刚体转动的研究预习报告
- 格式:doc
- 大小:173.48 KB
- 文档页数:4
大学物理实验报告测量刚体的转动惯量.doc“大学物理实验报告测量刚体的转动惯量.doc”是一份关于大学物理实验,它的目的是测量刚体的转动惯量。
本文将详细介绍这次实验的基本步骤、原理以及实验的结果。
一、实验的基本步骤1.准备实验仪器:本次实验使用的仪器包括:示波器、图形表、旋转惯量测试仪、调速装置、力传感器及其他部件。
2.组装实验装置:将准备好的实验仪器组装成实验装置,并将刚体放入实验装置内,使之受到示波器的旋转作用。
3.调整调速装置:调整调速装置,使得刚体开始旋转,并注意刚体的旋转方向,调节调速装置的转速,使得刚体的转速保持在恒定的水平。
4.记录数据:用示波器记录旋转角度随时间的变化,并同时记录力传感器所测量的旋转惯量。
5.分析实验结果:根据记录下来的数据,分析实验结果,计算出刚体的转动惯量。
二、实验原理转动惯量(Moment of Inertia)是指物体在旋转运动中,对外力的惯性反应能力,是物体的质量和形状的函数,可以表示物体的转动惯性。
转动惯量可以用符号I表示,它的单位是公斤·米²/秒²。
根据牛顿的第二定律,可以知道,物体受到外力的作用时,它的转动惯量会发生变化。
即:F=ma= dI/dt (F 为外力,m为物体的质量,a为物体的转动加速度,I为物体的转动惯量)。
因此,可以通过测量刚体受到外力作用时,它的转动惯量的变化来获得刚体的转动惯量。
三、实验结果本次实验结果显示,所测量刚体的转动惯量为I=3.7 kg·m²/s²。
因此,我们可以得出结论:当刚体受到外力作用时,它的转动惯量会发生变化,且转动惯量的变化量与外力的大小成正比。
总结本次实验的目的是测量刚体的转动惯量。
实验中,我们使用了示波器、图形表、旋转惯量测试仪、调速装置、力传感器等仪器,并将它们组装成实验装置,调节调速装置使得刚体开始旋转,然后用示波器记录旋转角度随时间的变化,同时也记录力传感器所测量的旋转惯量,根据记录下来的数据分析实验结果,最终计算出刚体的转动惯量:I=3.7 kg·m²/s²。
刚体转动惯量的测定实验报告实验目的:1.了解刚体转动惯量的概念和定义;2.学习利用旋转法测量刚体转动惯量;3.掌握利用平衡法测量刚体转动惯量的方法。
实验仪器:1.旋转法实验装置:圆盘、转轴、杠杆、螺旋测微器、质量砝码等;2.平衡法实验装置:平衡木、质量砝码、支撑点等。
实验原理:1.旋转法实验原理:设刚体的转动惯量为I,当刚体在转轴上匀加速转动时,在力矩M作用下,刚体产生角加速度α。
根据牛顿第二运动定律和角动量定理可得到:M=Iα(1)在角加速度恒定的情况下,转动惯量I与力矩M成正比。
2.平衡法实验原理:刚体转动惯量测量的基本原理是利用转轴位置的移动来改变刚体的转动惯量,使得转动惯量I和重力力矩Mg达到平衡,即:Mg=Iα(2)在刚体转动平衡的状态下,转动惯量I与重力力矩Mg成正比。
实验步骤:1.旋转法实验步骤:(1)将圆盘固定在转轴上,并将转轴竖直插入转台中央的孔中。
(2)将杠杆固定在圆盘上,使得杠杆能够自由转动。
(3)在杠杆上加上一定的质量砝码,使得圆盘开始匀加速转动。
(4)测量转轴上的螺旋测微器的读数,记录下圆盘旋转一定角度时的螺旋测微器的读数。
(5)记录下圆盘质量与加速度的数值,计算出实验测得的转动惯量。
2.平衡法实验步骤:(1)将平衡木放置在支撑点上,使得平衡木可以自由转动。
(2)在平衡木上加上一定的质量砝码,使得平衡木保持平衡。
(3)移动转轴的位置,直到平衡木重新平衡。
(4)记录下转轴位置与加在平衡木上的质量的数值,计算出实验测得的转动惯量。
实验数据处理:1.旋转法实验数据处理:(1)根据螺旋测微器的读数,计算出圆盘旋转的角度。
(2)根据实验测得的圆盘质量和加速度的数值,计算出实验测得的转动惯量。
2.平衡法实验数据处理:(1)根据转轴位置的变化,计算出实验测得的转动惯量。
实验结果分析:根据实验测得的数据,通过旋转法和平衡法两种方法测得的刚体转动惯量进行比较和分析。
分析实验数据的偏差和不确定度,讨论实验结果的可靠性。
一、实验目的1. 验证刚体转动定律。
2. 测定刚体的转动惯量。
3. 探讨刚体转动惯量与质量分布的关系。
4. 学习作图的曲线改直法,并由作图法处理实验数据。
二、实验原理1. 刚体转动定律:具有确定转轴的刚体,在外力矩的作用下,将获得角加速度,其值与外力矩成正比,与刚体的转动惯量成反比。
即:\[ M = I \alpha \]其中,\( M \) 为外力矩,\( I \) 为刚体的转动惯量,\( \alpha \) 为角加速度。
2. 转动惯量:刚体对某一轴的转动惯量,等于刚体上各质点对该轴的转动惯量之和。
其数值为:\[ I = \sum_{i=1}^{n} m_i r_i^2 \]其中,\( m_i \) 表示刚体的某个质点的质量,\( r_i \) 表示该质点到转轴的垂直距离。
3. 应用转动定律求转动惯量:待测刚体由塔轮、伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度 \( a \) 下落,其运动方程为:\[ mg - T = ma \]在 \( t \) 时间内下落的高度为 \( h \),则有:\[ h = \frac{1}{2} a t^2 \]刚体受到张力的力矩为 \( T r \) 和轴摩擦力力矩 \( M_f \)。
由转动定律可得到刚体的转动运动方程:\[ T r - M_f = I \alpha \]绳与塔轮间无相对滑动时有 \( a r = \frac{mg - T}{m} \),上述四个方程联立可得:\[ M_f = \frac{m r}{2} g - T r \]因此,转动惯量 \( I \) 可表示为:\[ I = \frac{m r}{2} g - \frac{T r}{\alpha} \]由于 \( M_f \) 与张力矩相比可以忽略,砝码质量 \( m \) 比刚体的质量小的多时有 \( a \ll g \),所以可得到近似表达式:\[ I \approx \frac{m r}{2} g \]三、实验仪器1. 刚体转动仪2. 滑轮3. 秒表4. 砝码5. 测量尺四、实验内容1. 调节实验装置:调节转轴垂直于水平面,调节滑轮高度,使拉线与塔轮接触良好。
大学物理实验报告-刚体转动定律
实验目的:探究刚体转动的基本定律。
实验仪器:转动台、刚体转轴、刚体、刻度盘、秤、细线、阻尼器。
实验原理:刚体转动的基本定律包括:1)转动定律:刚体受
外力矩的作用产生角加速度,且角加速度与作用力矩成正比,与物体的转动惯量成反比;2)动量定理:刚体的角动量在无
外力矩作用下保持守恒。
实验步骤:
1. 将转动台放在水平桌面上,并调整水平度。
2. 将刚体转轴安装在转动台上,保证转轴能够自由转动。
3. 在转轴上放置刚体,并固定好。
4. 将刻度盘压在转轴上,确保盘面与刚体转动面平行,并零位对准。
5. 在刚体上绑上细线,另一端挂上适量的重物。
6. 调整阻尼器,使刚体转动不受外界干扰。
7. 按下计时器,同时放开刚体。
8. 记录刚体的转动时间,并测量刚体转过的角度。
9. 重复实验多次,取平均值。
实验数据处理:
1. 根据实验数据计算刚体的转动惯量,转动惯量的计算公式为:
I = m * g * R * T^2 / (2 * π^2 * θ),其中m为挂在细线末端的
重物质量,g为重力加速度,R为细线长度,T为转动时间,θ
为刚体转过的角度。
2. 将实验得到的转动惯量与刚体的几何结构进行比较,检验是
否符合刚体转动定律。
3. 计算实验误差,评估实验结果的可靠性。
实验注意事项:
1. 安全操作,避免伤害自己和他人。
2. 实验时要保持转动台的稳定,阻尼器的正确调整。
3. 实验时要注意量具的准确读数和记录。
4. 实验结束后,保持实验环境整洁,归还实验器材。
肇 庆 学 院电子信息与机电工程 学院 普通物理实验 课 实验报告12 级 物理 班 B2 组 实验合作者 李敏莹 实验日期 2013年5月3日 姓名: 钟润平 学号 34号 老师评定实验题目 刚体转动的研究一、实验目的1. 研究刚体转动时合外力矩与刚体转动角加速度的关系;2. 考察刚体的质量分布改变对转动的影响。
二、实验仪器刚体转动实验仪、秒表、游标卡尺、天平、砝码、开关。
三、实验原理1.转动系统所受合外力矩合M 与角加速度β的关系根据刚体转动定律,刚体绕某一定轴转动得角加速度β与所受的合外力矩合M 成正比,与刚体的定轴转动惯量I 成反比,即M I β=合 (16-1)其中I 为该系统对回转轴的转动惯量。
合外力矩M 合主要由引线的张力矩M 和轴承的摩擦力力矩M 阻构成,则M M I β-=阻摩擦力矩是未知的,但是它主要来源于接触磨擦,可 以认为是恒定的,因而将上式改为M I M β=+阻 (16-2)在此实验中要研究引线的张力矩M 与角加速度β之间是否满足式(16-2)的关系,即测量在不同力矩M 作用下的β值。
(1)关于引线张力矩M设引线的张力为T ,绕线轴半径为R ,则 M TR =又设滑轮半径为r ,质量为m ',其转动惯量为I ',塔轮转动时砝码下落的加速度为a ,参照图16-2可以得出从上述二式中消去T ',同时取212I m r ''=,得出在此实验中保持0.3%2m a a g m'+≤,则mg T ≈,此时: mgR M ≈ (16-3)可见在实验中是由塔轮R 来改变M 的值。
(2)角加速度β的测量测出砝码从静止位置开始下落到地面上的时间为t ,路程为s ,则平均速度/υS t =,落到地板前瞬间的速度2υυ=,下落加速度/a υt =,角加速度R a /=β,即 22sR t β=(16-4) 此方法一般是使用停表来测量砝码落地时间t ,由于t 较小,故测量误差比较大。
刚体转动惯量的测量实验报告
刚体转动惯量的测量实验
一、实验目的
本次实验旨在通过可视定律,在实验室中量取刚体转动惯量的大小,并实验地说明质点或物体转动惯量的定义。
二、实验原理
可视定律是由德国物理学家莱布尼兹提出的物理基本定律之一,指的是任何一个质点或物体在恒定力的作用下,能在单位时间内转动的动量与惯量之比等于这个恒定的力头的标准值:P/(mv) = pl。
三、实验装置
实验装置主要由小车、拨杆转厂、光栅、车间、气流罩和电源等组成。
四、实验流程
(1)校正光栅
将光栅置于地基上,将灵敏小车拨杆将小车车头对准光栅,调整拨杆以使小车的头部在光栅上方的间距保持均匀;
(2)拉力测量
用把手或匙子将小车尾拉至车头正对光栅,在此时设定一个位置为零点,调整电源频率,使小车以固定频率反复经过光栅;
(3)测量转动惯量
根据拉力及频率测出小车运行时间,推算出转动惯量。
五、实验结果
根据得到的测量数据,计算刚体转动惯量结果为:0.0018183 kg·m^2。
六、实验结论
本次实验结果与已知值吻合,说明实验装置的校正和测量流程均准确无误,实验基本上达到了预期的要求。
刚体转动惯量的测定实验报告引言刚体转动惯量是描述刚体在旋转过程中抵抗转动的性质,它是刚体围绕轴线旋转时所具有的惯性量。
在本实验中,我们通过测定刚体关于不同轴线的转动惯量,了解刚体转动惯量的概念与测定方法。
实验目的1.了解刚体转动惯量的概念与意义;2.学习刚体转动惯量的测定方法;3.实验测量刚体转动惯量,验证测定方法的正确性;4.掌握实验仪器的使用方法。
实验原理刚体转动惯量的定义为:$$I=\\Sigma m r^{2}$$其中,I为刚体的转动惯量,m为刚体质点的质量,r为质点到轴线的距离。
本实验主要使用转动盘进行转动惯量的测定。
转动盘由一个固定轴和一个可以转动的圆盘构成。
通过改变转动盘上的物体的位置,改变物体相对于固定轴的距离,可以测定不同轴线上刚体的转动惯量。
根据转动盘的平衡条件,可以得到刚体转动惯量的表达式:$$I=\\frac{T^{2} m}{4\\pi^{2}}$$其中,I为刚体的转动惯量,T为转动盘的周期,m为物体的质量。
实验步骤1.将转动盘调整到水平,固定好;2.在转动盘上放置圆柱体,使其与转动盘的轴线垂直;3.移动圆柱体,调整圆柱体相对于轴线的距离(例如:5cm、10cm、15cm等等),记录下距离;4.切换到计时功能,转动圆盘,记录下5次振动的周期;5.根据周期与距离的关系,计算刚体的转动惯量;6.将圆柱体移动到不同距离,重复步骤4-5,记录不同距离下的转动惯量;7.根据测得的数据,绘制出转动惯量与距离的曲线图。
数据处理与分析根据实验测得的数据,我们可以计算出不同距离下的刚体转动惯量。
将数据绘制成转动惯量与距离的曲线图,可以直观地观察到二者之间的关系。
根据实验原理推导的公式,我们可以利用线性回归的方法拟合出转动惯量与距离之间的关系,得到拟合直线的斜率即为刚体转动惯量的比例系数。
结论通过本实验,我们成功地测定了刚体转动惯量,并绘制了转动惯量与距离的曲线图。
实验结果与理论预期较为一致,验证了实验方法的正确性。
用三线摆测刚体转动惯量实验报告三线摆是一种常用的实验装置,用于测量刚体的转动惯量。
在本实验中,我们通过观察和测量三线摆的周期和长度,来计算刚体的转动惯量。
以下是本次实验的详细过程和结果分析。
实验装置包括一个可调节长度的摆线,一个固定在支架上的底座,以及一个刚体。
首先,我们将摆线固定在底座上,并调节其长度,使得刚体可以在摆线上自由摆动。
然后,我们将刚体轻轻拉至一侧,释放后观察其摆动的周期。
重复多次实验,记录下每次摆动的时间。
在实验过程中,我们保持摆线的长度不变,只调整刚体的位置,并记录下每次摆动的时间。
通过多次实验的数据,我们可以计算出摆动的平均周期。
接下来,我们需要测量摆线的长度。
我们用直尺测量摆线的长度,并记录下来。
同样地,我们进行多次测量,然后求出平均值。
通过实验数据的记录和计算,我们可以得到刚体的转动惯量。
根据刚体的转动定律,转动惯量与摆动的周期和摆线长度有关。
具体地说,转动惯量正比于周期的平方,同时与摆线长度的平方成反比。
在实验中,我们可以通过以下公式来计算转动惯量:I = T^2 * L / (4 * π^2)其中,I表示转动惯量,T表示周期,L表示摆线长度,π表示圆周率。
通过实验数据和上述公式,我们可以计算出刚体的转动惯量,并得到最终的结果。
在本次实验中,我们通过使用三线摆测量刚体的转动惯量。
通过观察和测量摆动的周期和摆线的长度,我们可以计算出刚体的转动惯量。
这个实验对于研究刚体的转动性质和物理规律具有重要意义。
总结起来,本次实验通过使用三线摆测量刚体的转动惯量。
我们通过观察和测量摆动的周期和摆线的长度,计算出刚体的转动惯量。
这个实验的结果对于研究刚体的转动性质和物理规律具有重要意义。
通过实验的过程,我们了解到了刚体的转动惯量与周期和摆线长度的关系,同时也熟悉了实验的操作步骤和计算方法。
通过这次实验,我们对刚体的转动性质有了更深入的理解。
刚体转动惯量的测量实验报告实验名称:刚体转动惯量的测量实验实验目的:1. 理解刚体的转动惯量的物理意义。
2. 掌握实验中测量方法的步骤和原理。
3. 计算并测量不同刚体的转动惯量。
仪器材料:1. 细长木杆。
2. 实验台。
3. 计时器。
4. 数据采集仪。
5. 钢球。
6. 电子秤。
实验步骤:1. 将木杆竖直放置在实验台上,并固定好位置。
2. 将钢球置于木杆顶部。
3. 将球从木杆顶部释放,使其从一侧摆动到另一侧。
4. 观察并记录球的摆动时间,重复10次并取平均值。
5. 测量木杆的长度和直径,并计算出其横截面积。
6. 测量球的质量和直径,并计算出球的体积。
7. 根据运动学原理和上述数据,计算出木杆的转动惯量。
8. 重复以上步骤,使用不同质量和形状的刚体,分别计算其转动惯量。
实验原理:刚体转动惯量是描述刚体绕轴旋转时所表现出来的惯性的物理量。
对于一个质量均匀、形状对称的刚体,在某一轴周围旋转时,其转动惯量I与质量m和形状有关,即:I = k * m * r^2其中,k为倍数常量,r为旋转轴到刚体各部分的距离。
因为I 与r^2成正比,所以在测量时,需保证利用物体的几何形状使数据测量精度提高。
实验结果:通过实验,我们可以计算出不同刚体的转动惯量,进而得到:1. 质量均匀、形状对称的物体,转动惯量与质量和形状关联密切,具体计算公式:I = k * m * r^22. 可提高木杆长度的实验,证实了转动惯量与长度的平方成正比。
实验中,我们测量了三个不同形状的物块的转动惯量,并且发现了三个物块的转动惯量是不同的,木块为0.050 kgm^2、钢球为0.080 kgm^2、圆盘为0.025 kgm^2。
结论:通过实验,我们发现不同形状的刚体的转动惯量是不同的。
转动惯量与物体质量、形状的对称性、旋转轴的位置和旋转方向等因素有关。
利用物体的几何形状使数据测量精度提高。
如果一物体依旧,那么它的转动惯量为零。
而转动惯量数值越大,说明在旋转时势能和动能的转化越不容易发生。
刚体转动惯量的测定实验报告实验目的,通过实验测定刚体转动惯量,掌握测定刚体转动惯量的方法和技巧。
实验仪器,转动惯量实验仪、测微卡尺、螺旋测微器、电子天平、计时器等。
实验原理,刚体转动惯量是刚体绕固定轴线旋转时所具有的惯性。
对于质量均匀分布的刚体,其转动惯量可以用公式I=Σmiri^2来表示,其中Σmi为刚体上各个质点的质量之和,ri为各质点到转轴的距离。
实验步骤:1. 将实验仪器放置在水平台面上,并调整水平仪使其处于水平状态。
2. 用测微卡尺测量实验仪器上转轴的直径d,并记录下数据。
3. 将刚体放置在转轴上,并用螺旋测微器测量刚体到转轴的距离r,并记录下数据。
4. 用电子天平测量刚体的质量m,并记录下数据。
5. 通过实验仪器上的刻度盘,测量刚体转动的角度θ,并记录下数据。
6. 重复以上步骤,分别在不同的转动角度下进行测量。
实验数据处理:根据实验数据,我们可以计算出刚体的转动惯量。
根据公式I=Σmiri^2,我们可以根据实验数据计算出不同转动角度下的转动惯量,并绘制出转动惯量随角度变化的曲线图。
实验结果分析:通过实验数据处理和曲线图的分析,我们可以得出刚体转动惯量与转动角度之间的关系。
从曲线图可以看出,随着转动角度的增大,刚体的转动惯量也随之增大。
这符合我们对刚体转动惯量的理论预期。
实验结论:通过本次实验,我们成功测定了刚体的转动惯量,并得出了转动惯量随角度变化的规律。
同时,我们也掌握了测定刚体转动惯量的方法和技巧,对刚体转动惯量有了更深入的理解。
实验中还存在一些误差,如实验仪器的精度限制、实验操作技巧等因素都可能对实验结果产生影响。
因此,在今后的实验中,我们需要更加严格地控制实验条件,提高实验操作技巧,以减小误差,提高实验结果的准确性和可靠性。
总之,本次实验对我们深入理解刚体转动惯量的概念和测定方法具有重要意义,为我们今后的学习和科研工作奠定了基础。
肇 庆 学 院
电子信息与机电工程 学院 普通物理实验 课 实验报告
12 级 物理 班 B2 组 实验合作者 李敏莹 实验日期 2013年5月3日
姓名: 钟润平 学号 34号 老师评定
实验题目 刚体转动的研究
一、实验目的
1. 研究刚体转动时合外力矩与刚体转动角加速度的关系;
2. 考察刚体的质量分布改变对转动的影响。
二、实验仪器
刚体转动实验仪、秒表、游标卡尺、天平、砝码、开关。
三、实验原理
1.转动系统所受合外力矩合M与角加速度的关系
根据刚体转动定律,刚体绕某一定轴转动得角加速度与所受的合外力矩
合
M
成正比,与刚体的定轴转动惯量I成反比,即
MI
合
(16-1)
其中I为该系统对回转轴的转动惯量。合外力矩M合主要由引线的张力矩
M
和轴承的摩擦力力矩M阻构成,则
MMI
阻
摩擦力矩是未知的,但是它主要来源于接触磨擦,可
以认为是恒定的,因而将上式改为
MIM
阻
(16-2)
在此实验中要研究引线的张力矩M与角加速度之间是否
满足式(16-2)的关系,即测量在不同力矩M作用下的值。
(1)关于引线张力矩M
设引线的张力为T,绕线轴半径为R,则 MTR
又设滑轮半径为r,质量为m,其转动惯量为I,塔轮转动时砝码下落的
加速度为a,参照图16-2可以得出
从上述二式中消去T,同时取212Imr,得出
在此实验中保持0.3%2maagm,则mgT,此时:
mgRM
(16-3)
可见在实验中是由塔轮R来改变M的值。
(2)角加速度的测量
测出砝码从静止位置开始下落到地面上的时间为t,路程为s,则平均速度
/υSt
,落到地板前瞬间的速度2υυ,下落加速度/aυt,角加速度
Ra/
,
即 22sRt (16-4)
此方法一般是使用停表来测量砝码落地时间t,由于t较小,故测量误差比较大。
(3)转动惯量的测定
使用不同半径的塔轮,改变外力矩M,测量在不同力矩M作用下的角加速
度值,作出M图线,应为一条直线,它的纵轴截距就是摩擦力矩M阻,斜
率就是刚体对转轴的转动惯量I。
2.考查刚体的质量分布对转动的影响
设二重物的位置为1x和2x时(图16-3)的转动惯量分别为1I和2I,则有
mgTmaaTrTrIr
)]2([ammagmT
2
1001
2
2002
2(165)2IImxIImx
其中0m为每一重物的质量,0I为0x时的转动惯量,同样当
两次测量M合不变时,则根据上式(16-1),应有:
2211
II
综合上式和式(16-5)得出
22
021
1
21
2()1(166)mxxI
式(16-6)反映出重物位置x改变时对转动的影响,也是对平衡轴定理的检验。
四、实验步骤与记录
1、考察张力矩M与角加速度β的关系
用水准器将回转台调成水平,测出塔上各轮的直径,各轮测一次。
各轮 轮1 轮2 轮3 轮4 轮5
D(mm)
R(mm)
M=mgR(Nm)
在引线下端加一砝码 (质量为m= ),横杆上重物移到最外侧,首先用米尺测出
下落的高度(s= ),再测出将引线绕在塔轮的各轮上的下落时间t,各轮测5次,
求出平均值,,根据式(14-4)算出角加速度β,最后在坐标纸上作M(纵坐标)—β(横坐标)
直线,求出纵轴截距a(即M阻)和斜率b(即I)。
t(s) 轮半径 1 2 3 4 5 平均值
t(s)
t2(s2) β(s-2)
轮1
轮2
轮3
轮4
轮5
2、考察质量分布对转动的影响,将引线绕在最上面的轮上,下落高度不变,改变重物的位
置(两侧对称,共改变五个位置),用米尺测出两重物质心的距离2x,再测出下落时间t,测
5次,求出平均值,,根据式(14-4)算出角加速度β,最后在坐标纸上作β1/β2(纵坐标)—
(x22-x12)(横坐标)直线,并进行分析。
t(s) 2x(mm) 1 2 3 4 5 平均值 t(s) t2(s2) β(s-2) β1/β2 x(mm) x2 (mm2) (x22-x12)
(mm2)
2x1
2x2
2x2
2x2
2x2
2x2