流供电的依据。
虽然2A3允许交流灯丝供电,但并非理想应用方式。
事实上很难使输出级残留噪声达到8Ω端10mY以下。
胆机的调声据我了解,很多初级烧友做胆机时常会遇到这样一个问题,按照网上朋友提供的成熟电路、实测工作点做出来的机器为什么会不好听?不适合自己?那就是你犯了个玩胆机的大忌,只是照方抓药还没有精细调声。
胆机是作出声容易,调声难,调出好声难于上青天。
胆机调声时信号不要加前置放大器等其它的器材,直接用CD接驳信号,这样可调出中性原味真实无修饰的声音,有益于今后配不同线路的前级或成品前级来搭配系统的音色,帮朋友装机时在不了解系统声音时要特别注意这一点,相信照单抓药的同学做出机器后肯定不好听。
在此说到胆机的调声,那么你首先要了解自己系统的声音走向,CD机、前级、音箱、线材等它们是属于通透、冷色、暖色还是臃肿朦糊的,(也就是说器材搭配,同理如果配其它的器材也要先了解已有器材的声音走向,选择搭配器材声音)心里有了谱后,再决定声音朝哪个方向调,调出自己喜欢的音色。
如果您是个人主义者,那么你就调出自己的喜欢的声音,无须他人怎么评说,只要自己听着舒服就是完美。
如果您要顾全大家,注重技术表现,想让更多的烧友夸奖你的DIY器材,善于表现,建议您把机子调得中性一点,这样能够适合大众口味。
但关键要提醒你一下,这个世界上没有一个十全十美的机器,也没有一个十全十美的电路,更别想谁能把机器调得十全十美,哪个厂家的机器会做的完美无暇,否则音响就玩到尽头了。
每个人的听音不同,喜欢的音色不同,你无法把大家的耳朵统一起来,所以音响才有今天的万紫千红各放异彩,所以音响才会觉得好玩。
有很多烧友把经验留起来,再就是把经验有所保留,想说还不说明白,露一手留一手,当然商家例外,这是一种小农思想的表现,只有把经验拿出来与大家交流这才叫好玩,才有乐趣,才能玩法多样,才会使发烧更有生命力。
z1p电子管参数资料
12AX7系列高放大管是一款双三极管式功率管,它把复杂的电路连接到一个管子里,它的特点是线路连接简单,使用维护方便。
它也被称为双三极管、ECC85、6201型,它的大小是和其他类似的12AX7管一样,它是一款12.6英寸高,应用在电子管系统中。
12AX7系列电子管有着出色的放大性能,它有着大于100倍的放大倍数,可以输出高质量的音量,可以在低阻的情况下驱动多种放大器系统,而且它的工作电压稳定性也很强。
接着,12AX7电子管也非常容易操作,由于其特定的结构,它可以轻松的调整放大性能,调整电平,以达到舒适的音量,这种特性让它成为一款非常适合家庭影院,多媒体系统,玩具和游戏系统等国外知名品牌的理想选择。
此外,12AX7电子管还有一个很大的优势就是它有较低的噪音,这意味着它不受外部数字失真与干扰的影响,可以保证清晰而自然的声音,而且它还具有高增益,高质量和低功耗的优势,所以它也可以用来驱动各种装置的信号转换。
总的来说,作为一种放大管,12AX7电子管功能强大,操作性能优异,可以用在各种高级的多媒体系统,玩具和游戏系统中。
它的优势在于可以实现高质量的放大功能,且节约电能,并得到良好的稳定性和高信噪比,从而达到良好的声音效果。
胆机调试注意事项检查电路焊接有无质量问题,焊接工艺有无不当之处。
地线及排线是否合理,是提高调试胆机成功率及提高胆机质量的重要因素。
1通电前的测量直流高压电源对地(高压电路两端)电阻,数值应接近或等于泄放电阻的阻值。
测量交流进电电路与地之间的阻值,数值应该无穷大。
测量输出有无开路(阻值无穷大)或短路(阻值约为零),正常数值应接近负载的直流电阻。
测量电压放大级、推动级电源对地电阻,数值应大于泄放电阻。
2通电后的测量不插功检查电路焊接有无质量问题,焊接工艺有无不当之处。
地线及排线是否合理,是提高调试胆机成功率及提高胆机质量的重要因素。
1 通电前的测量直流高压电源对地(高压电路两端)电阻,数值应接近或等于泄放电阻的阻值。
测量交流进电电路与地之间的阻值,数值应该无穷大。
测量输出有无开路(阻值无穷大)或短路(阻值约为零),正常数值应接近负载的直流电阻。
测量电压放大级、推动级电源对地电阻,数值应大于泄放电阻。
2 通电后的测量不插功放管通电后,测量供给功放级阳极的直流电压值,空载数值应是交流电压有效值的1.2~1.4倍。
测量次高压电压,空载直流电压应接近或等于阳极电压(用稳压电路应等于稳压器输出值)。
测量供给功放管栅极偏压(使用固定偏压),数值应接近预定电压值。
同时应将每只功放管的栅极负压调至最大值(负)。
测量供给电压放大级、推动级电压值,每级阳极电压应接近或等于设置的工作电压值。
调整功放管静态电流,插上功放管接好音箱。
断开环路负反馈电路。
通电开机,将直流电压表接在功放管的阴极上(将黑表笔插在机箱的螺丝孔内红表笔接阴极),调整固定栅偏压可调电阻,边调边观察电压读数。
这个过程中一定要细心,动作要慢,每次调整电位器的幅度一定要小。
用电压表的读数除以阴极电阻值,即是管子的静态电流。
特别要注意的是,调试电子管放大器时不得使用假负载(改变晶体管电路使用假负载的传统观念),应接上音箱。
因为使用假负载时,正反馈啸叫会使较强的超声频率振荡得不到及时发现,在很短的时间内会引起功放管阳极电流急剧增大,导致输出变压器初级绕组过流而烧毁,同时功放管也因超过最大阳极耗散功率导致阳极发红。
用6N2打造靓声胆前级 胆前级电路见附图,是常用的两级阻容耦合电压放大。
电路中全部采用普通元器件,电源变压器是电子管收音机拆机品,型号DB-21-169型,性能可靠。
全新的6N22只、6241只,6元左右,阻流圈用淘汰的8W日光灯镇流器代替,电阻用国产大红袍,电容用国产cz型,电解电容用国产天和牌。
由于元件不多,机座的制作非常灵活,可以根据自己的具体情况决定,形状可圆可方,充分展现DIY的乐趣。
笔者是用2只100mm×200mm×55mm的开关电源外壳拼装而成。
特别要注意电源变压器安装,在机座的相对位置,与电子管的距离越远越好,有条件的尽量将变压器屏蔽。
一、试听、调试 电子管放大器的调试有别于晶体管电路,由于电子管放大器有较高电压,初学者特别要注意安全。
整个电路焊接完毕后,不要急于开机,应仔细对照电路图,有无错接、漏接,检查无误后,再插上电源开机。
打开开关后,手不能离开开关钮,要密切关注,各电子管灯丝应该立即点亮。
一旦有异常声音或者打火冒烟现象,立即关机,问题没有查出并处理好之前,禁止再次开机。
电路正常后,可以进行试听,用CD、MP3、收音机做音源,输出端接600Ω~1000Ω的耳机,耳机里应该播放出音乐,可以进行下一步的细调。
将音源断开,耳机中应有轻微的沙沙声,这是电路的热噪声,是正常的。
如果出现较大的交流声,则是电源部分存在问题。
应逐一检查滤波电路、接地线和电源变压器的静电屏蔽是否接地良好、变压器的安装位置是否合适,应找出故障根源予以排除。
二、调整静态工作点 电子管工作在最佳状态,放音质量才最好,这就需要调整电子管的工作点。
前级放大器一般情况都是工作在甲类状态,电子管的工作点取在栅压一屏流特性曲线的中间点,本机使用的电子管是音频专用管6N2,根据《无线电通信用点真空器件手册》中给出的基本数据和屏极特性曲线,将栅负压调整为-1.5V左右,屏极电流第一级为1.5mA左右,第二级为2mA左右。
电子管功放电路全集一.电子管差分放大电路,用的电子管有ECC83 pdf(12AX7)二.前级放大器电源电路图前级放大器电路如图1所示,左右声道完全相同。
它由两级电压放大加阴极输出器组成,V1为第一级电压放大。
现代数码音源CD、DVD的输出电压一般都在2V左右,信号从IN输入,经R1衰减,通过栅极防振电阻R 2加至V1栅极,V1将信号放大,然后从屏极取出放大后的信号电压经C1耦合到下一级。
W1为V1交流负载的一部分,又是V2的栅极回路,同时起着总音量的控制作用。
V2a为第二级电压放大,将放大后的信号电压直接送到V2b栅极,这就叫做直接耦合。
采用直接耦合的V2a 与V2b屏栅电位一致,在静态时足以使V2b管屏流截止而不工作,在动态时由于信号电压的加入,才能使V2b进人工作状态。
这种直接耦合,由于少用了一只耦合电容,不存在信号的电路损耗。
传输效率高,传真度好,减少了低频衰减,有利于改善幅频特性。
V1、V2a阴极电阻R4、R6都未并接旁路电容,有本级电流负反馈作用,能够提高音质、消除失真。
V2b为阴极输出器,把前级放大的音频信号电压从阴极引出,经C2传送给功率放大器。
阴极输出器具有非线性失真小,频率响应宽的特点,它没有放大作用,电压增益小于1,但它有一定的电流输出,有恒压输出特性,带负载能力很强,推动任何纯后级功率放大器从容不迫、轻松自如。
它的输入阻抗高,输出阻抗低,大约才几百欧姆,能和末级功放很好地匹配,即使用较长的信号线传输,也不会造成高频损失,抗干扰能力强,可以提高信噪比,提高音乐的纯度,音质较好。
一台靓声、工作稳定可靠的放大器,离不开优质的电源作保证,特别是前级放大器,对电源的品质要求相当高,不应有交流声和噪声,哪怕只有一丁点儿,经过功率放大后,都会产生可怕的声压级,会严重影响音质。
6922电子管前级放大器图2是前级放大器的电源电路图,高压部分采用晶体二极管作桥式整流,用扼流圈作n型滤波,电子管稳压供电。
电子管资料---------------------------------------------------------------------型号名称用途---------------------------------------------------------------------12c3p 三极管分米波振荡12g2p 复合管检波,低频电压放大和自动音量控制12h3p 二极管超高频检波及变频12j1s 锐截止五极管小功率放大及高频振荡12k3p 遥截止五极管高频电压放大13p1p 输出五极管束射四极管低频功率放大1b2 复合管检波和低频电压放大1k2 遥截止五极管高频电压放大1z1 二极管电视行回扫回程脉冲电压整流1z11 二极管电视行扫描回程脉冲电压整流1z1b 二极管电视行扫描回程脉冲电压整流1z7b 二极管高频脉冲整流2d1p 二极管分米波波段作检波用2j14b 锐截止五极管高频电压放大2j27 锐截止五极管高频电压放大2j27s 锐截止五极管小功率放大及高频振荡2p19b 输出五极管束射四极管功率放大2p2 输出五极管束射四极管低频功率放大2p29 输出五极管束射四极管小功率发射2p29o 输出五极管束射四极管小功率发射2p29s 输出五极管束射四极管功率放大及高频振荡2p3 输出五极管束射四极管功率放大2z2p 二极管高压整流2z2p-t 二极管高压整流4j1s 锐截止五极管小功率放大及高频振荡4p1s 输出五极管束射四极管振荡及功率放大5z1p 二极管小功率全波整流5z2p 二极管小功率全波整流5z3p 二极管小功率全波整流5z3pa 二极管专用设备整流5z4p 二极管小功率全波整流5z4pa 二极管小功率全波整流5z8p 二极管全波整流5z9p 二极管全波整流6b8p 复合管高频和低频电压放大,检波和自动音量控制 6c1 三极管高频电压放大6c11 三极管超高频振荡6c12 三极管栅地电路中作低噪声超高频放大6c16 三极管宽频带电压放大6c19 三极管稳压电路中作电压调整管6c1j 三极管超高频振荡6c3 三极管宽频带高频电压放大6c3-q 三极管宽频带高频电压放大6c31b-q 三极管电压放大6c32b-q 三极管电压放大6c4 三极管宽频带高频电压放大6c4-q 三极管宽频带高频电压放大6c5d 三极管分米和厘米波波段的小功率振荡6c5p 三极管检波和低频电压放大6c6b 三极管低频电压放大及高频振荡6c6b-m 三极管低频电压放大及高频振荡6c6b-q 三极管低频电压放大及高频振荡6c7b 三极管低频电压放大6c7b-q 三极管低频电压放大6c8p 三极管高频脉冲振荡6d3d 二极管分米波和厘米波的上限作检波用6d4j 二极管高频检波6d6a 二极管检波或整流6d6a-q 二极管检波或整流6d8d 二极管分米波和厘米波的上限作检波和电压测量 6f1 复合管变频或高频电压放大6f2 复合管振荡,混频及高频电压放大6f3 复合管电视帧振荡或脉冲放大和帧扫描输出6g2 复合管检波及低频电压放大6g2p 复合管检波,低频电压放大和自动音量控制6h2 二极管检波及小功率整流6h2-q 二极管检波及小功率整流6h2-t 二极管检波及小功率整流6h6p 二极管检波6h7b-q 二极管高频电压检波及小功率整流6j1 锐截止五极管宽频带高频电压放大6j1-q 锐截止五极管宽频带高频电压放大6j1b 锐截止五极管高频电压放大6j1b-q 锐截止五极管高频电压放大6j2 锐截止五极管混频及宽频带高频电压放大6j2-q 锐截止五极管混频及宽频带电压放大6j20 锐截止五极管宽频带高频电压放大6j23 锐截止五极管宽频带高频电压放大6j2b 锐截止五极管高频电压放大6j2b-q 锐截止五极管高频电压放大6j3 锐截止五极管高频电压放大6j3-t 锐截止五极管高频电压放大6j32b-q 锐截止五极管高频电压放大6j4 锐截止五极管高频电压放大6j4p 锐截止五极管宽频带高频和中频电压放大6j5 锐截止五极管宽频带高频电压放大6j5b-q 锐截止五极管高频电压放大6j8 锐截止五极管低频电压放大6j8p 锐截止五极管高频和中频电压放大6j8p-t 锐截止五极管高频电压放大6j9 锐截止五极管宽频带高频电压放大6j9-q 锐截止五极管宽频带高频电压放大6k1b 遥截止五极管高频电压放大6k3p 遥截止五极管高频电压放大6k4 遥截止五极管高频和中频电压放大6k4-q 遥截止五极管高频和中频电压放大6k5 遥截止五极管高频电压放大6n1 双三极管低频电压放大6n1-m 双三极管专业脉冲设备中作低频电压放大6n1-q 双三极管低频电压放大6n10 双三极管低频电压放大6n11 双三极管低噪声高频电压放大6n12p 双三极管低频电压放大6n13p 双三极管电子稳定电路6n15 双三极管低频电压放大及高频小功率振荡6n16b 双三极管低频电压放大及高频振荡6n16b-q 双三极管低频电压放大及高频振荡6n17b 双三极管低频电压放大6n17b-q 双三极管低频电压放大6n2 双三极管低频电压放大6n2-q 双三极管低频电压放大6n21b-q 双三极管低频电压放大6n3 双三极管高频电压放大6n4 双三极管低噪声电压放大6n5p 双三极管电子稳定电路6n6 双三极管触发器,阻尼振荡器及阴极输出器6n6-q 双三极管触发器,阻尼振荡器及阴极输出器6n7p 双三极管低频功率放大6n8p 双三极管低频电压放大6n8p-t 双三极管低频电压放大6n9p 双三极管低频电压放大6p1 输出五极管束射四极管低频功率放大6p12p 输出五极管束射四极管电视行扫描电路功率及脉冲电流放大 6p13p 输出五极管束射四极管电视行扫描电路放大和振荡6p14 输出五极管束射四极管低频功率放大6p14-q 输出五极管束射四极管低频功率放大6p15 输出五极管束射四极管视频输出电压放大6p15-q 输出五极管束射四极管视频输出电压放大6p25b 输出五极管束射四极管低频功率放大6p30b-q 输出五极管束射四极管低频功率放大6p31b-q 输出五极管束射四极管低频功率放大6p3p 输出五极管束射四极管低频功率放大6p4p 输出五极管束射四极管低频功率放大6p6p 输出五极管束射四极管低频功率放大6p9p 输出五极管束射四极管宽频带功率放大6s6 输出五极管束射四极管宽频带电压和功率放大6t1 输出五极管束射四极管推挽输出6u1 复合管混频6u2 复合管电视同步分离和正弦波振荡6z18 二极管电视行扫描输出电路作阻尼用6z19 二极管电视行扫描输出电路作阻尼用6z4 二极管全波整流6z4-q 二极管全波整流6z4-t 二极管全波整流6z5p 二极管小功率全波整流fu-13 发射管功率放大fu-15 发射管功率放大及振荡fu-15j 发射管功率放大及振荡fu-17 发射管功率放大及高频振荡fu-17t 发射管功率放大及高频振荡fu-19 发射管功率放大及高频振荡fu-25 发射管高低频功率放大,倍频,振荡和阳极调幅fu-27f 发射管 110hz以下功率放大,振荡和调幅fu-29 发射管米波范围内作功率放大,振荡以及在短波范围内作线性放大 fu-29t 发射管米波范围内作功率放大,振荡以及在短波范围内作线性放大 fu-31 发射管米波波段作功率放大和振荡fu-32 发射管米波波段作功率放大和振荡fu-32t 发射管米波波段作功率放大和振荡fu-33 发射管功率放大和振荡fu-400f 发射管大功率音频扩大机,电视发射机fu-46 发射管高频放大,振荡,倍频,调频fu-483f 发射管超高频振荡fu-5 发射管调幅及低频功率放大fu-50 发射管功率放大和高频振荡fu-500f 发射管无线电设备中功率放大和振荡fu-50j 发射管功率放大和高频振荡fu-7 发射管高低频功率放大,倍频,振荡和阳极调幅fu-80 发射管 50mhz频率以下作功率放大和振荡fu-80j 发射管 50mhz频率以下作功率放大和振荡fu-81 发射管功率放大和振荡fu-811 发射管功率放大和振荡fu-81j 发射管功率放大和振荡wf1p 稳压信号发生器稳定输出电压wf2p 稳压信号发生器稳定输出电压及测量电阻噪声仪器 wl10p 稳流稳定电流wl11p 稳流稳定电流wl12p 稳流稳定电流wl1p 稳流稳定电流wl2p 稳流稳定电流wl31p 稳流稳定电流wl3p 稳流稳定电流wl4p 稳流稳定电流wl5p 稳流稳定电流wl6p 稳流稳定电流wl8p 稳流稳定电流wy1 稳压稳定电压wy1-q 稳压稳定电压wy1-t 稳压在特殊设备中作稳定电压用wy10p 稳压稳定电压wy2 稳压在专用设备中作稳定电压用wy202b 稳压高稳定性设备中稳定直流电压或作托持元件 wy2p 稳压稳定电压wy300g 稳压用于高电压小电流电路wy301g 稳压用于高电压小电流电路wy302g 稳压用于高电压小电流电路wy303g 稳压用于高电压小电流电路wy3p 稳压稳定电压wy4p 稳压稳定电压wy5b 稳压稳定电压。
电子管整流管替换表音响设备中使用的电源整流电子管,大多是高真空全波整流管。
同规格的旁热式整流管在最大电流输出时的管压降要比直热式整流管为小,不过直热式整流管比旁热式整流管的耐过载冲击能力要强许多。
5AR4 GT型(Φ33mm)8脚高真空旁热式全波整流管等效管GZ34;类似管GZ32,GZ33(英,Mul.,G管)。
小型高性能整流管,适于较大电流(250mA)电源整流用。
适宜垂直安装,工作时必须有良好的通风。
5R4GY G型(Φ52mm)8脚高真空直热式全波整流管等效管5R4GYB(美,5R4GY的改进型,外形较小,Φ45mm筒形);5R4WGY(美,高可靠),5R4WGB(美,高可靠),5R4WGY(美,高可靠);类似管274B(美,WE,通信用G管)。
适于较高电压电源整流用。
适宜垂直安装,工作时必然有良好的通风。
5U4G G型(Φ52mm)8脚高真空直热式全波整流管等效管VT244(美,军用),CV575(英,军用),5Z10,5U4GB(美,5U4G改进型,外形尺寸较小,为Φ40mm筒形),5Z3P(中,Φ52mmG管),5Y3C(俄,Φ52mm),5Z3PA(中,5Z3P 改进型);5U4WG(美,高可靠),5U4WGB(美,高可靠),5931(美,工业用),WTT135(美,特种用途);类似管U52(英,GEC,G管),GZ31,5Z3(美,底座为4脚,Φ52mmST管)。
适于较大电流(250mA)电源整流用。
适宜垂直安装,工作时必须有良好有通风。
5Y3GT GT型(Φ30mm)8脚高真空直热式全波整流管等效管VT197A(美,军用),CV1856(英,军用),5Z2P(中);5Y3WGT(美,高可靠),6087(美,工业用),6106(美,工业用),6853(美,工业用),WTT102(美,特种用途);类似管U50(英,GEC,G管),80(美,底座为4脚,Φ46mmST管)。
适于中等电流(125mA)电源整流用。
哈克attack2 di盒调试说明前面板布局1,harmonics——调节模拟电子管风格的温暖音色和过载的程度2,mix——调节干琴信号和泛音信号的混合3,treble——提高或削减高频4,shape——调节Hartke单旋钮均衡器电路,预设曲线涵盖频率范围极广5,level——调节整体输出音量6,brite——调节最高频段,bass——提高或削减低频7,on/off led——红色led,指示harmonics、mix和l brite 正在工作8,on/off——脚踏开关harmonics、mix和brite9,shape——脚踏开关Hartke整形均衡电路10,shape led——红色led,指示Hartke整形均衡电路正在工作侧面板布局A,power inlet——电源接口,可接入AD006电源适配器B,phantom on/ground lift——切换幻象电源和电池电源以及接地保护和接地断开C,line output——1/4英时接口,传输线路电平输出信号,其效果取决于pre/post开关D,pre/post—一此开关弹出时,直接输出信号平行于输入信号,不带有效果变化。
按下此开关,direct output输出信号带有效果E,direct output——卡农接口,XLR均衡输出mic信号,其效果取决于pre/post开关F,parallel output——1/4英时接口,输出原声信号到功放G,input——1/4英时接口,连接passive或active贝司接电、供电你可以选用标准9v电池或标准9v电源适配器,也可采用标准48v幻象电源,都很方便。
但是,你要牢记:任何时候都要保证良好的接地。
有时,为了现场扩声或录音的需要,你可能要考虑选用电池使本单元与地面上的其它设备隔绝。
你可以检查一下使用幻象电源和交流电源时是否有杂音,如果有,最好使用电池。
Hey,life's a trade off,so is powering your audio gear.phantom on-off/ground connect/lift switch此开关是同时实现两项功能的闭锁开关,开关探出时,通过XLR 线接地,同时允许本单元通过幻象电源供电。
电子管的调整 电子管功放(胆机)的线路比晶体管机简单,容易制作成功,并且有较好的音乐重播效果,特别是在感情表达方面更是专长,所以胆机复起以后很受发烧友的青睐。胆机最重要的特点就是胆味,阁下所焊的胆机是否也具有温暖、醇厚、顺滑、甜美的胆味呢?如果没有,声底和晶体管机差不多,或比晶体管机还硬、还干涩,或自制的胆前级、缓冲器接入放音系统中,放音系统音色的改变并不像媒体所说的那样“立杆见影”时,就应该测量一下各管的工作点,是否工作在最佳状态上,否则就要进行认真、仔细地调整。只有各电子管工作在最佳工作状态,才能发挥线路和每只胆管的魅力,达到满意的放音效果。
工作点未调好的胆机,除了音色表现不佳以外,还有音量轻和失真的现象出现。一台放大器音质的好坏,影响的因素虽然很多,但最终还是决定于制作的水平。发烧友在制作器材时,一般是根据手中积攒的胆管和元件,再选择优秀的线路或按照名机的线路按图索骥,进行焊接,元件的规格、数值虽然与线路图上的要求相差不大,但由于元件的排位,走线的长短、焊接的质量,或其它方面的差异,如B+电压的高低等原因,都会影响到放音的表现,所以焊出的胆机,不一定是胆味浓浓的。没有胆味不要紧,只要通过适当、合理地调整、校验,使放大器各级胆管工作在最佳状态,便能达到放音的要求。
胆机调整工作的内容,除了将噪声降低至可以接受的程度和更换输入、输出耦合电容的牌号或容量,以改变音色以外,最重要的是调整屏压、屏流和栅负压,使胆管工作在合适的工作点上,使放音系统放出好声,而这一点正是一些文章中谈得较少或用很简单的二句描述带过去了,要不就是“不需任何调整”就可以工作。如果胆管没有进入工作状态,再换名牌电容,胆味也不会出来。
调整胆机时,要根据电子管手册上提供的数据,作为电路的依据,无电子管手册时,要尊重线路图中所给的参数数值或附加的胆管资料进行。三极管的工作点由屏压和栅负压决定,屏压确定后可调整栅负压来调工作点,束射管或五极管的屏压升高到一定程度后,帘栅压的变压会对工作点有较大的影响,因此可调整帘栅压和栅负压来选定工作点。
降低胆机噪音和更换耦合电容调整音色的方法,一些文章已有介绍,本文不再重复,这里就调整胆管工作点的方法谈一谈体会。
一、 栅负压电路 调整胆管的工作点时,经常会涉及到栅负压,因此首先将栅负压电路说一下。电子管是电压控制元件,三大主要电极(灯丝、栅极和屏极)是要供给适当电压的,供给灯丝的称甲电,供给栅极的称丙电,供给屏极的称乙电。栅极电压一般是接的负压,习惯上称“栅负压”或“栅偏压”。为了使胆管工作稳定,栅负压必须用直流电来供给。按胆管的工作类别不同,栅负压的供给有二种方法:一种是利用电子管屏流(或屏流+帘栅流)流经阴极电阻所产生的电压降,使栅极获得负压,则称自给式栅负压,一般用在屏流较稳定的甲类放大电路上。另一种是在电源部分设一套负压整流电路,供给栅负压,称作固定栅负压,主要用于屏极电流变化大的甲乙2类或乙类功率放大级。使用自给式栅负压,胆管比较安全,采用固定式栅负压时,当负压整流电路发生故障,胆管失去栅负压后,屏流会上升过高而烧坏胆管,因此没有自给式栅负压工作可靠。
自给式栅负压产生的过程:电路中电流的流经过程,当电子管工作时,屏极和帘栅极吸收电子,电流从电源高压的负极经阴极电阻RK、屏极、输出变压器初级线圈和帘栅极的电流一起到高压的正极,成为一个负荷回路,当电流流过RK时,RK就产生一个电压降,RK两端的电压,在地线的一端为负极,在阴极的一端为正极。这样,阴极和地线间就有了RK所产生的电位差,栅极电阻R1将栅极和地线连接,所以栅极和阴极间也就有了RK所产生的电位差。由于不同的电子管所需要的栅负压不同,阴极电阻的阻值也不同,如6V6的阴极电阻300Ω,而6L6的阴极电阻170Ω。阴极电阻的阻值可用欧姆定律求得:阴极电阻=栅负压/放大管电流(屏极电流+帘栅极电流)。当栅极输入信号时,屏流立即被控制而波动,阴极电阻上的电流也就是波动的,所产生的电位差也是波动的,阴极电阻上电压波动的相位恰巧和输入的信号相反,因而减弱了输入信号,这种情况通常称本级电流负反馈,这种作用减低了本级放大增益。引起阴极上电压波动成份是音频交流成份,所以一般在阴极电阻上并联一只大容量的电解电容,将交流成分旁路,阴极电阻的直流电压就比较稳定了。
还有一种产生栅负压的方式,称接触式栅负压,产生的过程,这种栅负压是电子管自己产生的,当电子从阴极奔向屏极时,经过栅极,如果栅极上没有任何负压时,电子经过栅极就没受到拒斥,则在奔向屏极的路上就不时碰到栅极上,碰到栅极上的电子就由栅极电阻R回到阴极,电子流动方向是从栅极到阴极,所以电子流过R时产生电压降,栅极是负端,阴极是正端,因为碰触到栅极的电子很少,造成的电流还不到1μA,虽然R的阻值很大,以10MΩ计算,但所产生的电压不过1V左右。这种栅负压供给的方式见得较少,只能用在输入端小信号放大电路,输入信号小于1V的放大级,如拾音器输出只有几mV,用此栅负压电路很合适。
二、 电压放大级的调整 电压放大级担负全机的主要放大任务,不能有失真,所以要求工作在甲类状态。甲类状态时,它的工作点在栅压-屏流特性曲线的线性段的中间,此时,栅负压是放大管最大栅负压的一半,工作电流应在放大管最大屏流的30%~60%之间为宜,不应过小。
调整方法很简单,只要调整阴极电阻的阻值即可,首先将电流表(最大量程稍大于该管最大屏极电流,如6SN7屏流为8mA,可用10mA的电流表)串在阴极回路中,电流表正极接阴极电阻,负极接底盘,若阴极电阻无旁路电容,为了避免电流表和接线对该级工作状态不发生影响,最好在电流表两端并联一只100μ/50V的电解电容。若阴极电阻RK有旁路电容,也可以将电流表串入屏极电路中。然后改变RK的阻值或V1的屏压,使V1的工作点达到最佳状态。也可以用测量阴极电阻RK两端电压的方法,再用欧姆定律(A=V/R)算出电流。
不同的放大管所需要的工作电流不一样,如6SN7可调到3~4mA,胆管屏流增大,声音温暖、丰厚,但噪声也会增大,噪声是电压放大级的重要指标,噪音不能大,所以在调整时一定要噪声和音色兼顾。具体到某一台胆机上,屏极电流调到多少为宜,也可以通过边调边听音来找到一个音色最佳的工作点。
栅负压应大于输入信号电压的摆动幅度,如用6SN7作电压放大,输入信号来自CD机,CD机输出电压为0~2V,则6SN7的栅负压应调到-3V以上。如12AX7、6N3管的栅负压设计为-2V,若输入信号电压较高,可以在输入端设置信号衰减分压电阻,使输入信号电压适当降低,保持不失真放大。
12AX7是音乐化的胆管,一般都喜欢用它制作前级放大器,使整个系统的音乐感更好,在调整工作点时要注意,因为12AX7的屏流很低,最大才12mA。 三、 倒相级的调整
调整倒相级的目的是要输出端的上、下二个输出信号对称相等,以减小失真。 屏-阴分负载式倒相电路,此电路是公认的好声电路,国内外有相当多的名机采用此种电路,电路中V的屏极与阴极输出电压相位相反,而且流过R2、RK的音频电流相等,所以只要R2和RK相等,则屏极和阴极的输出电压大小相等,因而得到相位相反、振幅相等的输出信号,因此一般线路图中都要求此两只电阻要数值相同并配对使用,但实际上由于输出阻抗并不相同,使负载上的输出电压也不是相等的,所以用同一阻值的负载不一定是最佳状态,因此要采用略有差别的阻值,无仪器测量时,可以通过试听是否有明显的失真来判断。本刊1997年举办胆机制作大奖赛时,采用的电路中RK的阻值取43k,稍大于R2(36k),可以得到对称的输出,减小失真。
阴极耦合倒相电路,又称长尾式倒相电路,这个电路的频率特性非常平坦,也是很多名机采用的倒相电路,一般要求两个屏极负载电阻(R1、R2)也要相同,如果测得上、下两个输出电压振幅差较大,或放大器有失真,经调整各管的工作点,失真未能彻底消除时,可试将RK的阻值加大5%~10%左右,可能失真就会小些。
四、 功率放大级的调整 甲类功率放大级,功放管的工作点是在栅压与屏流特性曲线的直线部分,栅极的输入信号的摆动不超过负压范围值,超过时将发生失真。甲类功率放大的特点是工作电流在强信号或弱信号输入时,保持不变,工作稳定而失真低,利用这一特性可检验功放级的工作点是否合适。检验时,将电流表串在功放管的屏极回路中,当栅极有信号输入时,如果功放管的屏流升高,则说明栅极负压过低,若屏流降低,则表明栅负压过高,必须调整到屏流变化最小为止。屏流的大小要适当,屏流大时,音质听感好,失真小些,屏流小时,对胆管的寿命有利,可根据需要来调整。
调整时要注意,不要超过功放管的最大屏耗,甲类工作状态时,功放管的屏压×屏流等于它的静态屏耗,超过后屏极会发红,时间一长就会烧坏功放管,一般要求胆管用到极限值的参数不得多于一个,更不能超过极限参数,屏流一般调到最大屏流的70%~80%为宜。
调整方法是调整阴极电阻R5的阻值,R5的阻值是根据放大管的栅负压、屏流和帘栅极电流的总和而定的,6V6的屏流可调到30mA左右(最大屏流为45mA),阴极电压10V,屏压280~300V。当屏压较高时(300V以上),帘栅压的变化对屏流的影响较大,可适当的调整帘栅压和栅负压选取工作点,有条件者可以将帘栅压采用稳压电路,使功放管工作更稳定。
推挽放大级的调整是使两只推挽功放管要平衡,两只功放管的栅负压和屏流要相等,栅负压不相等时,调整栅负压电位器RP,屏流不一样时,将屏流大的功放管阴极电阻加大或再串上一只电阻,,如果屏极电流相差较大,说明功放管不配对,应换一只功放管。有的线路图上,功放管阴极接一只10Ω电阻,它是为了检查功放管的工作状态的,调整时只要测量此电阻的电压降,就可以知道屏流的增减。
调整屏流时,还应该注意B+电压的变化,如果屏流较大时,B+电压降低很多,则说明电源部分的裕量不够或电源内阻较大,滤波电阻阻值大,扼流圈的线径细或电感量大,可减小滤波电阻阻值或将去功放管屏极的B+接线,改接到滤波电路的输入端,这时虽然B+的纹波较大,但对整机的交流声影响不大,仍可以在能够接受的水平。
五、 负反馈的调整