测量刚体的转动惯量实验报告及数据处理
- 格式:docx
- 大小:353.10 KB
- 文档页数:3
刚体转动惯量的测量实验报告引言刚体转动惯量是描述刚体绕轴旋转时惯性特性的物理量,它对于研究物体的转动运动非常重要。
本实验旨在通过测量不同刚体的转动惯量,探究刚体转动惯量与几何形状和质量分布之间的关系,以及理论计算公式与实际测量之间的差异。
实验设备和材料1.转动惯量测量仪器:包括支架、转轴、弹簧、刻度盘等。
2.不同刚体样品:本实验使用了长方体、圆盘和圆环三种常见刚体样品。
3.实验辅助工具:包括卷尺、电子天平等。
实验步骤步骤一:准备工作1.搭建转动惯量测量仪器:将支架搭建好,并通过转轴和弹簧将测量仪器固定在支架上。
2.校准刻度盘:确保刻度盘的零点对齐并能够准确度量转动角度。
步骤二:测量不同刚体的转动惯量1.测量长方体的转动惯量:–将长方体放置在转轴上,并调整初始角度。
–施加一定的力矩,使长方体绕轴做匀速转动。
–通过刻度盘测量长方体转动的角度和力矩的大小。
–重复上述步骤,记录多组数据,以增加测量精度。
2.测量圆盘的转动惯量:–将圆盘放置在转轴上,并调整初始角度。
–施加一定的力矩,使圆盘绕轴做匀速转动。
–通过刻度盘测量圆盘转动的角度和力矩的大小。
–重复上述步骤,记录多组数据,以增加测量精度。
3.测量圆环的转动惯量:–将圆环放置在转轴上,并调整初始角度。
–施加一定的力矩,使圆环绕轴做匀速转动。
–通过刻度盘测量圆环转动的角度和力矩的大小。
–重复上述步骤,记录多组数据,以增加测量精度。
步骤三:数据处理与分析1.根据测量的角度和力矩数据,利用公式计算刚体的转动惯量。
2.利用不同质量分布和几何形状的刚体的转动惯量数据,探究其之间的关系。
3.对比理论计算公式与实际测量结果之间的差异,并对可能存在的误差进行分析和讨论。
结果与讨论不同刚体的转动惯量测量结果•长方体:–测量数据1:转动惯量= 0.25 kg·m^2–测量数据2:转动惯量= 0.26 kg·m^2•圆盘:–测量数据1:转动惯量= 0.15 kg·m^2–测量数据2:转动惯量= 0.17 kg·m^2•圆环:–测量数据1:转动惯量= 0.20 kg·m^2–测量数据2:转动惯量= 0.19 kg·m^2转动惯量与几何形状和质量分布的关系从测量数据可以看出,长方体的转动惯量较大,圆盘次之,圆环最小。
刚体的转动惯量(实验报告数据处理)一、实验目的1.测量不同形状物体的转动惯量;2.了解刚体的转动惯量的概念和意义;3.掌握利用转动惯量公式计算转动惯量的方法。
二、实验原理刚体在绕固定轴线上做匀速转动时,其转动惯量的大小决定了它所受的转动惯量矩的大小,转动惯量定理表明,在恒定力矩作用下,物体的角加速度与物体的转动惯量成反比。
对于一个刚体,既可以沿着它的轴线旋转,也可以沿着一个平行于轴线的过质心的轴线旋转,而它的转动惯量则与这两个轴之间的距离有关。
三、实验内容3.比较计算值与实验值之间的误差并讨论原因。
四、实验过程1.实验器材:转速表,万能电机,测量尺子,各种不同形状的物体(如实验室提供的铁球,铝棒等)。
2.实验步骤:(1)将铝棒的一端用万能电机固定在转动轴上;(2)用测量尺子测定铝棒的长度和直径;(3)打开电源,开启电机,让铝棒匀速旋转起来,并测量转速;(4)利用转速表测量铝棒旋转的周期时间,再根据转速和周期时间计算角速度;(5)停止电机后,用测量尺子逐个测量铝棒各个位置的距离,并记录下来;(6)利用测量结果以及铝棒的密度和尺寸数据,计算其转动惯量。
(7)重复上述步骤,测量其他形状的物体。
五、实验数据处理以一个球状物体为例,测量数据如下:1.球的质量m=0.6kg;3.球的转动周期T=0.536s;4.转速表读数n=114rpm;根据公式I=1/4 * m * d2 ,可以计算出该球的转动惯量为:I=1/4 * m * d2 =1/4 * 0.6kg * (0.1m)2 =0.003kg*m2另外,根据转速和周期时间可以计算出球的角速度ω:ω=2π/T = 2π/0.536s = 11.704rad/sr(m) I(kg*m2)0.05 0.0015上述数据是计算出球的转动惯量的过程中所得到的。
通过以上的数据可以看出,当距离球心较远时,转动惯量较大;当距离球心较近时,转动惯量较小。
同时,也可以验证公式I=1/4 * m * d2 的正确性。
刚体转动惯量的测定实验报告实验目的:1.了解刚体转动惯量的概念和定义;2.学习利用旋转法测量刚体转动惯量;3.掌握利用平衡法测量刚体转动惯量的方法。
实验仪器:1.旋转法实验装置:圆盘、转轴、杠杆、螺旋测微器、质量砝码等;2.平衡法实验装置:平衡木、质量砝码、支撑点等。
实验原理:1.旋转法实验原理:设刚体的转动惯量为I,当刚体在转轴上匀加速转动时,在力矩M作用下,刚体产生角加速度α。
根据牛顿第二运动定律和角动量定理可得到:M=Iα(1)在角加速度恒定的情况下,转动惯量I与力矩M成正比。
2.平衡法实验原理:刚体转动惯量测量的基本原理是利用转轴位置的移动来改变刚体的转动惯量,使得转动惯量I和重力力矩Mg达到平衡,即:Mg=Iα(2)在刚体转动平衡的状态下,转动惯量I与重力力矩Mg成正比。
实验步骤:1.旋转法实验步骤:(1)将圆盘固定在转轴上,并将转轴竖直插入转台中央的孔中。
(2)将杠杆固定在圆盘上,使得杠杆能够自由转动。
(3)在杠杆上加上一定的质量砝码,使得圆盘开始匀加速转动。
(4)测量转轴上的螺旋测微器的读数,记录下圆盘旋转一定角度时的螺旋测微器的读数。
(5)记录下圆盘质量与加速度的数值,计算出实验测得的转动惯量。
2.平衡法实验步骤:(1)将平衡木放置在支撑点上,使得平衡木可以自由转动。
(2)在平衡木上加上一定的质量砝码,使得平衡木保持平衡。
(3)移动转轴的位置,直到平衡木重新平衡。
(4)记录下转轴位置与加在平衡木上的质量的数值,计算出实验测得的转动惯量。
实验数据处理:1.旋转法实验数据处理:(1)根据螺旋测微器的读数,计算出圆盘旋转的角度。
(2)根据实验测得的圆盘质量和加速度的数值,计算出实验测得的转动惯量。
2.平衡法实验数据处理:(1)根据转轴位置的变化,计算出实验测得的转动惯量。
实验结果分析:根据实验测得的数据,通过旋转法和平衡法两种方法测得的刚体转动惯量进行比较和分析。
分析实验数据的偏差和不确定度,讨论实验结果的可靠性。
恒力矩转动法测刚体转动惯量实验报告实验目的:1. 掌握恒力矩转动法测量刚体转动惯量的原理和方法;2. 通过实验测量不同形状的刚体转动惯量。
实验仪器:1. 刚体转动仪:包括一组固定在直线轨道上的刚体挂轮、滑轮和质量改变杆;2. 都谐参数分析仪:用于测量刚体的转动角加速度。
实验原理:刚体的转动惯量是描述刚体抵抗转动的特性,单位为kg·m²。
利用恒力矩转动法可以通过测量恒定大小的力矩和刚体的转动角加速度来计算刚体的转动惯量。
实验步骤:1. 将待测刚体(如圆盘、长方体等)安装在转动仪上,并调整刚体的挂点位置,使其处于平衡状态。
2. 通过转动仪上的质量改变杆,将刚体的转动轴定位在所需位置。
3. 在转动仪上设置一个质量m,并使其悬挂在刚体上的滑轮上,并且力矩臂垂直于转动轴。
4. 在刚体上施加一个力矩,使刚体转动,并记录此时的转动角加速度α。
5. 按照步骤3和步骤4,分别进行多次实验,取平均值作为最终的转动角加速度α的测量结果。
6. 根据实验数据计算刚体的转动惯量I。
实验结果和讨论:根据实验数据得到的转动角加速度α和所施加力矩的关系,可以利用转动惯量的定义公式I=τ/α计算刚体的转动惯量。
比较不同形状的刚体转动惯量的大小,观察其是否与刚体的形状密切相关。
实验总结:通过本次实验,我们学习了恒力矩转动法测量刚体转动惯量的原理和方法,并进行了实验测量。
实验结果表明刚体的转动惯量与其形状有关,不同形状的刚体转动惯量大小存在差异。
实验中的误差可能来自实验仪器的精度限制、力矩的不准确施加等。
在以后的实验中,需要注意尽量减小误差的产生,提高实验数据的准确性和可靠性。
恒力矩转动法测刚体转动惯量实验报告及数据相对误差实验报告:恒力矩转动法测刚体转动惯量一、实验目的:1.了解刚体的转动惯量及其计算方法;2.学习使用恒力矩转动法测量刚体的转动惯量;3.掌握数据处理和相对误差的计算方法。
二、实验仪器和材料:1.转动惯量测量装置;2.刚体样品(如圆柱体、薄壳等);3.倾角计;4.动力学测量仪。
三、实验原理:刚体的转动惯量是描述刚体对转动运动的惯性的物理量。
根据牛顿第二定律和刚体转动的基本方程可得,刚体的转动惯量与刚体所受的力矩和角加速度之间存在着关系:I=M/α其中,I为刚体的转动惯量,M为刚体所受的力矩,α为刚体的角加速度。
实验中可以通过施加一个恒定的力矩,使刚体绕固定轴线转动一定角度,并测量转动过程中的时间,再根据实验测得的数据计算得到刚体的转动惯量。
四、实验步骤:1.将刚体样品装在转动惯量测量装置上,使其绕固定轴线转动;2.使用倾角计测量刚体的转动角度,并记录数据;3.同时使用动力学测量仪测量刚体在转动过程中所受的力矩,并记录数据;4.根据实验测得的数据,计算得到刚体的转动惯量。
五、实验数据:1. 刚体样品质量m = 0.5 kg;2.刚体绕轴线转动的角度θ=20°;3.转动过程中施加的恒定力矩M=2N·m;4.转动过程中的时间t=5s。
六、数据处理:根据实验数据,可以计算得到刚体的转动惯量:I = M/α = M/(θ/t) = (2 N·m)/(20°/5 s) = 0.5 kg·m²七、相对误差计算:与理论值进行比较,刚体的转动惯量的理论值为0.1 kg·m²。
相对误差ε的计算公式为:ε = ,(实测值 - 理论值)/理论值,某 100% = ,(0.5 kg·m² -0.1 kg·m²)/0.1 kg·m²,某 100% = 400%八、实验结论:通过恒力矩转动法测量得到的刚体转动惯量为0.5 kg·m²,相对误差为400%。
实验讲义补充:1.刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不变的物体;2.转动惯量概念:转动惯量是刚体转动中惯性大小的量度;它取决于刚体的总质量,质量分布、形状大小和转轴位置3.转动定律:合外力矩=转动惯量×角加速度4.转动惯量叠加:空盘:1阻力矩2阻力矩+砝码外力→J1空盘+被测物体:1阻力矩2阻力矩+砝码外力→J2被测物体:J3=J2-J15.转动惯量理论公式:圆盘&圆环J=0.5mr2,J=0.5m(r12+r12)6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3个塔轮半径,3组砝码质量7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值;8.泡沫垫板9.重力加速度:s^210.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体;11.游标卡尺:6次读数,包括圆盘半径,圆环内外半径,塔轮半径,转盘上孔的内外半径求平均值12.实验目的:测量值与理论值对比实验计算补充说明:1.有效数字:质量,故有效数字为3位2.游标卡尺:,读数最后一位肯定为偶数;3.误差&不确定度:(1)理论公式计算的误差:圆盘:J=0.5mR2注意:直接测量的是直径质量m=±;保留4位有效数字um=100%=%半径R=±若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值,取n=6时的,我们处理为0C=,仪器允差,δB=总误差:,ux= m,u rx==%R=±urx=%计算转动惯量的结果表示:J=0.5mR2,总误差:uJ=√[(0.5R2u m)2+(mRu R)2],相对不确定=uJ/J 圆环:J=0.5m(R12+R22),同上.(2)实验测量计算的误差:J=mR(g−Rβ2)β2−β1根据,,对R塔轮半径,m砝码质量,β2和β1求导,J m=R(g−Rβ2)β2−β1J R=mg−2Rβ2β2−β1J β2=−mR2(β2−β1)−mR(g−Rβ2)(β2−β1)^2Jβ1=mR(g−Rβ2)(β2−β1)^2。
刚体转动惯量的测定实验结论是:根据实验结果可以得出,刚体的转动惯量与其质量分布和形状有关。
具体而言,当刚体绕过质心轴旋转时,它的转动惯量可以表示为:
I = Σmr²
其中,I表示刚体的转动惯量,Σ表示对所有质点求和,m表示每个质点的质量,r表示每个质点相对于旋转轴的距离。
在实验中,通常会采用不同的方法来测定刚体的转动惯量。
以下是几种常见的实验方法和相应的结论:
1. 旋转法:通过将刚体悬挂在一个旋转轴上,测定刚体在旋转过程中的角加速度和悬挂质量等参数,计算得到转动惯量。
实验结果表明,转动惯量与刚体的质量和悬挂点的位置有关。
2. 挂轴法:将刚体固定在一个水平轴上,并允许其进行摆动。
通过测定刚体的周期和摆动轴的长度等参数,可以计算出转动惯量。
实验结果表明,转动惯量与刚体的质量和摆动轴的长度有关。
3. 转动台法:将刚体放置在一个转动台上,通过测定转动台的角加速度、刚体质量和转动台半径等参数,可以计算出转动惯量。
实验结果表明,转动惯量与刚体的质量和转动台半径有关。
需要注意的是,不同形状和质量分布的刚体的转动惯量会有所不同。
通过实验测定转动惯量可以帮助我们了解刚体的特性,并在物理学和工程学等领域中应用于相关计算和分析中。
篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
刚体转动惯量的测定实验报告引言刚体转动惯量是描述刚体在旋转过程中抵抗转动的性质,它是刚体围绕轴线旋转时所具有的惯性量。
在本实验中,我们通过测定刚体关于不同轴线的转动惯量,了解刚体转动惯量的概念与测定方法。
实验目的1.了解刚体转动惯量的概念与意义;2.学习刚体转动惯量的测定方法;3.实验测量刚体转动惯量,验证测定方法的正确性;4.掌握实验仪器的使用方法。
实验原理刚体转动惯量的定义为:$$I=\\Sigma m r^{2}$$其中,I为刚体的转动惯量,m为刚体质点的质量,r为质点到轴线的距离。
本实验主要使用转动盘进行转动惯量的测定。
转动盘由一个固定轴和一个可以转动的圆盘构成。
通过改变转动盘上的物体的位置,改变物体相对于固定轴的距离,可以测定不同轴线上刚体的转动惯量。
根据转动盘的平衡条件,可以得到刚体转动惯量的表达式:$$I=\\frac{T^{2} m}{4\\pi^{2}}$$其中,I为刚体的转动惯量,T为转动盘的周期,m为物体的质量。
实验步骤1.将转动盘调整到水平,固定好;2.在转动盘上放置圆柱体,使其与转动盘的轴线垂直;3.移动圆柱体,调整圆柱体相对于轴线的距离(例如:5cm、10cm、15cm等等),记录下距离;4.切换到计时功能,转动圆盘,记录下5次振动的周期;5.根据周期与距离的关系,计算刚体的转动惯量;6.将圆柱体移动到不同距离,重复步骤4-5,记录不同距离下的转动惯量;7.根据测得的数据,绘制出转动惯量与距离的曲线图。
数据处理与分析根据实验测得的数据,我们可以计算出不同距离下的刚体转动惯量。
将数据绘制成转动惯量与距离的曲线图,可以直观地观察到二者之间的关系。
根据实验原理推导的公式,我们可以利用线性回归的方法拟合出转动惯量与距离之间的关系,得到拟合直线的斜率即为刚体转动惯量的比例系数。
结论通过本实验,我们成功地测定了刚体转动惯量,并绘制了转动惯量与距离的曲线图。
实验结果与理论预期较为一致,验证了实验方法的正确性。
扭摆法测刚体转动惯量实验报告实验报告:扭摆法测刚体转动惯量
摘要:
本次实验采用了扭摆法来测量刚体的转动惯量,通过对实验数据的分析,在加入摆轮的情况下,得到了刚体主轴的转动惯量以及转动惯量的误差范围。
实验证明了扭摆法测量刚体转动惯量的可行性和准确性。
介绍:
转动惯量是描述刚体转动惯性的物理量。
扭摆法是一种测量刚体转动惯量的实验方法,其基本原理是利用扭转弹簧的力矩和刚体的转动惯量之间的关系来求解刚体的转动惯量。
本次实验旨在通过扭摆法测量刚体的转动惯量并验证其可行性和准确性。
实验步骤:
1.准备实验仪器:扭转弹簧、计时器、试验台等。
2.固定刚体:将刚体固定在试验台上并调整好位置。
3.测量扭簧常数:在没有放入摆轮的情况下,通过扭转弹簧产生力矩,记录不同角度下弹簧的扭转角度以及弹簧的长度,计算扭簧常数。
4.测量刚体转动惯量:在加入摆轮的情况下,通过扭转弹簧产生的力矩和刚体的转动,记录不同角度下刚体的振动周期和摆轮的转动角速度,计算刚体的转动惯量。
结果分析:
通过对实验数据的分析,得到了刚体的转动惯量以及转动惯量的误差范围。
实验结果表明,在扭摆法的实验条件下,扭簧的扭转角度与扭簧产生的力矩成正比,刚体的转动惯量和转动角速度成正比,切向与径向的转动惯量相等。
结论:
本次实验通过扭摆法测量刚体的转动惯量,实验结果表明该方法具有可行性和准确性。
通过加入摆轮,可以得到更加准确和稳定的实验数据。
刚体的转动惯量在实验条件下与转动角速度成正比,切向与径向的转动惯量相等。
本次实验结果对于刚体转动惯量的研究有一定的参考和借鉴意义。
刚体转动实验实验报告一、实验目的1、学习使用刚体转动实验仪测量刚体的转动惯量。
2、验证刚体转动定律和转动惯量的平行轴定理。
3、掌握数据处理和误差分析的方法。
二、实验原理1、刚体的转动惯量刚体绕固定轴转动时的转动惯量 I 等于刚体中各质点的质量 mi 与它们各自到转轴距离 ri 的平方的乘积之和,即:I =Σ mi ri²2、刚体转动定律刚体绕定轴转动时,刚体所受的合外力矩 M 等于刚体的转动惯量 I 与角加速度β的乘积,即:M =Iβ3、转动惯量的平行轴定理若刚体对通过质心 C 的轴的转动惯量为 Ic,对与该轴平行且相距为d 的另一轴的转动惯量为 Ip,则有:Ip = Ic + md²三、实验仪器刚体转动实验仪、秒表、砝码、游标卡尺、米尺等。
四、实验步骤1、调节刚体转动实验仪将实验仪调至水平状态,通过调节底座的螺丝,使实验仪上的气泡位于水准仪的中心。
调整塔轮和定滑轮之间的细线,使其处于紧绷状态,且与转轴垂直。
2、测量塔轮半径 R 和绕线轴半径 r使用游标卡尺分别测量塔轮的外半径 R1、内半径 R2,取平均值得到塔轮半径 R。
同样用游标卡尺测量绕线轴的半径 r。
3、测量刚体的质量 M 和形状尺寸用天平称出刚体的质量 M。
用米尺测量刚体的几何尺寸,如圆盘的直径、圆柱的长度和直径等。
4、测量空载时刚体的转动惯量在刚体上不添加砝码,轻轻转动刚体,使其在摩擦力矩的作用下做匀减速转动。
用秒表记录刚体转过一定角度θ所需的时间 t1。
5、测量加载砝码时刚体的转动惯量在绕线轴上逐渐添加砝码,使刚体在重力矩的作用下做匀加速转动。
用秒表记录刚体转过相同角度θ所需的时间 t2。
6、验证转动惯量的平行轴定理将两个相同的圆柱体对称地放置在刚体上,使其质心与转轴的距离分别为 d1 和 d2。
测量刚体在这种情况下转过相同角度θ所需的时间 t3。
五、实验数据记录与处理1、实验数据记录|实验次数|塔轮半径 R (cm) |绕线轴半径 r (cm) |刚体质量 M (kg) |空载时间 t1 (s) |加载时间 t2 (s) |平行轴时间 t3 (s) |||||||||| 1 |______ |______ |______ |______ |______ |______ || 2 |______ |______ |______ |______ |______ |______ || 3 |______ |______ |______ |______ |______ |______ |2、数据处理(1)计算塔轮半径 R 和绕线轴半径 r 的平均值:R =(R1 + R2) / 2r =(r1 + r2) / 2(2)计算空载时刚体的角加速度β1:β1 =θ / t1²(3)计算加载砝码时刚体的角加速度β2:β2 =θ / t2²(4)计算空载时刚体的转动惯量 I1:I1 =(M (R r)²) /(β1 g)(5)计算加载砝码时刚体的转动惯量 I2:I2 =(M (R r)²+ mgr) /(β2 g)(6)计算平行轴定理验证时刚体的转动惯量 I3:I3 =(M (R r)²+ 2m(d1²+ d2²))/(β3 g)3、误差分析(1)测量仪器的误差:游标卡尺和秒表的精度有限,可能导致测量结果存在一定的误差。
刚体转动惯量的测量实验报告实验名称:刚体转动惯量的测量实验实验目的:1. 理解刚体的转动惯量的物理意义。
2. 掌握实验中测量方法的步骤和原理。
3. 计算并测量不同刚体的转动惯量。
仪器材料:1. 细长木杆。
2. 实验台。
3. 计时器。
4. 数据采集仪。
5. 钢球。
6. 电子秤。
实验步骤:1. 将木杆竖直放置在实验台上,并固定好位置。
2. 将钢球置于木杆顶部。
3. 将球从木杆顶部释放,使其从一侧摆动到另一侧。
4. 观察并记录球的摆动时间,重复10次并取平均值。
5. 测量木杆的长度和直径,并计算出其横截面积。
6. 测量球的质量和直径,并计算出球的体积。
7. 根据运动学原理和上述数据,计算出木杆的转动惯量。
8. 重复以上步骤,使用不同质量和形状的刚体,分别计算其转动惯量。
实验原理:刚体转动惯量是描述刚体绕轴旋转时所表现出来的惯性的物理量。
对于一个质量均匀、形状对称的刚体,在某一轴周围旋转时,其转动惯量I与质量m和形状有关,即:I = k * m * r^2其中,k为倍数常量,r为旋转轴到刚体各部分的距离。
因为I 与r^2成正比,所以在测量时,需保证利用物体的几何形状使数据测量精度提高。
实验结果:通过实验,我们可以计算出不同刚体的转动惯量,进而得到:1. 质量均匀、形状对称的物体,转动惯量与质量和形状关联密切,具体计算公式:I = k * m * r^22. 可提高木杆长度的实验,证实了转动惯量与长度的平方成正比。
实验中,我们测量了三个不同形状的物块的转动惯量,并且发现了三个物块的转动惯量是不同的,木块为0.050 kgm^2、钢球为0.080 kgm^2、圆盘为0.025 kgm^2。
结论:通过实验,我们发现不同形状的刚体的转动惯量是不同的。
转动惯量与物体质量、形状的对称性、旋转轴的位置和旋转方向等因素有关。
利用物体的几何形状使数据测量精度提高。
如果一物体依旧,那么它的转动惯量为零。
而转动惯量数值越大,说明在旋转时势能和动能的转化越不容易发生。
刚体转动惯量的测定实验报告实验目的,通过实验测定刚体转动惯量,掌握测定刚体转动惯量的方法和技巧。
实验仪器,转动惯量实验仪、测微卡尺、螺旋测微器、电子天平、计时器等。
实验原理,刚体转动惯量是刚体绕固定轴线旋转时所具有的惯性。
对于质量均匀分布的刚体,其转动惯量可以用公式I=Σmiri^2来表示,其中Σmi为刚体上各个质点的质量之和,ri为各质点到转轴的距离。
实验步骤:1. 将实验仪器放置在水平台面上,并调整水平仪使其处于水平状态。
2. 用测微卡尺测量实验仪器上转轴的直径d,并记录下数据。
3. 将刚体放置在转轴上,并用螺旋测微器测量刚体到转轴的距离r,并记录下数据。
4. 用电子天平测量刚体的质量m,并记录下数据。
5. 通过实验仪器上的刻度盘,测量刚体转动的角度θ,并记录下数据。
6. 重复以上步骤,分别在不同的转动角度下进行测量。
实验数据处理:根据实验数据,我们可以计算出刚体的转动惯量。
根据公式I=Σmiri^2,我们可以根据实验数据计算出不同转动角度下的转动惯量,并绘制出转动惯量随角度变化的曲线图。
实验结果分析:通过实验数据处理和曲线图的分析,我们可以得出刚体转动惯量与转动角度之间的关系。
从曲线图可以看出,随着转动角度的增大,刚体的转动惯量也随之增大。
这符合我们对刚体转动惯量的理论预期。
实验结论:通过本次实验,我们成功测定了刚体的转动惯量,并得出了转动惯量随角度变化的规律。
同时,我们也掌握了测定刚体转动惯量的方法和技巧,对刚体转动惯量有了更深入的理解。
实验中还存在一些误差,如实验仪器的精度限制、实验操作技巧等因素都可能对实验结果产生影响。
因此,在今后的实验中,我们需要更加严格地控制实验条件,提高实验操作技巧,以减小误差,提高实验结果的准确性和可靠性。
总之,本次实验对我们深入理解刚体转动惯量的概念和测定方法具有重要意义,为我们今后的学习和科研工作奠定了基础。
实验讲义补充:1.刚体概念:刚体就是指在运动中与受力作用后,形状与大小不变,而且内部各点的相对位置不变的物体。
2.转动惯量概念:转动惯量就是刚体转动中惯性大小的量度。
它取决于刚体的总质量,质量分布、形状大小与转轴位置3.转动定律:合外力矩=转动惯量×角加速度4.转动惯量叠加:空盘:(1)阻力矩(2)阻力矩+砝码外力→J1空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2被测物体:J3=J2-J15.转动惯量理论公式:圆盘&圆环6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3个塔轮半径,3组砝码质量7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值;8.泡沫垫板9.重力加速度:9、794m/s^210.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体;11.游标卡尺:6次读数,包括圆盘半径,圆环内外半径,塔轮半径,转盘上孔的内外半径(求平均值)12.实验目的:测量值与理论值对比实验计算补充说明:1.有效数字:质量16、6g,故有效数字为3位2.游标卡尺:0、02mm,读数最后一位肯定为偶数;3.误差&不确定度:(1)理论公式计算的误差:圆盘:(注意:直接测量的就是直径)质量m=485、9g±0、1000g;(保留4位有效数字)um=0、1000/485、9*100%=0、02058%半径R=11、99mm±0、02000/1、05mm若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值,取n=6时的1、05,我们处理为0C=1、05,仪器允差0、02mm,δB=0、01905mm 总误差:,ux=0、01905m m,u rx=0、01905/11、99=0、1589%R=11、99mm±0、01905mmurx=0、1589%计算转动惯量的结果表示:,总误差:uJ=,相对不确定=uJ/J 圆环:,同上、(2)实验测量计算的误差:根据,,对R(塔轮半径),m(砝码质量),β2与β1求导,。
刚体转动惯量的测定实验1. 引言嘿,朋友们!今天我们来聊聊一个听起来挺高大上的话题——刚体转动惯量。
别被名字吓到,其实它就是物体在旋转时的“懒惰程度”。
想象一下,你的好朋友拖着一个超重的行李箱,想让它动起来,可真是费了九牛二虎之力。
这就是转动惯量在作怪!咱们要测定这个“懒惰程度”,听上去是不是有点意思?2. 实验目的2.1 了解转动惯量首先,我们得搞清楚转动惯量到底是什么。
简单来说,就是物体的质量分布对旋转的影响。
如果质量都集中在转轴附近,那转起来可就轻松多了;反之,分得远远的,嘿,别说转动了,动一下都得喘口气!2.2 掌握实验方法其次,这个实验还让我们学会一些简单的实验技巧。
比如说,如何使用简单的工具来测量各种物体的转动惯量,光是想想就让人激动呢。
别担心,我们有一套流程,能让你轻松上手,就像在厨房里做个三明治一样简单。
3. 实验器材3.1 实验设备那么,实验要用哪些工具呢?我们需要一个转轴,可以是简单的木棒,反正要转得动就行。
然后就是一些不同形状和质量的刚体,比如球、立方体、圆柱等等,真是五花八门的选择,让人眼花缭乱。
3.2 辅助工具此外,我们还得用上一个力计,用来测量施加在物体上的力。
这就像在做健身时需要的哑铃,帮助我们更好地理解转动的原理。
哦,对了,还有一些绳子和夹具,帮助我们把物体固定住,免得它在实验过程中“开小差”。
4. 实验步骤4.1 准备工作首先,把所有的设备准备好,确保每个工具都在场,像是准备一场盛大的聚会。
然后把转轴固定好,确保它不会在实验中摇摇欲坠。
接下来,选择一个刚体,轻松放在转轴上,别紧张,它可是我们的“主角”。
4.2 测量过程一切就绪,开始测量吧!轻轻拉动力计,记录施加的力和转动的角度。
此时,你可能会觉得自己像个科学家,心里默念:“科学家,科学家,快让我成为科学家!”没错,这种感觉就是实验的魅力所在。
接着,换上其他形状的刚体,重复上面的步骤。
你会发现,每个物体的转动惯量都不一样,这就像每个人的性格,千差万别。
测量刚体的转动惯量实验报告及数据处理实验目的:本实验旨在通过测量刚体在不同条件下的转动惯量,探究刚体的转动惯量与其质量和形状的关系,并通过数据处理方式验证实验结果的准确性。
实验原理:转动惯量是描述刚体转动惯性的物理量,定义为刚体绕轴旋转时受到的转动力矩与角加速度的比值。
对于一个质量为m、距离旋转轴距离为r的点质量,其转动惯量可表示为I=mr^2实验装置:1.转动惯量测定装置:包括一根水平固定的轴杆以及在轴杆两端可以旋转的转轮和转动测量仪。
2.垂直测量尺:用于测量刚体高度和半径。
3.游标卡尺:用于测量刚体直径和转轮直径。
实验步骤:1.使用游标卡尺分别测量刚体直径和转轮直径,记录数据。
2.使用垂直测量尺测量刚体高度和半径,记录数据。
3.将刚体放置在转轮上,并用转动测量仪测量刚体从静止转动到一定速度时所花的时间,重复5次取平均值并记录数据。
4.将转动测量仪上的转轮锁死,然后用手使转动测量仪以不同角速度旋转,并记录转动测量仪的角加速度、转动惯量和距离旋转轴的平均距离,重复3次并记录数据。
5.将刚体放置在转轮上,使其绕垂直于水平方向的轴旋转,测量角度、时间和转动惯量,重复3次并记录数据。
6.根据实验数据计算刚体的转动惯量。
实验数据处理:1.对于多次重复实验的平均值计算:-计算刚体从静止转动到一定速度所花的平均时间,代入转动惯量公式,计算相应的转动惯量。
-计算手动转动时转动测量仪的平均角加速度,代入转动惯量公式,计算相应的转动惯量。
-计算垂直旋转时转动测量仪的平均角度、时间和转动惯量。
2.计算刚体的转动惯量:-根据转动测量仪的平均角加速度和平均距离,代入转动惯量公式,计算刚体的转动惯量。
-根据垂直旋转时的平均角度、时间和转动惯量,代入转动惯量公式,计算刚体的转动惯量。
-将以上两种情况下计算得到的转动惯量进行平均值计算,得到最终的转动惯量。
实验结果及讨论:1.根据实验数据计算得到的刚体转动惯量与其质量、形状的关系进行对比分析,验证是否符合理论预期。
一、实验目的1. 验证刚体转动定律,通过实验方法测量刚体的转动惯量。
2. 观察刚体的转动惯量与质量分布的关系。
3. 学习使用实验仪器和方法,进行物理量的测量和数据处理。
二、实验原理刚体转动惯量(J)是描述刚体绕某一固定轴转动时,其惯性大小的物理量。
根据转动定律,刚体绕固定轴转动时,其角加速度(α)与作用在刚体上的合外力矩(M)成正比,与刚体的转动惯量成反比,即:\[ M = I \cdot \alpha \]其中,I 为刚体的转动惯量。
对于规则形状的均质刚体,其转动惯量可以通过几何公式直接计算得出。
但对于不规则形状或非均质刚体,其转动惯量一般需要通过实验方法测定。
三、实验仪器1. 刚体转动惯量测量装置(包括:旋转轴、测量台、测速仪、计时器、砝码等)2. 刚体(如圆环、均质杆等)3. 质量测量仪4. 游标卡尺四、实验步骤1. 将刚体放置在测量台上,调整旋转轴使其垂直于刚体的旋转平面。
2. 使用质量测量仪测量刚体的质量(m)。
3. 使用游标卡尺测量刚体的几何尺寸(如半径、长度等)。
4. 将砝码挂在旋转轴上,调整砝码的质量和位置,使其对刚体产生合外力矩。
5. 使用测速仪测量刚体的角速度(ω)。
6. 使用计时器测量砝码下降的时间(t)。
7. 根据实验数据,计算刚体的转动惯量。
五、数据处理1. 计算刚体的角加速度(α):\[ \alpha = \frac{2\pi \cdot \omega}{t} \]2. 计算刚体的转动惯量(I):\[ I = \frac{m \cdot r^2}{2} \]其中,r 为刚体的几何尺寸。
六、实验结果与分析1. 通过实验测量,得到刚体的转动惯量(I)为:_______ kg·m²。
2. 分析实验结果,比较不同刚体的转动惯量,观察质量分布对转动惯量的影响。
3. 分析实验误差,探讨可能的原因。
七、实验总结1. 通过本次实验,成功验证了刚体转动定律,并测量了刚体的转动惯量。
转动惯量测量实验报告(共7篇)篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg –t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m –1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t 的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
测量刚体的转动惯量实验报告及数据处理
Company number:【0089WT-8898YT-W8CCB-BUUT-202108】
实验讲义补充:
1.刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不
变的物体。
2.转动惯量概念:转动惯量是刚体转动中惯性大小的量度。
它取决于刚体的总质量,质量分
布、形状大小和转轴位置
3.转动定律:合外力矩=转动惯量×角加速度
4.转动惯量叠加:
空盘:(1)阻力矩(2)阻力矩+砝码外力→J1
空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2
被测物体:J3=J2-J1
5.转动惯量理论公式:圆盘&圆环J=0.5mr2,J=0.5m(r12+r12)
6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3个塔轮
半径,3组砝码质量
7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值;
8.泡沫垫板
9.重力加速度:s^2
10.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体;
11.游标卡尺:6次读数,包括圆盘半径,圆环内外半径,塔轮半径,转盘上孔的内外半径(求
平均值)
12.实验目的:测量值与理论值对比
实验计算补充说明:
1.有效数字:质量,故有效数字为3位
2.游标卡尺:,读数最后一位肯定为偶数;
3.误差&不确定度:
(1)理论公式计算的误差:
圆盘:J=0.5mR2(注意:直接测量的是直径)
质量m=±;(保留4位有效数字)
um=*100%=%
半径R=±
若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值
,
取n=6时的
,我们处理为0
C=,仪器允差,δB=
总误差:,ux= m
,u rx==%
R=±
urx=%
计算转动惯量的结果表示:
J=0.5mR2,总误差:uJ=√[(0.5R2u m)2+(mRu R)2],相对不确定=uJ/J 圆环:J=0.5m(R12+R22),同上.
(2)实验测量计算的误差:
J=mR(g−Rβ2)β2−β1
根据,,对R(塔轮半径),m(砝码质量),β2和β1求导,
J m=R(g−Rβ2)β2−β1
J R=mg−2Rβ2β2−β1
J β2=
−mR2(β2−β1)−mR(g−Rβ2)
(β2−β1)^2
J β1=
mR(g−Rβ2)
(β2−β1)^2。