高等数学形心与质心计算公式
- 格式:docx
- 大小:12.97 KB
- 文档页数:2
材料力学形心计算公式材料力学是研究物质的内部结构和性质以及物质受力和变形规律的一门学科。
在材料力学中,形心是一个重要的概念,它可以帮助我们更好地理解物体的受力和变形情况。
在本文中,我们将介绍材料力学中形心的概念以及形心计算公式。
首先,让我们来了解一下形心的概念。
形心是一个物体几何形状的特征点,它可以用来描述物体的质量分布情况。
对于一个平面图形而言,形心通常是指该图形在均匀质量分布下的质心位置。
而对于一个立体物体而言,形心则是指该物体在均匀质量分布下的重心位置。
形心的计算可以帮助我们分析物体受力和变形的情况,对于工程设计和科学研究具有重要意义。
接下来,让我们来介绍一些常见图形的形心计算公式。
对于一个平面图形而言,常见的形心计算公式包括矩形、三角形、梯形和圆形等。
以矩形为例,其形心的计算公式为:\[ X = \frac{b}{2} \]\[ Y = \frac{h}{2} \]其中,\( X \) 和 \( Y \) 分别表示矩形的形心坐标,\( b \) 和 \( h \) 分别表示矩形的宽度和高度。
对于三角形而言,其形心的计算公式为:\[ X = \frac{a}{3} \]\[ Y = \frac{h}{3} \]其中,\( X \) 和 \( Y \) 分别表示三角形的形心坐标,\( a \) 和 \( h \) 分别表示三角形的底边长和高度。
对于梯形和圆形,其形心的计算公式也可以通过数学推导得出。
这些形心计算公式可以帮助我们在工程设计和科学研究中更好地分析和应用形心的概念。
除了平面图形外,对于立体物体而言,形心的计算也具有重要意义。
常见的立体物体包括长方体、圆柱体和球体等。
这些立体物体的形心计算公式可以通过积分或几何推导得出,它们可以帮助我们更好地理解立体物体的质量分布情况。
在工程设计中,形心的计算可以帮助我们确定物体的受力和变形情况,从而指导工程设计和结构分析。
在科学研究中,形心的计算也可以帮助我们深入理解物体的内部结构和性质,为科学研究提供重要参考。
形心重心的理论计算公式式中V=∑Vi。
在均质重力场中,均质物体的重心、质心和形心的位置重合。
五、均质等厚薄板的重心(平面组合图形形心)公式:令式中的∑A i.x i=A.x c=S y;∑A i.y i=A.y c=S x则S y、S x分别称为平面图形对y轴和x轴的静矩或截面一次矩。
六、物体重心位置的求法工程中,几种常见的求物体重心的方法简介如下:1、对称法凡是具有对称面、对称轴或对称中心的简单形状的均质物体,其重心一定在它的对称面、对称轴和对称中心上。
对称法求重心的应用见下图。
2、试验法对于形状复杂,不便于利用公式计算的物体,常用试验法确定其重心位置,常用的试验法有悬挂法和称重法。
(1)、悬挂法利用二力平衡公理,将物体用绳悬挂两次,重心必定在两次绳延长线的交点上。
悬挂法确定物体的重心方法见图(2)、称重法对于体积庞大或形状复杂的零件以及由许多构件所组成的机械,常用称重法来测定其重心的位置。
例如,用称重法来测定连杆重心位置。
如图。
设连杆的重力为G ,重心C点与连杆左端的点相距为Xc,量出两支点的距离L,由磅秤读出B端的约束力F B,则由∑M A(F)=0 F B.L-G.x c=0x c=F B.L/G(3)、分割法:工程中的零部件往往是由几个简单基本图形组合而成的,在计算它们的形心时,可先将其分割为几块基本图形,利用查表法查出每块图形的形心位置与面积,然后利用形心计算公式求出整体的形心位置。
此法称为分割法。
下面是平面图形的形心坐标公式:(4)、负面积法:仍然用分割法的公式,只不过去掉部分的面积用负值。
3、查表法在工程手册中,可以查出常用的基本几何形体的形心位置计算公式。
下面列出了几个常用的图形的形心位置计算公式和面积公式。
四、求平面图形的形心举例例1 热轧不等边角钢的横截面近似简化图形如图所示,求该截面形心的位置。
解:方法一(分割法):根据图形的组合情况,可将该截面分割成两个矩形Ⅰ,Ⅱ,C1和C2分别为两个矩形的形心。
1 / 2质心计算:由力学可知,位于平面上点(x i ,y i )处的质量为m i (i=1,2,3,…)的几个质点所构成的质点系的c c x c =M y m ,y c =M xm其中:m =∑m i n i=1 质点系中全部质点的质量之和 M y =∑m i ∙x i n i=1 质点系各质点中关于y 轴的静力矩mixi 之和 M x =∑m i ∙y i n i=1 质点系各质点中关于x 轴的静力矩miyi 之和由此可见,质点系m i(i=1,2,3,…)的质心坐标(xc,yc )满足:质量为m =∑m i n i=1,坐标为(xc,yc )的质点M ,关于y 轴和x 轴的静力矩分别与质点系关于y 轴和x 轴的静力矩相等。
利用如上所述的质点系和质心的概念和关系,用定积分微元法讨论均匀薄片的质心。
例:设均匀薄片由曲线y=f(x)(f(x)≥0),直线x=a,x=b 及x 轴所围成,其面密度μ为常数,求其质心坐标(xc,yc )为研究该薄片的质心,首先要将该薄片分成若干个小部分,每一部分近似看成一个质点,于是该薄片就可以近似看成质点系,具体做法如下:将[a,b]区间分成若干个小区间代表小区间[x,x+dx]所对应的窄的长条薄片的质量微元:dm =μydx =μf(x)dx由于d x 很小,这个窄条的质量可近似看作均匀分布在窄条左面一边上,由于质量是均匀的故该条窄带的质心位于点(x,f(x)/2)处,所以相当的这条窄带关于x 轴以及y 轴的静力矩微元dMx 于dMy 分别为:dM x =12∙f(x)∙μ∙f(x)dxdM y=x∙μ∙f(x)dx 把它们分别在[a,b]上作定积分,便得到静力矩M x=μ2∫f2(x)dxbaM x=μ∫xf(x)dxba又因为均匀薄片的总质量为:m=∫dmba =∫μf(x)dxba所以该薄片的质心坐标为:x c=M ym=∫xf(x)dxba∫f(x)dxbay c=M ym=12∫f2(x)dxba∫f(x)dxba温馨提示:最好仔细阅读后才下载使用,万分感谢!。
质心坐标计算公式考研数学知乎以质心坐标计算公式为题,我们来探讨一下质心坐标及其计算方法在数学中的应用。
质心坐标是一种表示几何图形中各点位置的方法,它在解决几何问题和计算几何图形的重心、面积等方面有着广泛的应用。
我们来了解一下什么是质心坐标。
质心坐标又称为重心坐标或质点坐标,是指在一个几何图形中,以各个顶点为基准点,以各边中点为单位向量,来表示一个点在这个几何图形中的位置。
具体来说,对于一个三角形ABC,假设P是这个三角形内的一个点,那么我们可以用向量AP、BP和CP来表示点P的质心坐标。
质心坐标计算公式如下:x = (x1 + x2 + x3)/3y = (y1 + y2 + y3)/3其中,(x1, y1)、(x2, y2)、(x3, y3)分别是三角形的三个顶点的坐标,(x, y)是点P的质心坐标。
质心坐标的计算公式简单明了,可以很方便地计算出一个点在几何图形中的位置。
而质心坐标的应用也非常广泛,例如在计算几何图形的重心时,我们可以通过质心坐标来计算。
重心是一个几何图形的质量中心,也是质心坐标的特殊情况。
对于一个三角形ABC,重心G的质心坐标可以通过将公式中的3改为1来计算得到。
也就是说,重心的质心坐标为:x = (x1 + x2 + x3)/3y = (y1 + y2 + y3)/3质心坐标还可以用于计算几何图形的面积。
对于一个三角形ABC,我们可以通过计算点P的质心坐标和三个顶点的坐标来求得三角形的面积。
具体的计算方法是,假设点P的质心坐标为(x, y),则三角形ABC的面积S可以通过以下公式计算得到:S = (1/2) * [(x1y2 + x2y3 + x3y1) - (x2y1 + x3y2 + x1y3)]质心坐标还可以用于计算几何图形的形心矩。
形心矩是一种描述几何图形形状的参数,它可以用于计算图形的惯性矩、质量矩等。
对于一个几何图形,我们可以通过计算每个点的质心坐标和该点到坐标原点的距离的乘积来求得形心矩。
形心的计算
形心计算是一种用来计算形状的方法,它可以帮助我们确定一个物体的形状轮廓。
形心计算常用于工程设计、建筑设计、物体检测等领域。
让我们来了解一下什么是形心。
形心是一个物体的质心或重心,它代表了物体的平均分布位置。
在二维空间中,形心可以通过计算物体的面积加权平均值来确定。
具体来说,我们可以将物体分割成许多小块,然后计算每个小块的面积和重心位置,最后将所有小块的面积加权平均值作为形心的位置。
形心计算在实际应用中非常有用。
例如,在建筑设计中,我们可以通过计算建筑物的形心来确定建筑物的重心位置,从而合理安排结构和材料的布局。
在物体检测中,形心计算可以帮助我们快速准确地识别物体的形状,从而实现自动化检测和分类。
形心计算的原理相对简单,但是实际应用中可能会遇到一些挑战。
例如,当物体形状复杂或不规则时,形心的计算可能变得困难。
此外,形心计算还可能受到噪声和误差的影响,需要进行适当的处理和校正。
总的来说,形心计算是一种用来计算形状轮廓的方法,它在工程设计、建筑设计和物体检测等领域有着广泛的应用。
通过计算物体的面积加权平均值,我们可以确定物体的形心位置,从而帮助我们进
行合理的设计和判断。
形心计算虽然简单,但在实际应用中可能会遇到一些挑战,需要进行适当的处理和校正。
希望通过形心计算的介绍,能够让读者对这一方法有所了解,并认识到它的重要性和应用价值。
质心坐标计算公式考研数学首先,我们来了解一下质心的概念。
在几何学中,质心是一个几何体的重心,也就是几何体的质量集中的位置。
通常情况下,一个几何体的质心是通过几何体的坐标和质量进行计算的。
在考研数学中,通常会涉及到三维空间内的几何体,如平面、立体等。
对于一个由n个点组成的几何体来说,我们假设每个点的坐标为(xi, yi, zi),而每个点的质量为mi。
那么该几何体的质心的坐标可以通过以下公式计算:质心的x坐标:X = (m1*x1 + m2*x2 + ... + mn*xn) / (m1 + m2 + ... + mn)质心的y坐标:Y = (m1*y1 + m2*y2 + ... + mn*yn) / (m1 + m2 + ... + mn)质心的z坐标:Z = (m1*z1 + m2*z2 + ... + mn*zn) / (m1 + m2 + ... + mn)以上公式中,每个点的坐标和质量都有权重,通过权重的加权平均来得到质心的坐标。
接下来,我们通过一个例子来进一步说明质心坐标的计算过程。
假设有一个三角形ABC,已知点A的坐标为(1,2,3),点B的坐标为(3,4,5),点C的坐标为(5,6,7)。
同时,已知点A的质量为2,点B的质量为3,点C的质量为5、我们需要计算三角形ABC的质心坐标。
根据上述公式,我们可以通过以下步骤进行计算:首先,计算三角形ABC的质心的x坐标:X=(2*1+3*3+5*5)/(2+3+5)=(2+9+25)/10=36/10=3.6然后,计算三角形ABC的质心的y坐标:Y=(2*2+3*4+5*6)/(2+3+5)=(4+12+30)/10=46/10=4.6最后,计算三角形ABC的质心的z坐标:Z=(2*3+3*5+5*7)/(2+3+5)=(6+15+35)/10=56/10=5.6因此,三角形ABC的质心坐标为(3.6,4.6,5.6)。
注意,以上的例子是针对三角形的情况,质心坐标的计算公式适用于任意几何体。
一元函数微积分学在物理学上的应用 速度、加速度、功、引力、压力、形心、质心[][]1.(),()().3.00(),t t t t T t x m m x θθωθ='='=用导数描述某些物理量速度是路程对时间的导数.加速度是速度对时间的导数。
2.设物体绕定轴旋转,在时间间隔0,t 内转过的角度则物体在时刻的角速度当物体的温度高于周围介质的温度时,物体就不断冷却,若物体的温度与时间的函数关系为T=T(t),则物体在时刻t 的冷却速度为T (t).3.一根杆从一端点算起,,段干的质量为则杆在点x 处的线密[][](),().5.T C (T )=q (T ).6. (),().Q Q t Q t T w w t t w t ρ'='''=度是(x)=m (x).4.一根导线在0,t 这段时间内通过导线横截面的电量为则导线在时刻t 的电流强度I(t)=某单位质量的物体从某确定的温度升高到温度时所需的热量为q(T),则物体在温度时的比热某力在0,t 时间内作的功则时刻的功率为例1 .2212,5360,(),2M 55,12,360,(),()522cm AB AM M A x g m x xx m k m x x m x xρρ='=====2设有长为的非均匀杆部分的质量与动点到端点的距离的平方成正比,杆的全部质量为则杆的质量的表达式杆在任一点处的线密度(x)=5x解:m(x)=kx 令得所以(x)=变力作功:变力()F x 沿直线运动从a 到b 所作的功()ba w F x dx =⎰51.53[05][05][,]29.83,8828828m m x x x x dx dx x m dx kN dw dx xw x dx πππ+⋅⋅=⋅⋅∴=⋅=⎰例2(1)(功)一圆柱形的注水桶高为,底圆半径为,桶内盛满了水,试问要把桶内的水全部吸出需作多少功?解:作轴如图所示取深度为积分变量,它的变化区间为,相应于,上任一小区间的一薄层水的高度为,因此如的单位为,这薄层水的重力为把这层水吸出桶外需作的功近似为所求的功为25823462()2kJ π⋅⋅≈2.21,2[,1][2,2]R l Rx R x x Rx R x dx x xdx ρρ>=+++++例2(2)(功)设有一半径为,长度为的圆柱体平放在深度为的水池中,(圆柱体的侧面与水面相切,设圆柱体的比重为())现将圆柱体从水中移出水面,问需作多少功?解:分析:依题意就是把圆柱体的中心轴移至处,计算位于上的体积微元移至时所作的微元功。
工程力学形心计算公式工程力学形心计算公式是工程力学中的一个重要概念,用来描述物体的形状和质量分布对于力的作用点的影响。
在工程中,形心计算公式被广泛应用于各种结构物和力学系统的分析与设计中。
形心,也被称为重心或质心,是一个物体所有质点所在位置的平均值,可以看作是物体的几何中心。
形心计算公式通过将物体划分为无限小的质点,然后计算这些质点的位置和质量对形心的贡献,从而得到整个物体的形心位置。
对于一个均匀物体,其形心可以通过几何的方法求解。
比如,对于一个均匀的平面图形,其形心可以通过对图形进行分割,然后计算每个小区域的形心位置,并根据每个小区域的面积加权平均得到。
同样地,对于一个均匀的立体物体,可以将其分割为无数个小体积,并根据每个小体积的位置和体积加权平均求得形心位置。
然而,在大多数实际工程问题中,物体的形状和质量分布往往并不均匀,因此需要使用形心计算公式来求解。
形心计算公式根据物体的几何形状和质量分布提供了计算形心位置的方法。
常见的形心计算公式包括:1. 平面图形的形心计算:对于一个平面图形,可以使用一些特定的公式来计算其形心位置。
比如,对于一个矩形,其形心位于中心点;对于一个三角形,其形心位于三条边的交点的重心位置。
2. 立体物体的形心计算:对于一个立体物体,可以将其分割为无数个小体积,并根据每个小体积的位置和体积加权平均求得形心位置。
具体的计算方法可以根据物体的几何形状和质量分布的特点来确定。
形心计算公式的应用非常广泛。
在建筑工程中,形心计算公式可以用来确定建筑结构的荷载传递和受力分析。
在机械工程中,形心计算公式可以用来确定机械零件的平衡位置和稳定性。
在航空航天工程中,形心计算公式可以用来确定飞行器的姿态控制和稳定性。
形心计算公式是工程力学中一个重要的概念,可以用来描述物体的形状和质量分布对于力的作用点的影响。
通过使用形心计算公式,工程师可以准确地计算物体的形心位置,为工程设计和分析提供有效的方法和工具。
工字钢形心位置计算公式
形心坐标计算公式:Dxdxdy=重心横坐标×D的面积,Dydxdy=重心纵坐标×D的面积。
形心就是截面图形的几何中心,质心是针对实物体而言的,而形心是针对抽象几何体而言的,对于密度均匀的实物体,质心和形心重合。
n维空间中一个对象X的几何中心或形心是将X分成矩相等的两部分的所有超平面的交点。
非正式地说,它是X中所有点的平均。
如果一个对象具有一致的密度,或者其形状和密度具有某种对称性足以确定几何中心,那么它的几何中心和质量中心重合,该条件是充分但不是必要的。
张宇18讲质心公式详细讲解质心公式是中国古代数学大师张宇创立的一种精妙而简洁的计算工具,张宇将其比喻为“神奇的硬币”,可以用它完成复杂的算术题。
质心公式可以帮助学生快速解决高等数学几何中的各种问题,给广大学生带来福音。
张宇的质心公式被评定为“中国数学精华”,并被收录到教科书中。
首先,让我们来梳理一下张宇质心公式的精髓:质心公式有三个参数,分别是多边形中心点的横(X)坐标、纵(Y)坐标,以及多边形的边数。
每个参数的取值方式如下:1. X = (a1+a2+…+an) / n,其中ai是每一条边的终点的横坐标。
2. Y = (b1+b2+…+bn) / n,其中bi是每一条边的终点的纵坐标。
3. n多边形的边数。
通过上面的公式,可以求出多边形的中心点的坐标,也就是质心的位置。
接下来,让我们来看一些实例,来详细解释张宇质心公式的使用方法:例1:求三角形的质心假设三角形ABC的三个顶点的坐标分别为:A(2,4),B(6,2),C(4,0)按照张宇质心公式,求三角形质心的坐标1.X坐标:X = (2+6+4) / 3 = 42.Y坐标:Y = (4+2+0) / 3 = 2因此,三角形ABC的质心的坐标就是:(4,2)例2:求五边形的质心假设五边形ABCDE的五个顶点的坐标分别为:A(5,5), B(5,10), C(12,14), D(20,10), E(15,5)按照张宇质心公式,求五边形质心的坐标1.X坐标:X = (5+5+12+20+15) / 5 = 11.42.Y坐标:Y = (5+10+14+10+5) / 5 = 9.2因此,五边形ABCDE的质心的坐标就是:(11.4,9.2)到此,我们就详细解释了张宇质心公式的使用方法,该公式可以方便地解决多边形中心点坐标的计算问题,因此它在中国数学史上占据着重要的地位。
另外,张宇质心公式的推广大大改善了数学课的教学环境,不仅改善了学生的学习体验,而且提高了学习效率。
高等数学形心与质心计算公式
形心的公式:
Xc=[Ja(pxdA)]/ρA=[J a(xdA)]/A=Sy/A
Yc=[Ja(pydA)]/pA=[J a(ydA)]/A=Sx/A
质心的公式:
Rc=m1r1+m2r2+m3r3+./2m
形心:
面的形心就是截面图形的几何中心,质心是针对实物体而言的,而形心是针对抽象几何体而言的,对于密度均匀的实物体,质心和形心重合。
质心:
质量中心简称质心,指物质系统上被认为质量集中于此的一个假想点。
与重心不同的是,质心不一定要在有重力场的系统中。
质心是针对实物体而言的,而形心是针对抽象几何体而言的,对于密度均匀的实物体,质心和形心重合。
只有一个对称轴的截面,其形心一定在其对称轴上,具体在对称轴上的哪一点,则需计算才能确定。
建坐标:形心位置:(Xc,Yc);
Xc=[∫a(ρxdA)]/ρA=[∫a(xdA)]/A=Sy/A;
Yc=[∫a(ρydA)]/ρA=[∫a(ydA)]/A=Sx/A;
我们把均匀平面薄片的重心叫做这平面薄片所占的平面图形的
形心。
质量中心简称质心,指物质系统上被认为质量集中于此的一个假想点。
质量中心的简称,它同作用于质点系上的力系无关。
设n个质点组成的质点系,其各质点的质量分别为m1,m2,…,mn。
若用r1,r2,……,rn分别表示质点系中各质点相对某固定点的矢径,rc表示质心的矢径,则有rc=(m1r1+m2r2+……
+mnrn)/(m1+m2+……+mn)。
当物体具有连续分布的质量时,质心C的矢径rc=∫ρrdτ/∫ρdτ,式中ρ为体(或面、线)密度;dτ为相当于ρ的体(或面、线)元;积分在具有分布密度ρ的整个物质体(或面、线)上进行。
由牛顿运动定律或质点系的动量定理,可推导出质心运动定理:质心的运动和一个位于质心的质点的运动相同,该质点的质量等于质点系的总质量,而该质点上的作用力则等于作用于质点系上的所有外力平移到这一点后的矢量和。