测量刚体的转动惯量实验报告及数据处理
- 格式:doc
- 大小:252.00 KB
- 文档页数:2
测量刚体的转动惯量实验报告及数据处理Company number:【0089WT-8898YT-W8CCB-BUUT-202108】实验讲义补充:1.刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不变的物体。
2.转动惯量概念:转动惯量是刚体转动中惯性大小的量度。
它取决于刚体的总质量,质量分布、形状大小和转轴位置3.转动定律:合外力矩=转动惯量×角加速度4.转动惯量叠加:空盘:(1)阻力矩(2)阻力矩+砝码外力→J1空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2被测物体:J3=J2-J15.转动惯量理论公式:圆盘&圆环J=0.5mr2,J=0.5m(r12+r12)6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3个塔轮半径,3组砝码质量7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值;8.泡沫垫板9.重力加速度:s^210.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体;11.游标卡尺:6次读数,包括圆盘半径,圆环内外半径,塔轮半径,转盘上孔的内外半径(求平均值)12.实验目的:测量值与理论值对比实验计算补充说明:1.有效数字:质量,故有效数字为3位2.游标卡尺:,读数最后一位肯定为偶数;3.误差&不确定度:(1)理论公式计算的误差:圆盘:J=0.5mR2(注意:直接测量的是直径)质量m=±;(保留4位有效数字)um=*100%=%半径R=±若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值,取n=6时的,我们处理为0C=,仪器允差,δB=总误差:,ux= m,u rx==%R=±urx=%计算转动惯量的结果表示:J=0.5mR2,总误差:uJ=√[(0.5R2u m)2+(mRu R)2],相对不确定=uJ/J 圆环:J=0.5m(R12+R22),同上.(2)实验测量计算的误差:J=mR(g−Rβ2)β2−β1根据,,对R(塔轮半径),m(砝码质量),β2和β1求导,J m=R(g−Rβ2)β2−β1J R=mg−2Rβ2β2−β1J β2=−mR2(β2−β1)−mR(g−Rβ2)(β2−β1)^2J β1=mR(g−Rβ2)(β2−β1)^2。
刚体的转动惯量(实验报告数据处理)一、实验目的1.测量不同形状物体的转动惯量;2.了解刚体的转动惯量的概念和意义;3.掌握利用转动惯量公式计算转动惯量的方法。
二、实验原理刚体在绕固定轴线上做匀速转动时,其转动惯量的大小决定了它所受的转动惯量矩的大小,转动惯量定理表明,在恒定力矩作用下,物体的角加速度与物体的转动惯量成反比。
对于一个刚体,既可以沿着它的轴线旋转,也可以沿着一个平行于轴线的过质心的轴线旋转,而它的转动惯量则与这两个轴之间的距离有关。
三、实验内容3.比较计算值与实验值之间的误差并讨论原因。
四、实验过程1.实验器材:转速表,万能电机,测量尺子,各种不同形状的物体(如实验室提供的铁球,铝棒等)。
2.实验步骤:(1)将铝棒的一端用万能电机固定在转动轴上;(2)用测量尺子测定铝棒的长度和直径;(3)打开电源,开启电机,让铝棒匀速旋转起来,并测量转速;(4)利用转速表测量铝棒旋转的周期时间,再根据转速和周期时间计算角速度;(5)停止电机后,用测量尺子逐个测量铝棒各个位置的距离,并记录下来;(6)利用测量结果以及铝棒的密度和尺寸数据,计算其转动惯量。
(7)重复上述步骤,测量其他形状的物体。
五、实验数据处理以一个球状物体为例,测量数据如下:1.球的质量m=0.6kg;3.球的转动周期T=0.536s;4.转速表读数n=114rpm;根据公式I=1/4 * m * d2 ,可以计算出该球的转动惯量为:I=1/4 * m * d2 =1/4 * 0.6kg * (0.1m)2 =0.003kg*m2另外,根据转速和周期时间可以计算出球的角速度ω:ω=2π/T = 2π/0.536s = 11.704rad/sr(m) I(kg*m2)0.05 0.0015上述数据是计算出球的转动惯量的过程中所得到的。
通过以上的数据可以看出,当距离球心较远时,转动惯量较大;当距离球心较近时,转动惯量较小。
同时,也可以验证公式I=1/4 * m * d2 的正确性。
恒力矩转动法测刚体转动惯量实验报告及数据相对误差实验报告:恒力矩转动法测刚体转动惯量一、实验目的:1.了解刚体的转动惯量及其计算方法;2.学习使用恒力矩转动法测量刚体的转动惯量;3.掌握数据处理和相对误差的计算方法。
二、实验仪器和材料:1.转动惯量测量装置;2.刚体样品(如圆柱体、薄壳等);3.倾角计;4.动力学测量仪。
三、实验原理:刚体的转动惯量是描述刚体对转动运动的惯性的物理量。
根据牛顿第二定律和刚体转动的基本方程可得,刚体的转动惯量与刚体所受的力矩和角加速度之间存在着关系:I=M/α其中,I为刚体的转动惯量,M为刚体所受的力矩,α为刚体的角加速度。
实验中可以通过施加一个恒定的力矩,使刚体绕固定轴线转动一定角度,并测量转动过程中的时间,再根据实验测得的数据计算得到刚体的转动惯量。
四、实验步骤:1.将刚体样品装在转动惯量测量装置上,使其绕固定轴线转动;2.使用倾角计测量刚体的转动角度,并记录数据;3.同时使用动力学测量仪测量刚体在转动过程中所受的力矩,并记录数据;4.根据实验测得的数据,计算得到刚体的转动惯量。
五、实验数据:1. 刚体样品质量m = 0.5 kg;2.刚体绕轴线转动的角度θ=20°;3.转动过程中施加的恒定力矩M=2N·m;4.转动过程中的时间t=5s。
六、数据处理:根据实验数据,可以计算得到刚体的转动惯量:I = M/α = M/(θ/t) = (2 N·m)/(20°/5 s) = 0.5 kg·m²七、相对误差计算:与理论值进行比较,刚体的转动惯量的理论值为0.1 kg·m²。
相对误差ε的计算公式为:ε = ,(实测值 - 理论值)/理论值,某 100% = ,(0.5 kg·m² -0.1 kg·m²)/0.1 kg·m²,某 100% = 400%八、实验结论:通过恒力矩转动法测量得到的刚体转动惯量为0.5 kg·m²,相对误差为400%。
实验讲义补充:1.刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不变的物体;2.转动惯量概念:转动惯量是刚体转动中惯性大小的量度;它取决于刚体的总质量,质量分布、形状大小和转轴位置3.转动定律:合外力矩=转动惯量×角加速度4.转动惯量叠加:空盘:1阻力矩2阻力矩+砝码外力→J1空盘+被测物体:1阻力矩2阻力矩+砝码外力→J2被测物体:J3=J2-J15.转动惯量理论公式:圆盘&圆环J=0.5mr2,J=0.5m(r12+r12)6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3个塔轮半径,3组砝码质量7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值;8.泡沫垫板9.重力加速度:s^210.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体;11.游标卡尺:6次读数,包括圆盘半径,圆环内外半径,塔轮半径,转盘上孔的内外半径求平均值12.实验目的:测量值与理论值对比实验计算补充说明:1.有效数字:质量,故有效数字为3位2.游标卡尺:,读数最后一位肯定为偶数;3.误差&不确定度:(1)理论公式计算的误差:圆盘:J=0.5mR2注意:直接测量的是直径质量m=±;保留4位有效数字um=100%=%半径R=±若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值,取n=6时的,我们处理为0C=,仪器允差,δB=总误差:,ux= m,u rx==%R=±urx=%计算转动惯量的结果表示:J=0.5mR2,总误差:uJ=√[(0.5R2u m)2+(mRu R)2],相对不确定=uJ/J 圆环:J=0.5m(R12+R22),同上.(2)实验测量计算的误差:J=mR(g−Rβ2)β2−β1根据,,对R塔轮半径,m砝码质量,β2和β1求导,J m=R(g−Rβ2)β2−β1J R=mg−2Rβ2β2−β1J β2=−mR2(β2−β1)−mR(g−Rβ2)(β2−β1)^2Jβ1=mR(g−Rβ2)(β2−β1)^2。
实验讲义补充:1.刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不变的物体。
2.转动惯量概念:转动惯量是刚体转动中惯性大小的量度。
它取决于刚体的总质量,质量分布、形状大小和转轴位置3.转动定律:合外力矩=转动惯量×角加速度4.转动惯量叠加:空盘:(1)阻力矩(2)阻力矩+砝码外力→J1空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2被测物体:J3=J2-J15.转动惯量理论公式:圆盘&圆环J=0.5m r2,r=0.5r(r12+r12)6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3个塔轮半径,3组砝码质量7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值;8.泡沫垫板9.重力加速度:s^210.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体;11.游标卡尺:6次读数,包括圆盘半径,圆环内外半径,塔轮半径,转盘上孔的内外半径(求平均值)12.实验目的:测量值与理论值对比实验计算补充说明:1.有效数字:质量,故有效数字为3位2.游标卡尺:,读数最后一位肯定为偶数;3.误差&不确定度:(1)理论公式计算的误差:圆盘:J=0.5m r2(注意:直接测量的是直径)质量m=±;(保留4位有效数字)um=*100%=%半径R=±若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值,取n=6时的,我们处理为0C=,仪器允差,δB=总误差:,ux= m,urx==%R=±urx=%计算转动惯量的结果表示:J=0.5m r2,总误差:uJ=√[(0.5R2r r)2+(mRu r)2],相对不确定=uJ/J 圆环:J=0.5m(r12+r22),同上.(2)实验测量计算的误差:J=rr(r−rr2) r2−r1根据,,对R(塔轮半径),m(砝码质量),β2和β1求导,?J ?m=r(r−rr2) r2−r1?J ?R=rr−2rr2 r2−r1?J ?β2=−rr2(β2−β1)−rr(r−rr2)(r2−r1)^2?J ?β1=rr(r−rr2)(r2−r1)^2。
一、实验目的1. 理解并掌握根据转动定律测转动惯量的方法;2. 熟悉电子毫秒计的使用;3. 通过实验验证转动惯量的基本概念和规律。
二、实验原理转动惯量是物体转动惯性的量度,表示物体绕某轴转动时,其质量分布对转动的影响程度。
转动惯量越大,物体转动越困难。
转动惯量的大小与物体的质量、质量分布和转轴的位置有关。
根据转动定律,刚体绕固定轴转动时,所受合外力矩等于刚体的转动惯量与角加速度的乘积。
即:M = Iα其中,M为外力矩,I为转动惯量,α为角加速度。
本实验采用恒力矩法测量刚体的转动惯量。
恒力矩法是通过测量刚体绕固定轴转动时的角加速度,然后根据转动定律计算转动惯量。
三、实验仪器1. 刚体转动惯量实验仪2. 通用电脑式毫秒计3. 砝码4. 水平仪四、实验步骤1. 将刚体转动惯量实验仪放置在水平桌面上,使用水平仪调整实验仪的水平状态;2. 将砝码挂在实验仪的挂钩上,确保砝码与实验仪的旋转轴平行;3. 使用电子毫秒计测量砝码从静止开始下落至接触刚体所需的时间t1;4. 改变砝码的位置,重复步骤3,测量不同位置下砝码下落时间t2、t3、...、tn;5. 计算每次实验中砝码下落过程中所受的平均力F;6. 根据转动定律,计算刚体的转动惯量I。
五、数据处理1. 计算砝码下落过程中所受的平均力F:F = (mg + T) / n其中,m为砝码质量,g为重力加速度,T为砝码与实验仪的摩擦力,n为实验次数。
2. 计算刚体的转动惯量I:I = F t / (n α)其中,t为砝码下落时间,α为角加速度。
六、实验结果与分析1. 通过实验测量,得到不同砝码位置下砝码下落时间t1、t2、t3、...、tn;2. 计算砝码下落过程中所受的平均力F;3. 根据转动定律,计算刚体的转动惯量I;4. 对实验数据进行处理,分析转动惯量与砝码位置的关系。
七、实验结论1. 通过实验验证了转动定律的正确性;2. 确定了刚体的转动惯量与其质量、质量分布和转轴位置的关系;3. 熟练掌握了电子毫秒计的使用方法。
篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
刚体转动实验实验报告一、实验目的1、学习使用刚体转动实验仪测量刚体的转动惯量。
2、验证刚体转动定律和转动惯量的平行轴定理。
3、掌握数据处理和误差分析的方法。
二、实验原理1、刚体的转动惯量刚体绕固定轴转动时的转动惯量 I 等于刚体中各质点的质量 mi 与它们各自到转轴距离 ri 的平方的乘积之和,即:I =Σ mi ri²2、刚体转动定律刚体绕定轴转动时,刚体所受的合外力矩 M 等于刚体的转动惯量 I 与角加速度β的乘积,即:M =Iβ3、转动惯量的平行轴定理若刚体对通过质心 C 的轴的转动惯量为 Ic,对与该轴平行且相距为d 的另一轴的转动惯量为 Ip,则有:Ip = Ic + md²三、实验仪器刚体转动实验仪、秒表、砝码、游标卡尺、米尺等。
四、实验步骤1、调节刚体转动实验仪将实验仪调至水平状态,通过调节底座的螺丝,使实验仪上的气泡位于水准仪的中心。
调整塔轮和定滑轮之间的细线,使其处于紧绷状态,且与转轴垂直。
2、测量塔轮半径 R 和绕线轴半径 r使用游标卡尺分别测量塔轮的外半径 R1、内半径 R2,取平均值得到塔轮半径 R。
同样用游标卡尺测量绕线轴的半径 r。
3、测量刚体的质量 M 和形状尺寸用天平称出刚体的质量 M。
用米尺测量刚体的几何尺寸,如圆盘的直径、圆柱的长度和直径等。
4、测量空载时刚体的转动惯量在刚体上不添加砝码,轻轻转动刚体,使其在摩擦力矩的作用下做匀减速转动。
用秒表记录刚体转过一定角度θ所需的时间 t1。
5、测量加载砝码时刚体的转动惯量在绕线轴上逐渐添加砝码,使刚体在重力矩的作用下做匀加速转动。
用秒表记录刚体转过相同角度θ所需的时间 t2。
6、验证转动惯量的平行轴定理将两个相同的圆柱体对称地放置在刚体上,使其质心与转轴的距离分别为 d1 和 d2。
测量刚体在这种情况下转过相同角度θ所需的时间 t3。
五、实验数据记录与处理1、实验数据记录|实验次数|塔轮半径 R (cm) |绕线轴半径 r (cm) |刚体质量 M (kg) |空载时间 t1 (s) |加载时间 t2 (s) |平行轴时间 t3 (s) |||||||||| 1 |______ |______ |______ |______ |______ |______ || 2 |______ |______ |______ |______ |______ |______ || 3 |______ |______ |______ |______ |______ |______ |2、数据处理(1)计算塔轮半径 R 和绕线轴半径 r 的平均值:R =(R1 + R2) / 2r =(r1 + r2) / 2(2)计算空载时刚体的角加速度β1:β1 =θ / t1²(3)计算加载砝码时刚体的角加速度β2:β2 =θ / t2²(4)计算空载时刚体的转动惯量 I1:I1 =(M (R r)²) /(β1 g)(5)计算加载砝码时刚体的转动惯量 I2:I2 =(M (R r)²+ mgr) /(β2 g)(6)计算平行轴定理验证时刚体的转动惯量 I3:I3 =(M (R r)²+ 2m(d1²+ d2²))/(β3 g)3、误差分析(1)测量仪器的误差:游标卡尺和秒表的精度有限,可能导致测量结果存在一定的误差。
实验讲义补充:1.刚体概念:刚体就是指在运动中与受力作用后,形状与大小不变,而且内部各点的相对位置不变的物体。
2.转动惯量概念:转动惯量就是刚体转动中惯性大小的量度。
它取决于刚体的总质量,质量分布、形状大小与转轴位置3.转动定律:合外力矩=转动惯量×角加速度4.转动惯量叠加:空盘:(1)阻力矩(2)阻力矩+砝码外力→J1空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2被测物体:J3=J2-J15.转动惯量理论公式:圆盘&圆环6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3个塔轮半径,3组砝码质量7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值;8.泡沫垫板9.重力加速度:9、794m/s^210.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体;11.游标卡尺:6次读数,包括圆盘半径,圆环内外半径,塔轮半径,转盘上孔的内外半径(求平均值)12.实验目的:测量值与理论值对比实验计算补充说明:1.有效数字:质量16、6g,故有效数字为3位2.游标卡尺:0、02mm,读数最后一位肯定为偶数;3.误差&不确定度:(1)理论公式计算的误差:圆盘:(注意:直接测量的就是直径)质量m=485、9g±0、1000g;(保留4位有效数字)um=0、1000/485、9*100%=0、02058%半径R=11、99mm±0、02000/1、05mm若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值,取n=6时的1、05,我们处理为0C=1、05,仪器允差0、02mm,δB=0、01905mm 总误差:,ux=0、01905m m,u rx=0、01905/11、99=0、1589%R=11、99mm±0、01905mmurx=0、1589%计算转动惯量的结果表示:,总误差:uJ=,相对不确定=uJ/J 圆环:,同上、(2)实验测量计算的误差:根据,,对R(塔轮半径),m(砝码质量),β2与β1求导,。
刚体转动惯量的测定实验报告一、实验目的1、学习用三线摆法测定刚体的转动惯量。
2、加深对转动惯量概念的理解。
3、掌握使用秒表、游标卡尺、米尺等测量工具。
二、实验原理三线摆是通过三条等长的摆线将一匀质圆盘悬挂在一个水平固定的圆盘上。
当摆盘绕中心轴作微小扭转摆动时,其运动可近似看作简谐振动。
根据能量守恒定律和刚体转动定律,可推导出刚体绕中心轴的转动惯量:\J_0 =\frac{m_0gRr^2T_0^2}{4\pi^2H}\其中,\(J_0\)为下盘(刚体)的转动惯量,\(m_0\)为下盘质量,\(g\)为重力加速度,\(R\)和\(r\)分别为上下圆盘悬点到中心的距离,\(T_0\)为下盘的摆动周期,\(H\)为上下圆盘间的垂直距离。
三、实验仪器三线摆实验仪、游标卡尺、米尺、秒表、待测圆环。
四、实验步骤1、调节三线摆底座水平,使上、下圆盘处于水平状态。
2、用米尺测量上下圆盘之间的距离\(H\),测量多次取平均值。
3、用游标卡尺测量上下圆盘悬点到中心的距离\(R\)和\(r\),各测量多次取平均值。
4、测量下盘质量\(m_0\)。
5、轻轻转动下盘,使其作微小扭转摆动,用秒表测量下盘摆动\(50\)次的时间,重复测量多次,计算平均摆动周期\(T_0\)。
6、将待测圆环置于下盘上,使两者中心重合,再次测量摆动周期\(T_1\)。
五、实验数据记录与处理1、实验数据记录|测量物理量|测量值|平均值||||||上圆盘悬点到中心的距离\(R\)(mm)|_____|_____||下圆盘悬点到中心的距离\(r\)(mm)|_____|_____||上下圆盘之间的距离\(H\)(mm)|_____|_____||下盘质量\(m_0\)(g)|_____|_____||下盘摆动\(50\)次的时间\(t_0\)(s)|_____|_____||放上圆环后下盘摆动\(50\)次的时间\(t_1\)(s)|_____|_____|2、数据处理(1)计算下盘的摆动周期:下盘摆动周期\(T_0 =\frac{t_0}{50}\)(2)计算下盘的转动惯量:\J_0 =\frac{m_0gRr^2T_0^2}{4\pi^2H}\(3)计算圆环与下盘共同的转动惯量:\J_1 =\frac{(m_0 + m)gRr^2T_1^2}{4\pi^2H}\其中,\(m\)为圆环的质量。
测量刚体的转动惯量实验报告及数据处理实验目的:本实验旨在通过测量刚体在不同条件下的转动惯量,探究刚体的转动惯量与其质量和形状的关系,并通过数据处理方式验证实验结果的准确性。
实验原理:转动惯量是描述刚体转动惯性的物理量,定义为刚体绕轴旋转时受到的转动力矩与角加速度的比值。
对于一个质量为m、距离旋转轴距离为r的点质量,其转动惯量可表示为I=mr^2实验装置:1.转动惯量测定装置:包括一根水平固定的轴杆以及在轴杆两端可以旋转的转轮和转动测量仪。
2.垂直测量尺:用于测量刚体高度和半径。
3.游标卡尺:用于测量刚体直径和转轮直径。
实验步骤:1.使用游标卡尺分别测量刚体直径和转轮直径,记录数据。
2.使用垂直测量尺测量刚体高度和半径,记录数据。
3.将刚体放置在转轮上,并用转动测量仪测量刚体从静止转动到一定速度时所花的时间,重复5次取平均值并记录数据。
4.将转动测量仪上的转轮锁死,然后用手使转动测量仪以不同角速度旋转,并记录转动测量仪的角加速度、转动惯量和距离旋转轴的平均距离,重复3次并记录数据。
5.将刚体放置在转轮上,使其绕垂直于水平方向的轴旋转,测量角度、时间和转动惯量,重复3次并记录数据。
6.根据实验数据计算刚体的转动惯量。
实验数据处理:1.对于多次重复实验的平均值计算:-计算刚体从静止转动到一定速度所花的平均时间,代入转动惯量公式,计算相应的转动惯量。
-计算手动转动时转动测量仪的平均角加速度,代入转动惯量公式,计算相应的转动惯量。
-计算垂直旋转时转动测量仪的平均角度、时间和转动惯量。
2.计算刚体的转动惯量:-根据转动测量仪的平均角加速度和平均距离,代入转动惯量公式,计算刚体的转动惯量。
-根据垂直旋转时的平均角度、时间和转动惯量,代入转动惯量公式,计算刚体的转动惯量。
-将以上两种情况下计算得到的转动惯量进行平均值计算,得到最终的转动惯量。
实验结果及讨论:1.根据实验数据计算得到的刚体转动惯量与其质量、形状的关系进行对比分析,验证是否符合理论预期。
测量刚体的转动惯量实验报告及数据处理Company number:【0089WT-8898YT-W8CCB-BUUT-202108】实验讲义补充:1.刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不变的物体。
2.转动惯量概念:转动惯量是刚体转动中惯性大小的量度。
它取决于刚体的总质量,质量分布、形状大小和转轴位置3.转动定律:合外力矩=转动惯量×角加速度4.转动惯量叠加:空盘:(1)阻力矩(2)阻力矩+砝码外力→J1空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2被测物体:J3=J2-J15.转动惯量理论公式:圆盘&圆环J=0.5mr2,J=0.5m(r12+r12)6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3个塔轮半径,3组砝码质量7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值;8.泡沫垫板9.重力加速度:s^210.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体;11.游标卡尺:6次读数,包括圆盘半径,圆环内外半径,塔轮半径,转盘上孔的内外半径(求平均值)12.实验目的:测量值与理论值对比实验计算补充说明:1.有效数字:质量,故有效数字为3位2.游标卡尺:,读数最后一位肯定为偶数;3.误差&不确定度:(1)理论公式计算的误差:圆盘:J=0.5mR2(注意:直接测量的是直径)质量m=±;(保留4位有效数字)um=*100%=%半径R=±若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值,取n=6时的,我们处理为0C=,仪器允差,δB=总误差:,ux= m,u rx==%R=±urx=%计算转动惯量的结果表示:J=0.5mR2,总误差:uJ=√[(0.5R2u m)2+(mRu R)2],相对不确定=uJ/J 圆环:J=0.5m(R12+R22),同上.(2)实验测量计算的误差:J=mR(g−Rβ2)β2−β1根据,,对R(塔轮半径),m(砝码质量),β2和β1求导,?J ?m=R(g−Rβ2)β2−β1?J ?R=mg−2Rβ2β2−β1?J ?β2=−mR2(β2−β1)−mR(g−Rβ2)(β2−β1)^2?J?β1=mR(g−Rβ2)(β2−β1)^2。
一、实验目的1. 验证刚体转动定律,通过实验方法测量刚体的转动惯量。
2. 观察刚体的转动惯量与质量分布的关系。
3. 学习使用实验仪器和方法,进行物理量的测量和数据处理。
二、实验原理刚体转动惯量(J)是描述刚体绕某一固定轴转动时,其惯性大小的物理量。
根据转动定律,刚体绕固定轴转动时,其角加速度(α)与作用在刚体上的合外力矩(M)成正比,与刚体的转动惯量成反比,即:\[ M = I \cdot \alpha \]其中,I 为刚体的转动惯量。
对于规则形状的均质刚体,其转动惯量可以通过几何公式直接计算得出。
但对于不规则形状或非均质刚体,其转动惯量一般需要通过实验方法测定。
三、实验仪器1. 刚体转动惯量测量装置(包括:旋转轴、测量台、测速仪、计时器、砝码等)2. 刚体(如圆环、均质杆等)3. 质量测量仪4. 游标卡尺四、实验步骤1. 将刚体放置在测量台上,调整旋转轴使其垂直于刚体的旋转平面。
2. 使用质量测量仪测量刚体的质量(m)。
3. 使用游标卡尺测量刚体的几何尺寸(如半径、长度等)。
4. 将砝码挂在旋转轴上,调整砝码的质量和位置,使其对刚体产生合外力矩。
5. 使用测速仪测量刚体的角速度(ω)。
6. 使用计时器测量砝码下降的时间(t)。
7. 根据实验数据,计算刚体的转动惯量。
五、数据处理1. 计算刚体的角加速度(α):\[ \alpha = \frac{2\pi \cdot \omega}{t} \]2. 计算刚体的转动惯量(I):\[ I = \frac{m \cdot r^2}{2} \]其中,r 为刚体的几何尺寸。
六、实验结果与分析1. 通过实验测量,得到刚体的转动惯量(I)为:_______ kg·m²。
2. 分析实验结果,比较不同刚体的转动惯量,观察质量分布对转动惯量的影响。
3. 分析实验误差,探讨可能的原因。
七、实验总结1. 通过本次实验,成功验证了刚体转动定律,并测量了刚体的转动惯量。
篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
实验讲义补充:
1.刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不变的物体。
2.转动惯量概念:转动惯量是刚体转动中惯性大小的量度。
它取决于刚体的总质量,质量分布、形状大小
和转轴位置
3.转动定律:合外力矩=转动惯量×角加速度
4.转动惯量叠加:
空盘:(1)阻力矩(2)阻力矩+砝码外力→J1
空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2
被测物体:J3=J2-J1
5.转动惯量理论公式:圆盘&圆环
6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3个塔轮半径,3组
砝码质量
7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值;
8.泡沫垫板
9.重力加速度:s^2
10.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体;
11.游标卡尺:6次读数,包括圆盘半径,圆环内外半径,塔轮半径,转盘上孔的内外半径(求平均值)
12.实验目的:测量值与理论值对比
实验计算补充说明:
1.有效数字:质量,故有效数字为3位
2.游标卡尺:,读数最后一位肯定为偶数;
3.误差&不确定度:
(1)理论公式计算的误差:
圆盘:(注意:直接测量的是直径)
质量m=±;(保留4位有效数字)
um=*100%=%
半径R=±
若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值
,
取n=6时的
,我们处理为0
C=,仪器允差,δB=
总误差:,ux= m
,u rx==%
R=±
urx=%
计算转动惯量的结果表示:
,总误差:uJ=,相对不确定=uJ/J
圆环:,同上.
(2)实验测量计算的误差:
根据,,对R(塔轮半径),m(砝码质量),β2和β1求导,。