当前位置:文档之家› 北京市中考数学试卷(解析版)

北京市中考数学试卷(解析版)

北京市中考数学试卷(解析版)
北京市中考数学试卷(解析版)

北京市2018年中考数学试卷

考生须知

1.本试卷共8页,共三道大题,28道小题,满分100分.考试时间120分钟. 2.在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.

4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,将本试卷、答题卡和草稿纸一并交回. 第1-8题均有四个选项,符合题意的选项只有一个. 1.下列几何体中,是圆柱的为

A .

B .

C .

D .

【答案】A

【解析】A 选项为圆柱,B 选项为圆锥,C 选项为四棱柱,D 选项为四棱锥. 【考点】立体图形的认识

2.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是

c b a 10

3

2 1

4

2

3

4

A .||4a >

B .0c b ->

C .0ac >

D .0a c +>

【答案】B

【解析】∵43a -<<-,∴34a <<,故A 选项错误;

数轴上表示b 的点在表示c 的点的左侧,故B 选项正确; ∵0a <,0c >,∴0ac <,故C选项错误;

∵0a <,0c >,a c >,∴0a c +<,故D 选项错误.

【考点】实数与数轴

3.方程组3

3814x y x y -=??-=?

的解为

A .1

2x y =-??=?

B .1

2x y =??=-?

C .2

1x y =-??=?

D .2

1x y =??=-?

【答案】D

【解析】将4组解分别代入原方程组,只有D 选项同时满足两个方程,故选D . 【考点】二元一次方程组的解

4.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为27140m ,则FAST 的反射面

积总面积约为

A.32

7.1410m

?B.42

7.1410m

?C.52

2.510m

?D.62

2.510m

?【答案】C

【解析】5

714035249900 2.510

?=≈?(2m),故选C.

【考点】科学记数法

5.若正多边形的一个外角是60?,则该正多边形的内角和为

A.360?B.540?C.720?D.900?

【答案】C

【解析】由题意,正多边形的边数为

360

6

60

n

?

==

?

,其内角和为()2180720

n-??=?.

【考点】正多边形,多边形的内外角和.

6.如果23

a b

-=,那么代数式

22

()

2

a b a

b

a a b

+

-?

-

的值为

A.3B.23C.33D.43【答案】A

【解析】原式

()2

222

222

a b

a b ab a a a b

a a

b a a b

-

+--

=?=?=

--

,∵23

a b

-=,∴原式

3

=.

【考点】分式化简求值,整体代入.

7.跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系2

y ax bx c

=++(0

a≠).下图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为

A.10m B.15m C.20m D.22.5m

【答案】B

【解析】设对称轴为x h

=,

由(0,54.0)和(40,46.2)可知,

040

20

2

h

+

<=,

由(0,54.0)和(20,57.9)可知,

020

10

2

h

+

>=,

∴1020

h

<<,故选B.

【考点】抛物线的对称轴.

8.右图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:

①当表示天安门的点的坐标为(0,0),表示

广安门的点的坐标为(6

-,3

-)时,表示

左安门的点的坐标为(5,6

-);

②当表示天安门的点的坐标为(0,0),表示

广安门的点的坐标为(12

-,6

-)时,表

示左安门的点的坐标为(10,12

-);

③当表示天安门的点的坐标为(1,1),表示

广安门的点的坐标为(11

-,5

-)时,表

示左安门的点的坐标为(11,11

-);

④当表示天安门的点的坐标为(1.5,1.5),

表示广安门的点的坐标为(16.5

-,7.5

-)

时,表示左安门的点的坐标为(16.5,16.5

-).

上述结论中,所有正确结论的序号是

A.①②③B.②③④C.①④D.①②③④

【答案】D

【解析】显然①②正确;

③是在②的基础上,将所有点向右平移个单位,再向上平移个单位得到,故③

正确;

④是在“当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(18

-,9-)时,表示左安门的点的坐标为(15,18

-)”的基础上,将所有点向右平移1.5个单位,再向上平移1.5个单位得到,故④正确.

【考点】平面直角坐标系,点坐标的确定,点的平移

E

D C

B

A

二、填空题(本题共16分,每小题2分)

9.右图所示的网格是正方形网格,BAC ∠________DAE ∠.(填“>”,“=”或“<”) 【答案】>

【解析】如下图所示,

AFG △是等腰直角三角形,∴45FAG BAC ∠=∠=?,∴BAC DAE ∠>∠. 另:此题也可直接测量得到结果.

【考点】等腰直角三角形

10.若x 在实数范围内有意义,则实数x 的取值范围是_______.

【答案】0x ≥

【解析】被开方数为非负数,故0x ≥. 【考点】二次根式有意义的条件.

11.用一组a ,b ,c 的值说明命题“若a b <,则ac bc <”是错误的,这组值可以是a =_____,

b =______,

c =_______.

【答案】答案不唯一,满足a b <,0c ≤即可,例如:,2,1- 【解析】不等式两边乘(或除以)同一个负数,不等号的方向改变. 【考点】不等式的基本性质

12.如图,点A ,B ,C ,D 在O e 上,??CB

CD =,30CAD ∠=?,50ACD ∠=?,则ADB ∠=________.

【答案】70

【解析】∵??CB

CD =,∴30CAB CAD ∠=∠=?,∴60BAD ∠=?, ∵50ABD ACD ∠=∠=?,∴18070ADB BAD ABD ∠=?-∠-∠=?.

【考点】圆周角定理,三角形内角和定理

13.如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若4

AB=,3

AD=,则CF的长为________.

【答案】

10

3

【解析】∵四边形ABCD是矩形,∴4

AB CD

==,AB CD

∥,90

ADC

∠=?,在Rt ADC

△中,90

ADC

∠=?,∴225

AC AD CD

=+=,

∵E是AB中点,∴

11

22

AE AB CD

==,

∵AB CD

∥,∴

1

2

AF AE

CF CD

==,∴

210

33

CF AC

==.

【考点】矩形的性质,勾股定理,相似三角形的性质及判定

14.从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:

公交车用时

公交车用时的频数

线路

3035

t

≤≤

3540

t<≤4045

t<≤4550

t<≤合计

A 59 151 166 124 500

B 50 50 122 278 500

C 45 265 167 23 500

用时不超过45分钟”的可能性最大.

【答案】C

【解析】样本容量相同,C线路上的公交车用时超过45分钟的频数最小,所以其频率也最小,故选C.

【考点】用频率估计概率

15.某公园划船项目收费标准如下:

船型

两人船

(限乘两人)

四人船

(限乘四人)

六人船

(限乘六人)

八人船

(限乘八人)每船租金

(元/小时)

90 100 130 150

某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为________元.

【答案】380

【解析】租用四人船、六人船、八人船各1艘,租船的总费用为100130150380

++=(元)【考点】统筹规划

16.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第________.

【答案】

【解析】从左图可知,创新综合排名全球第22,对应创新产出排名全球第11;从右图可知,创新产出排名全球第11,对应创新效率排名全球第3.

【考点】函数图象获取信息

三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,

28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.

17.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点P.

求作:PQ,使得PQ l

∥.

作法:如图,

①在直线上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长

线于点B;

②在直线上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画

弧,交BC的延长线于点Q;

③作直线PQ.

所以直线PQ就是所求作的直线.

根据小东设计的尺规作图过程,

(1)使用直尺和圆规,补全图形;(保留作图痕迹)

(2)完成下面的证明.

证明:∵AB=_______,CB=_______,

∴PQ l

∥(____________)(填推理的依据).

【解析】(1)尺规作图如下图所示:

(2)PA,CQ,三角形中位线平行于三角形的第三边.

【考点】尺规作图,三角形中位线定理

18.计算:0

4sin45(π2)18|1|

?+---.

【解析】解:原式

2

4132122

=+-+=

【考点】实数的运算

19.解不等式组:

3(1)1

9

2

2

x x

x

x

+>-

?

?

?+

>

??

【解析】解:由①得,2

x>-,

由②得,3

x<,

∴不等式的解集为23

x

-<<.

【考点】一元一次不等式组的解法

20.关于x的一元二次方程210

ax bx

++=.

(1)当2

b a

=+时,利用根的判别式判断方程根的情况;

(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.

【解析】(1)解:由题意:0a ≠.

∵()2

2242440b a a a a ?=-=+-=+>, ∴原方程有两个不相等的实数根.

(2)答案不唯一,满足240b a -=(0a ≠)即可,例如:

解:令1a =,2b =-,则原方程为2210x x -+=, 解得:121x x ==.

【考点】一元二次方程

21.如图,在四边形ABCD 中,AB DC ∥,AB AD =,对角线AC ,BD 交于点O ,AC 平

分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE . (1)求证:四边形ABCD 是菱形; (2)若5AB =,2BD =,求OE 的长.

【解析】(1)证明:∵AB CD ∥

∴CAB ACD ∠=∠ ∵AC 平分BAD ∠ ∴CAB CAD ∠=∠ ∴CAD ACD ∠=∠ ∴AD CD = 又∵AD AB = ∴AB CD = 又∵AB CD ∥

∴四边形ABCD 是平行四边形 又∵AB AD = ∴ABCD Y 是菱形

(2)解:∵四边形ABCD 是菱形,对角线AC 、BD 交于点O .

∴AC BD ⊥.12OA OC AC ==,1

2

OB OD BD ==, ∴1

12

OB BD =

=. 在Rt AOB △中,90AOB ∠=?. ∴222OA AB OB =-=. ∵CE AB ⊥,

∴90

AEC

∠=?.

在Rt AEC

△中,90

AEC

∠=?.O为AC中点.

1

2

2

OE AC OA

===.

【考点】菱形的性质和判定,勾股定理,直角三角形斜边中线

22.如图,AB是O

e的直径,过O

e外一点P作O

e的两条切线PC,PD,切点分别为C,D,连接OP,CD.

(1)求证:OP CD

⊥;

(2)连接AD,BC,若50

DAB

∠=?,70

CBA

∠=?,2

OA=,求OP的长.【解析】(1)证明:∵PC、PD与O

⊙相切于C、D.

∴PC PD

=,OP平分CPD

∠.

在等腰PCD

△中,PC PD

=,PQ平分CPD

∠.

∴PQ CD

⊥于Q,即OP CD

⊥.

(2)解:连接OC、OD.

∵OA OD

=

∴50

OAD ODA

∠=∠=?

∴18080

AOD OAD ODA

∠=?-∠-∠=?

同理:40

BOC

∠=?

∴18060

COD AOD BOC

∠=?-∠-∠=?.

在等腰COD

△中,OC OD

=.OQ CD

1

30

2

DOQ COD

∠=∠=?.

∵PD与O

⊙相切于D.

∴OD DP

⊥.

∴90

ODP

∠=?.

在Rt ODP

△中,90

ODP

∠=?,30

POD

∠=?

4

3

cos cos303

3

OD OA

OP

POD

====

∠?

【考点】切线的性质,切线长定理,锐角三角函数

Q

P

D

C

O

B

A

23.在平面直角坐标系xOy 中,函数k

y x

=

(0x >)的图象G 经过点A (4,1),直线1

4

l y x b =

+∶与图象G 交于点B ,与y 轴交于点C . (1)求k 的值;

(2)横、纵坐标都是整数的点叫做整点.记图象G 在点A ,B 之间的部分与线段OA ,

OC ,BC 围成的区域(不含边界)为W .

①当1b =-时,直接写出区域W 内的整点个数;

②若区域W 内恰有4个整点,结合函数图象,求b 的取值范围. 【解析】(1)解:∵点A (4,1)在k

y x

=

(0x >)的图象上. ∴14

k

=, ∴4k =.

(2)① 3个.(1,0),(2,0),(3,0).

② a .当直线过(4,0)时:1

404

b ?+=,解得1b =-

b .当直线过(5,0)时:1504b ?+=,解得5

4

b =-

c .当直线过(1,2)时:1124b ?+=,解得7

4b =

d .当直线过(1,3)时:1134b ?+=,解得11

4

b =

∴综上所述:514b -<-≤或711

44

b <≤.

【考点】一次函数与反比例函数综合,区域内整点个数问题

24.如图,Q 是?AB 与弦AB 所围成的图形的内部的一定点,P 是弦AB 上一动点,连接PQ

并延长交?AB 于点C ,连接AC .已知6cm AB =,设A ,P 两点间的距离为x cm ,P ,C 两点间的距离为1cm y ,A ,C 两点间的距离为2cm y .

小腾根据学习函数的经验,分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究.

下面是小腾的探究过程,请补充完整:

(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组

对应值;

/cm x

0 1 2 3 4 5 6 1/cm y 5.62 4.67 3.76 2.65 3.18 4.37 2/cm y

5.62

5.59

5.53

5.42

5.19

4.73

4.11

(x ,1y ),

(x ,2y ),并画出函数1y ,2y 的图象;

(3)结合函数图象,解决问题:当APC △为等腰三角形时,AP 的长度约为____cm . 【解析】(1)3.00

(2)如下图所示:

(3)3.00或4.83或5.88.

如下图所示,个函数图象的交点的横坐标即为所求.

【考点】动点产生的函数图象问题,函数探究

25.某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.

a.A课程成绩的频数分布直方图如下(数据分成6组:4050

x<

x<

≤,

≤,5060

x<

≤,90100

x

≤≤);

≤,8090

x<

x<

6070

≤,7080

≤这一组是:

b.A课程成绩在7080

x<

70 71 71 71 76 76 77 78 78.578.579 79 79 79.5

c.A,B两门课程成绩的平均数、中位数、众数如下:

课程平均数中位数众数

A 75.8m84.5

B 72.270 83

(1)写出表中m的值;

(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是________(填“A”或“B”),理由是_______;

(3)假设该年级学生都参加此次测试,估计A课程成绩超过75.8分的人数.

【解析】(1)78.75

(2)B.该学生A课程分数低于中位数,排名在中间位置之后,而B课程分数高于中位数,排名在中间位置之前.

(3)解:抽取的60名学生中.A课程成绩超过75.8的人数为36人.

∴36

300180

60

?=(人)

答:该年级学生都参加测试.估计A课程分数超过75.8的人数为180人.【考点】频数分布直方图,中位数,用样本估计总体

26.在平面直角坐标系xOy中,直线44

y x

=+与x轴、y轴分别交于点A,B,抛物线23

y ax bx a

=+-经过点A,将点B向右平移5个单位长度,得到点C.

(1)求点C的坐标;

(2)求抛物线的对称轴;

(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.

【解析】(1)解:∵直线44

y x

=+与x轴、y轴交于A、B.

∴A(1

-,0),B(0,4)

∴C(5,4)

(2)解:抛物线23

y ax bx a

=+-过A(1-,0)

∴30

a b a

--=.

2

b a

=-

∴223

y ax ax a

=--

∴对称轴为

2

1

2

a

x

a

-

=-=.

(3)解:①当抛物线过点C时.

251034

a a a

--=,解得

1

3

a=.

②当抛物线过点B时.

34

a

-=,解得

4

3

a=-.

③当抛物线顶点在BC上时.

此时顶点为(1,4)

∴234

a a a

--=,解得1

a=-.

∴综上所述

4

3

a<-或

1

3

a≥或1

a=-.

【考点】一次函数与坐标轴的交点,点的平移,抛物线对称轴,抛物线与线段交点问题

27.如图,在正方形ABCD中,E是边AB上的一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH DE

⊥交DG的延长线于点H,连接BH.

(1)求证:GF GC

=;

(2)用等式表示线段BH与AE的数量关系,并证明.

【解析】(1)证明:连接DF.

∵A ,F 关于DE 对称. ∴AD FD =.AE FE =. 在ADE △和FDE △中. AD FD AE FE DE DE =??

=??=?

∴ADE FDE △≌△ ∴DAE DFE ∠=∠. ∵四边形ABCD 是正方形 ∴90A C ∠=∠=?.AD CD = ∴90DFE A ∠=∠=?

∴18090DFG DFE ∠=?-∠=? ∴DFG C ∠=∠ ∵AD DF =.AD CD = ∴DF CD =

在Rt DCG △和Rt DFG △. DC DF

DG DG =??

=?

∴Rt DCG △≌Rt DFG △ ∴CG FG =. (2

)BH =.

证明:在AD 上取点M 使得AM AE =,连接ME . ∵四这形ABCD 是正方形.

∴AD AB =.90A ADC ∠=∠=?. ∵DAE △≌DFE △ ∴ADE FDE ∠=∠

同理:CDG FDG ∠=∠ ∴EDG EDF GDF ∠=∠+∠ 11

22ADF CDF =∠+∠ 1

452

ADC =

∠=? ∵DE EH ⊥ ∴90DEH ∠=?

∴18045EHD DEH EDH ∠=?-∠-∠=? ∴EHD EDH ∠=∠ ∴DE EH =. ∵90A ∠=?

∴90ADE AED ∠+∠=? ∵90DEH ∠=?

∴90AED BEH ∠+∠=?

A

B

C

D

E

F

H

G

∴ADE BEH ∠=∠

∵AD AB =.AM AE = ∴DM EB =

在DME △和EBH △中 DM EB MDE BEH DE EH =??

∠=∠??=∠?

∴DME △≌EBH △ ∴ME BH =

在Rt AME △中,90A ∠=?,AE AM =. ∴222ME AE AM AE =+= ∴2BH AE =.

【考点】正方形的性质,轴对称的性质,全等三角形的性质与判定,等腰直角三角形的

性质与判定

28.对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:P 为图形M 上任意一点,

Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图

形M ,N 间的“闭距离”,记作d (M ,N ). 已知点A (2-,6),B (2-,2-),C (6,2-). (1)求d (点O ,ABC △);

(2)记函数y kx =(11x -≤≤,0k ≠)的图象为图形G ,若d (G ,ABC △)1=,

直接写出k 的取值范围;

(3)T e 的圆心为T (,0),半径为1.若d (T e ,ABC △)1=,直接写出的取值

范围.

【解析】(1)如下图所示:

∵B (2-,2-),C (6,2-)

∴D (0,2-)

∴d (O ,ABC △)2OD == (2)10k -<≤或01k <≤

(3)4t =-或0422t -≤≤或422t =+.

【考点】点到直线的距离,圆的切线

中考卷-2020中考数学试卷(解析版),(3)

贵州省安顺市22年初中毕业生学业水平(升学)考试数学试题一、选择题以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每小题3分,共3分.计算的结果是() A. B. C. 1 D. 6 【答案】A 【解析】【分析】原式利用异号两数相乘的法则计算即可求出值.【详解】解原式=3×2=6,故选A.【点睛】此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.下列4个袋子中,装有除颜色外完全相同的1个小球,任意摸出一个球,摸到红球可能性最大的是() A. B. C. D. 【答案】D 【解析】【分析】要求可能性的大小,只需求出各袋中红球所占的比例大小即可.【详解】解第一个袋子摸到红球的可能性=; 第二个袋子摸到红球的可能性=; 第三个袋子摸到红球的可能性=; 第四个袋子摸到红球的可能性=.故选D.【点睛】】本题主要考查了可能性大小的计算,用到的知识点为可能性等于所求情况数与总情况数之比,难度适中. 22年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫.一志愿者得到某栋楼6岁以上人的年龄(单位岁)数据如下62,63,75,79,68,85,82,69,7.获得这组数据的方法是() A. 直接观察 B. 实验 C. 调查 D. 测量【答案】C 【解析】【分析】根据得到数据的活动特点进行判断即可.【详解】解因为获取6岁以上人的年龄进行了数据的收集和整理,所以此活动是调查.故选C.【点睛】本题考查了数据的获得方式,解题的关键是要明确,调查要进行数据的收集和整理.如图,直线,相交于点,如果,那么是() A. B. C. D. 【答案】A 【解析】【分析】根据对顶角相等求出∠1,再根据互为邻补角的两个角的和等于18°列式计算即可得解.【详解】解∵∠1+∠2=6°,∠1=∠2(对顶角相等),∴∠1=3°,∵∠1与∠3互为邻补角,∴∠3=18°∠1=18°3°=15°.故选A.【点睛】本题考查了对顶角相等的性质,邻补角的定义,是基础题,熟记概念与性质并准确识图是解题的关键.当时,下列分式没有意义的是() A. B. C. D. 【答案】B 【解析】【分析】由分式有意义的条件分母不能为零判断即可. 【详解】,当x=1时,分母为零,分式无意义. 故选 B. 【点睛】本题考查分式有意义的条件,关键在于牢记有意义条件. 在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是() A. B. C. D. 【答案】D 【解析】【分析】根据太阳光下的影子的特点(1)同一时刻,太阳光下的影子都在同一方向; (2)太阳光线是平行的,太阳光下的影子与物体高度成比例,据此逐项判断即可.【详解】选项A、B中,两棵小树的影子的方向相反,不可能为同一时刻阳光下的影子,则选项A、B错误选项C中,树高与影长成反比,不可能为同一时刻阳光下的影子,则选项C错误选项D中,在同一时刻阳光下,影子都在同一方向,且树高与影长成正比,则选项D正确故选D.【点睛】本题考查了太阳光下的影子的特点,掌握太阳光下的影子的特点是解题关键.菱形的两条对角线长分别是6和8,则此菱形的周长是() A. 5 B. 2 C. 24 D. 32 【答案】B 【解析】【分析】根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.【详解】

2016年中考数学压轴题精选及详解

2020年中考数学压轴题精选解析 中考压轴题分类专题三——抛物线中的等腰三角形 基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或 抛物线的对称轴上),若ABP ?为等腰三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为底时(即PA PB =):点P 在AB 的垂直平分线上。 利用中点公式求出AB 的中点M ; 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出AB 的垂直平分线的斜率k ; 利用中点M 与斜率k 求出AB 的垂直平分线的解析式; 将AB 的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 (2)AB 为腰时,分两类讨论: ①以A ∠为顶角时(即AP AB =):点P 在以A 为圆心以AB 为半径的圆上。 ②以B ∠为顶角时(即BP BA =):点P 在以B 为圆心以 AB 为半径的圆上。 利用圆的一般方程列出A e (或B e )的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 中考压轴题分类专题四——抛物线中的直角三角形 基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或 抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M e 的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出PA (或PB )的斜率 k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()2 21221y y x x PQ -+-= 。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-= 22,得到方程☆:()()22 2 R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。 三、 中点公式: 四、 已知两点()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为??? ??++22 2121y y ,x x 。 五、 任意两点的斜率公式: 已知两点()()2211y ,x Q ,y ,x P ,则直线PQ 的斜率: 2 12 1x x y y k PQ --= 。 中考压轴题分类专题五——抛物线中的四边形 基本题型:一、已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上, 或抛物线的对称轴上),若四边形ABPQ 为平行四边形,求点P 坐标。 分两大类进行讨论: (1)AB 为边时 (2)AB 为对角线时 二、已知AB ,抛物线()02 ≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对 称轴上),若四边形ABPQ 为距形,求点P 坐标。 在四边形ABPQ 为平行四边形的基础上,运用以下两种方法进行讨论: (1)邻边互相垂直 (2)对角线相等 三、已知AB ,抛物线()02 ≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对 称轴上),若四边形ABPQ 为菱形,求点P 坐标。 在四边形ABPQ 为平行四边形的基础上,运用以下两种方法进行讨论: (1)邻边相等 (2)对角线互相垂直

历年全国中考数学试题及答案

班级 姓名 学号 成绩 一、精心选一选 1.下列运算正确的是( ) A.()11a a --=-- B.( ) 2 3624a a -= C.()2 22a b a b -=- D.3 2 5 2a a a += 2.如图,由几个小正方体组成的立体图形的左视图是( ) 3.下列事件中确定事件是( ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖 C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球 D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上 4.如图,AB CD ∥,下列结论中正确的是( ) A.123180++=o ∠ ∠∠ B.123360++=o ∠ ∠∠ C.1322+=∠∠∠ D.132+=∠ ∠∠ 5.已知24221 x y k x y k +=??+=+?,且10x y -<-<,则k 的取值范围为( ) A.112 k -<<- B.102 k << C.01k << D. 1 12 k << 6.顺次连接矩形各边中点所得的四边形( ) A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形 C.既是轴对称图形又是中心对称图形 D.没有对称性 7.已知点()3A a -,,()1B b -,,()3C c ,都在反比例函数4 y x = 的图象上,则a ,b ,c 的大小关系为( ) A.a b c >> B.c b a >> C.b c a >> D.c a b >> 8.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( ) A.2 1185580x = B.()2 11851580x -= C.( )2 11851580x -= D.()2 58011185x += 9.如图,P 是Rt ABC △斜边AB 上任意一点(A ,B 两点除外),过P 点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作( ) A.1条 B.2条 C.3条 D.4A. B. C. D. A B D C 3 2 1 第4题图 P 第9题图

历年中考数学试题(含答案解析)

2016年云南省昆明市中考数学试卷 一、填空题:每小题3分,共18分 1.(3分)(2016?昆明)﹣4的相反数为. 2.(3分)(2016?昆明)昆明市2016年参加初中学业水平考试的人数约有67300人,将数据67300用科学记数法表示为. 3.(3分)(2016?昆明)计算:﹣=. 4.(3分)(2016?昆明)如图,AB∥CE,BF交CE于点D,DE=DF,∠F=20°,则∠B的度数为. 5.(3分)(2016?昆明)如图,E,F,G,H分别是矩形ABCD各边的中点,AB=6,BC=8,则四边形EFGH的面积是. 6.(3分)(2016?昆明)如图,反比例函数y=(k≠0)的图象经过A,B两点,过点A作 AC⊥x轴,垂足为C,过点B作BD⊥x轴,垂足为D,连接AO,连接BO交AC于点E,若OC=CD,四边形BDCE的面积为2,则k的值为. 二、选择题(共8小题,每小题4分,满分32分) 7.(4分)(2016?昆明)下面所给几何体的俯视图是()

A.B.C.D. 8.(4分)(2016?昆明)某学习小组9名学生参加“数学竞赛”,他们的得分情况如表: 人数(人) 1 3 4 1 分数(分)80 85 90 95 那么这9名学生所得分数的众数和中位数分别是() A.90,90 B.90,85 C.90,87.5 D.85,85 9.(4分)(2016?昆明)一元二次方程x2﹣4x+4=0的根的情况是() A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.无法确定 10.(4分)(2016?昆明)不等式组的解集为() A.x≤2 B.x<4 C.2≤x<4 D.x≥2 11.(4分)(2016?昆明)下列运算正确的是() A.(a﹣3)2=a2﹣9 B.a2?a4=a8C.=±3 D.=﹣2 12.(4分)(2016?昆明)如图,AB为⊙O的直径,AB=6,AB⊥弦CD,垂足为G,EF切⊙O于点B,∠A=30°,连接AD、OC、BC,下列结论不正确的是() A.EF∥CD B.△COB是等边三角形 C.CG=DG D.的长为π 13.(4分)(2016?昆明)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是() A.﹣=20 B.﹣=20 C.﹣=D.﹣= 14.(4分)(2016?昆明)如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论: ①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有()

山西省中考数学试卷(解析版)

2017年山西省中考数学试卷 一、选择题(本大题共10个小题,每小题3分,共30分) 1.计算﹣1+2的结果是() A.﹣3 B.﹣1 C.1 D.3 2.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是() A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠4 3.在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的() A.众数B.平均数C.中位数D.方差 ; 4.将不等式组的解集表示在数轴上,下面表示正确的是() A.B.C. D. 5.下列运算错误的是() A.(﹣1)0=1 B.(﹣3)2÷= C.5x2﹣6x2=﹣x2D.(2m3)2÷(2m)2=m4 6.如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为() A.20°B.30°C.35°D.55°

7.化简﹣的结果是() A.﹣x2+2x B.﹣x2+6x C.﹣D. 8.2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为() ( A.186×108吨B.×109吨 C.×1010吨D.×1011吨 9.公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机,是无理数的证明如下: 假设是有理数,那么它可以表示成(p与q是互质的两个正整数).于是()2=()2=2,所以,q2=2p2.于是q2是偶数,进而q是偶数,从而可设q=2m,所以(2m)2=2p2,p2=2m2,于是可得p也是偶数.这与“p与q是互质的两个正整数”矛盾.从而可知“ 是有理数”的假设不成立,所以,是无理数. 这种证明“是无理数”的方法是() A.综合法B.反证法C.举反例法D.数学归纳法 10.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为() A.5πcm2B.10πcm2C.15πcm2D.20πcm2

中考数学压轴题解题方法大全及技巧

专业资料整理分享 中考数学压轴题解题技巧 湖北竹溪城关中学明道银 解中考数学压轴题秘诀(一) 数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线; ③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第24题,满分12分,基本分2-3小题来呈现。 (二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是

列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。 在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。 解中考数学压轴题秘诀(二) 具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。 1、以坐标系为桥梁,运用数形结合思想:

2018天津中考数学试卷详细解析

2018年天津市中考数学试卷 参考答案与试题解析 一、选择题(本大题共 12小题,每小题 3分,共36分。在每小题给出的四个选项中,只 有一项是符合题目要求的) 2 1. ( 3分)(2018?天津)计算(-3)的结果等于( ) A . 5 B . - 5 C . 9 D . - 9 【考点】1E :有理数的乘方. 【专题】1:常规题型. 【分析】根据有理数的乘方法则求出即可 【解答】解:(-3) 2 = 9, 故选:C . 【点评】本题考查了有理数的乘方法则,能灵活运用法则进行计算是解此题的关键. 【考点】11:科学记数法一表示较大的数. 【专题】511:实数. 【分析】科学记数法的表示形式为 a x 10n 的形式,其中1w |a|v 10, n 为整数.确定n 的值 时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 当 原数绝对值〉1时,n 是正数;当原数的绝对值v 1时,n 是负数. 4 【解答】 解:77800= 7.78 X 10 , A . 一 B 一 2 2 【考 点】 T5: 特殊角的三角函数值. 【分 析】 根据特殊角的三角函数值直接解答即可 【解 答】 解: cos30°= . ) C . 1 故选:B . 【点评】此题考查了特殊角的三角函数值,是需要识记的内容. 3. (3分)(2018?天津)今年“五一”假期,我市某主题公园共接待游客 77800 人次,将 77800 用科学记数法表示为 5 A . 0.778 X 10 ) 4 B . 7.78 X 10 C . 77.8 X 103 D . 778X 102 2. ( 3分)(2018?天津)cos30°的值等于( 2

中考数学试卷含答案

扬州市初中毕业、升学统一考试数学试题 第Ⅰ卷(共24分) 一、 选择题:(本大题共8个小题,每小题3分,共24分.) 二、 1.若数轴上表示1-和3的两点分别是点A 和点B ,则点A 和点B 之间的距离是( ) A .4- B .2- C .2 D .4 2.下列算式的运算结果为4a 的是( ) A .4a a ? B .()22a C .33a a + D .4a a ÷ 3.一元二次方程2720x x --=的实数根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .不能确定 4.下列统计量中,反映一组数据波动情况的是( ) A .平均数 B .众数 C.频率 D .方差 5.经过圆锥顶点的截面的形状可能是( ) A . B . C. D . 6.若一个三角形的两边长分别为2和4,则该三角形的周长可能是( ) A .6 B .7 C. 11 D .12 7.在一列数:1a ,2a ,3a ,???,n a 中,13a =,27a =,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是( ) A .1 B .3 C.7 D .9 8.如图,已知C ?AB 的顶点坐标分别为()0,2A 、()1,0B 、()C 2,1,若二次函数21y x bx =++的图象与 阴影部分(含边界)一定有公共点,则实数b 的取值范围是( ) A .2b ≤- B .2b <- C. 2b ≥- D .2b >- 第Ⅱ卷(共126分) 二、填空题(每题3分,满分30分,将答案填在答题纸上) 9.2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着 我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气 试开采量约为16000立方米,把16000立方米用科学记数法表示为 立方米. 10.若2a b =,6b c =,则a c = .11.因式分解:2327x -= .

天津中考数学试卷详细解析.pdf

2018年天津市中考数学试卷 参考答案与试题解析 一、选择题(本大题共12小题,每小题3分,共36分。在每小题给出的四个选项中,只 有一项是符合题目要求的) 1.(3分)(2018?天津)计算(﹣3)2的结果等于() A.5B.﹣5C.9D.﹣9 【考点】1E:有理数的乘方. 【专题】1:常规题型. 【分析】根据有理数的乘方法则求出即可. 【解答】解:(﹣3)2=9, 故选:C. 【点评】本题考查了有理数的乘方法则,能灵活运用法则进行计算是解此题的关键.2.(3分)(2018?天津)cos30°的值等于() A.B.C.1D. 【考点】T5:特殊角的三角函数值. 【分析】根据特殊角的三角函数值直接解答即可. 【解答】解:cos30°=. 故选:B. 【点评】此题考查了特殊角的三角函数值,是需要识记的内容. 3.(3分)(2018?天津)今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学记数法表示为() A.0.778×105B.7.78×104C.77.8×103D.778×102 【考点】1I:科学记数法—表示较大的数. 【专题】511:实数. 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:77800=7.78×104, 故选:B.

【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 4.(3分)(2018?天津)下列图形中,可以看作是中心对称图形的是() A.B.C.D. 【考点】R5:中心对称图形. 【专题】1:常规题型. 【分析】根据中心对称图形的概念对各选项分析判断即可得解. 【解答】解:A、是中心对称图形,故本选项正确; B、不是中心对称图形,故本选项错误; C、不是中心对称图形,故本选项错误; D、不是中心对称图形,故本选项错误. 故选:A. 【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 5.(3分)(2018?天津)如图是一个由5个相同的正方体组成的立体图形,它的主视图是() A.B.C.D. 【考点】U2:简单组合体的三视图. 【专题】55F:投影与视图. 【分析】根据从正面看得到的图形是主视图,可得答案. 【解答】解:从正面看第一层是三个小正方形,第二层右边一个小正方形,第三层右边一个小正方形, 故选:A. 【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.

舟山中考数学解析版

20XX 年浙江省舟山市中考数学试卷解析 (本试卷满分120分,考试时间120分钟) 参考公式:抛物线()2 0y ax bx c a =++≠的顶点坐标为24,24b b ac a a ??-- ??? . 一、选择题(本题有10小题,每小题3分,共30分) 1. (20XX 年浙江舟山3分) 计算23-的结果是【 】 A. -1 B. 2- C. 1 D. 2 【答案】A. 【考点】有理数的减法. 【分析】根据“减去一个数,等于加上这个数的相反数”的有理数的减法计算即可:231-=-.故选A. 2. (20XX 年浙江舟山3分)下列四个图形分别是四届国际数学家大会的会标: 其中属于中心对称图形的有【 】 A. 1个 B. 2个 C. 3个 D. 4个 【答案】B. 【考点】中心对称图形. 【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,因为第一、三个图形沿中心旋转180度后与原图重合,而第二、四个图形沿中心旋转180度后与原图不重合,所以,四个图形中属于中心对称图形的有2个. 故选B. 3. (20XX 年浙江舟山3分) 截至今年4月10日,舟山全市蓄水量为84 327 000m 3,数据84 327 000用科学计数法表示为【 】 A. 0.8437×108 B. 8.437×107 C. 8.437×108 D. 8437×103 【答案】B. 【考点】科学记数法. 【分析】根据科学记数法的定义,科学记数法的表示形式为a ×10n ,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 在确定n 的值时,看该数是大于或等于1还是小于1. 当该数大于或等于

中考数学压轴题解析二十

中考数学压轴题解析二十 103.(2017黑龙江省龙东地区,第25题,8分)在甲、乙两城市之间有一服务区,一辆客车从甲地驶往乙地,一辆货车从乙地驶往甲地.两车同时出发,匀速行驶,客车、货车离服务区的距离y1(千米),y2(千米)与行驶的时间x(小时)的函数关系图象如图1所示. (1)甲、乙两地相距千米. (2)求出发3小时后,货车离服务区的路程y2(千米)与行驶时间x(小时)之间的函数关系式. (3)在客车和货车出发的同时,有一辆邮政车从服务区匀速去甲地取货后返回乙地(取货的时间忽略不计),邮政车离服务区的距离y3(千米)与行驶时间x(小时)之间的函数关系图线如图2中的虚线所示,直接写出在行驶的过程中,经过多长时间邮政车与客车和货车的距离相等? 【答案】(1)480;(2)y2=40x﹣120;(3)1.2或4.8或7.5小时. 【分析】(1)根据图1,根据客车、货车离服务区的初始距离可得甲乙两地距离; (2)根据图象中的数据可以求得3小时后,货车离服务区的路程y2与行驶时间x之间的函数关系式; (3)分三种情况讨论,当邮政车去甲地的途中会有某个时间邮政车与客车和货车的距离相等;当邮政车从甲地返回乙地时,货车与客车相遇时,邮政车与客车和货车的距离相等;货车与客车相遇后,邮政车与客车和货车的距离相等. . 106.(2017山东省莱芜市,第22题,10分)某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元. (1)改网店甲、乙两种口罩每袋的售价各多少元? (2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲 种口罩的数量大于乙种口罩的4 5,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的 进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元? 【答案】(1)该网店甲种口罩每袋的售价为25元,乙种口罩每袋的售价为20元;(2)该网店购进甲种口罩227袋,购进乙种口罩273袋时,获利最大,最大利润为1136.2元.【分析】(1)分别根据甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元,得出等式组成方程求出即可; (2)根据网店决定用不超过10000元购进价、乙两种口罩共500袋,甲种口罩的数量大

中考数学试卷含解析 (8)

湖北省恩施州中考数学试卷 一、选择题(本大题共12个小题,每小题3分,共36分。在每小题给出的四个选项中,恰有一项是符合要求的。) 1.(3分)(?恩施州)的相反数是() A.B. ﹣ C.3D.﹣3 考 点: 相反数. 分 析: 根据只有符号不同的两个数互为相反数求解后选择即可. 解 答: 解:﹣的相反数是. 故选A. 点 评: 本题主要考查了互为相反数的定义,是基础题,熟记概念是解题的关键. 2.(3分)(?恩施州)今年参加恩施州初中毕业学业考试的考试约有39360人,请将数39360用科学记数法表示为(保留三位有效数字)() A.3.93×104B.3.94×104C.0.39×105D.394×102 考 点: 科学记数法与有效数字. 分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于39360有5位,所以可以确定n=5﹣1=4. 有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字. 用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关. 解答:解:39360=3.936×104≈3.94×104.故选:B. 点评:此题考查了科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法. 3.(3分)(?恩施州)如图所示,∠1+∠2=180°,∠3=100°,则∠4等于()

A.70°B.80°C.90°D.100° 考 点: 平行线的判定与性质. 分析:首先证明a∠b,再根据两直线平行同位角相等可得∠3=∠6,再根据对顶角相等可得∠4. 解答:解:∠∠1+∠5=180°,∠1+∠2=180°,∠∠2=∠5, ∠a∠b, ∠∠3=∠6=100°, ∠∠4=100°. 故选:D. 点 评: 此题主要考查了平行线的判定与性质,关键是掌握两直线平行同位角相等. 4.(3分)(?恩施州)把x2y﹣2y2x+y3分解因式正确的是() A.y(x2﹣2xy+y2)B.x2y﹣y2(2x﹣y)C.y(x﹣y)2D.y(x+y)2 考 点: 提公因式法与公式法的综合运用. 分 析: 首先提取公因式y,再利用完全平方公式进行二次分解即可. 解答:解:x2y﹣2y2x+y3 =y(x2﹣2yx+y2)=y(x﹣y)2. 故选:C. 点评:本题主要考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底. 5.(3分)(?恩施州)下列运算正确的是() A.x3?x2=x6B.3a2+2a2=5a2C.a(a﹣1)=a2﹣1D.(a3)4=a7 考 点: 多项式乘多项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 分析:根据乘方与积的乘方、合并同类项、同底数幂的乘法、合并同类项的运算法则分别进行计算,即可得出答案.

中考数学试卷及答案解析word版完整版

中考数学试卷及答案解 析w o r d版 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

2015年北京市中考数学试卷 一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一.个.是符合题意的 1.(3分)(2015?北京)截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.×105C.×106D.14×106 考 点: 科学记数法—表示较大的数. 专 题: 计算题. 分 析: 将140000用科学记数法表示即可. 解答:解:140000=×105,故选B. 点评:此题考查了科学记数法﹣表示较大的数,较小的数,以及近似数与有效数字,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 2.(3分)(2015?北京)实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是() A.a B.b C.c D.d 考 点: 实数大小比较. 分析:首先根据数轴的特征,以及绝对值的含义和性质,判断出实数a,b,c,d的绝对值的取值范围,然后比较大小,判断出这四个数中,绝对值最大的是哪个数即可. 解答:解:根据图示,可得 3<|a|<4,1<|b|<2,0<|c|<1,2<|d|<3,所以这四个数中,绝对值最大的是a. 故选:A. 点评:此题主要考查了实数大小的比较方法,以及绝对值的非负性质的应用,要熟练掌握,解答此题的关键是判断出实数a,b,c,d的绝对值的取值范围. 3.(3分)(2015?北京)一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为() A.B.C.D. 考 点: 概率公式. 专 题: 计算题. 分 析: 直接根据概率公式求解. 解 答: 解:从中随机摸出一个小球,恰好是黄球的概率==. 故选B. 点本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出

中考数学压轴题典型题型解析

中考数学压轴题精选精析 37.(09年黑龙江牡丹江)28.(本小题满分8分) 如图, 在平面直角坐标系中,若、的长是关于的一元二 次方程的两个根,且 (1)求的值. (2)若为轴上的点,且求经过、两点的直线的解析式,并判断与是否相似? (3)若点在平面直角坐标系内,则在直线上是否存在点使以、、、为顶点的四边形为菱形?若存在,请直接写出点的坐标;若不存在,请说明理 由. (09年黑龙江牡丹江28题解析)解:(1)解得 ·············································································· 1分 在中,由勾股定理有 ········································································ 1分 (2)∵点在轴上, ········································································ 1分 ABCD 6AD =,OA OB x 2 7120x x -+=OA OB >.sin ABC ∠E x 16 3 AOE S = △,D E AOE △DAO △M AB F ,A C F M F 2 7120x x -+=1243x x ==,OA OB >43OA OB ∴==,Rt AOB △225AB OA OB =+=4 sin 5 OA ABC AB ∴∠= =E x 163 AOE S = △11623AO OE ∴?=8 3 OE ∴= 880033E E ????∴- ? ????? ,或,x y A D B O C 28题图

2017年河南省中考数学试卷及解析

2017年省中考数学试卷 一、选择题(每小题3分,共30分) 1.(3分)下列各数中比1大的数是() A.2 B.0 C.﹣1 D.﹣3 2.(3分)2016年,我国国生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示() A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×1015 3.(3分)某几何体的左视图如图所示,则该几何体不可能是() A.B.C.D. 4.(3分)解分式方程﹣2=,去分母得() A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3 5.(3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是() A.95分,95分B.95分,90分C.90分,95分D.95分,85分 6.(3分)一元二次方程2x2﹣5x﹣2=0的根的情况是() A.有两个相等的实数根B.有两个不相等的实数根 C.只有一个实数根D.没有实数根 7.(3分)如图,在?ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定?ABCD 是菱形的只有() A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2 8.(3分)如图是一次数学活动可制作的一个转盘,盘面被等分成四个扇形区域,并分别标

有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为() A.B.C.D. 9.(3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为() A.(,1)B.(2,1)C.(1,)D.(2,) 10.(3分)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是() A. B.2﹣C.2﹣D.4﹣ 二、填空题(每小题3分,共15分) 11.(3分)计算:23﹣= . 12.(3分)不等式组的解集是. 13.(3分)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小

中考卷-2020中考数学试题(解析版)(111)

中考卷-2020中考数学试题(解析版)(111) 湖北省孝感市2020年中考数学试题─、精心选一选,相信自己的判断!1.如果温度上升,记作,那么温度下降记作() A. B. C. D. 【答案】A 【解析】【分析】根据具有相反意义的量进行书写即可.【详解】由题知:温度上升,记作,∴温度下降,记作,故选:A.【点睛】本题考查了具有相反意义的量的书写形式,熟知此知识点是解题的关键.2.如图,直线,相交于点,,垂足为点.若,则的度数为() A. B. C. D. 【答案】B 【解析】【分析】已知,,根据邻补角定义即可求出的度数.【详解】∵ ∴ ∵ ∴ 故选:B 【点睛】本题考查了垂直的性质,两条直线垂直,形成的夹角是直角; 利用邻补角的性质求角的度数,平角度数为180°.3.下列计算正确是() A. B. C. D. 【答案】C 【解析】【分析】据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变和单项式的乘法法则,逐一判断即可. 【详解】A:2a和3b不是同类项,不能合并,故此选项错误; B:故B错误; C:正确; D:故D错误. 【点睛】本题考查了合并同类项以及单项式的乘法的知识,解答本题的关键是熟练掌握合并同类项的法则. 4.如图是由5个相同的正方体组成的几何体,则它的左视图是() A. B. C. D. 【答案】C 【解析】【分析】从左面看,所得到的图形形状即为所求答案.【详解】从左面可看到第一层为2个正方形,第二层为1个正方形且在第一层第一个的上方,故答案为:C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.某公司有10名员工,每人年收入数据如下表:

中考数学数学中考数学压轴题试题附解析(1)

一、中考数学压轴题 1.如图,等腰△ABC ,AB =CB ,边AC 落在x 轴上,点B 落在y 轴上,将△ABC 沿y 轴翻折,得到△ADC (1)直接写出四边形ABCD 的形状:______; (2)在x 轴上取一点E ,使OE =OB ,连结BE ,作AF ⊥BC 交BE 于点F . ①直接写出AF 与AD 的关系:____(如果后面的问题需要,可以直接使用,不需要再证明); ②取BF 的中点G ,连接OG ,判断OG 与AD 的数量关系,并说明理由; (3)若四边形ABCD 的周长为8,直接写出GE 2+GF 2=____. 2.在学习了轴对称知识之后,数学兴趣小组的同学们对课本习题进行了深入研究,请你跟随兴趣小组的同学,一起完成下列问题. (1)(课本习题)如图①,△ABC 是等边三角形,BD 是中线,延长BC 至E ,使CE=CD . 求证:DB=DE (2)(尝试变式)如图②,△ABC 是等边三角形,D 是AC 边上任意一点,延长BC 至E ,使CE=AD . 求证:DB=DE . (3)(拓展延伸)如图③,△ABC 是等边三角形,D 是AC 延长线上任意一点,延长BC 至E ,使CE=AD 请问DB 与DE 是否相等? 并证明你的结论. 3.一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,第一颗弹珠弹出后其速度1 y (米/分钟)与时间x (分钟)前2分钟满足二次函数2 1y ax ,后3分钟满足反比例函数 关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分钟. (1)求第一颗弹珠的速度1y (米/分钟)与时间x (分钟)之间的函数关系式;

2014成都中考数学试题真题及详细解析(Word版)

2014年中考数学试题及解析 成都卷 试题解析 陈法旺 A 卷(共100分) 一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上) 1.在-2,-1、0、2这四个数中,最大的数是( ) A.-2 B.-1 C.0 D.2 【知识点】有理数的比较大小 【答案】D 【解析】根据有理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数进行比较即可. 解:∵-2<-1<0<2, ∴最大的数是2. 故选D 。 2.下列几何体的主视图是三角形的是( ) A B C D 【知识点】简单几何体的三视图 【答案】B 【解析】本题考查三视图的知识,主视图是从物体的正面看得到的视图. 解:A 的主视图是矩形; B 的主视图是三角形; C 的主视图是圆; D 的主视图是正方形。 故选B 。 3.正在建设的成都第二绕城高速全长超过220公里,串起我市二、三圈层以及周边的广汉、简阳等地,总投资达290亿元,用科学计数法表示290亿元应为( ) A.290×8 10 B.290×9 10 C.2.90×10 10 D.2.90×11 10 【知识点】科学记数法(较大数) 【答案】C 【解析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.

解:将290亿用科学计数法表示为:2.90×10 10。 故选C 。 4.下列计算正确的是( ) A.3 2x x x =+ B.x x x 532=+ C.532)(x x = D.2 36x x x =÷ 【知识点】整式的运算 【答案】B 【解析】根据合并同类项的法则,只把系数相加减,字母与字母的次数不变;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解. 解:A 、2 x x 与不是同类项,不能合并,故A 选项错误; B 、x x x 532=+,故B 选项正确; C 、6 32)(x x =,故C 选项错误; D 、3 36x x x =÷,故D 选项错误。 故选B 。 5.下列图形中,不是.. 轴对称图形的是( ) A B C D 【知识点】轴对称图形 【答案】A 【解析】根据轴对称图形的概念对各选项分析判断后利用排除法求解. 解:A 、是中心对称图形,但不是轴对称图形; B 、是轴对称图形; C 、是轴对称图形; D 、是轴对称图形. 故选;A . 6.函数5-= x y 中自变量x 的取值范围是( ) A.5-≥x B.5-≤x C.5≥x D.5≤x 【知识点】函数自变量的取值范围 【答案】C

相关主题
文本预览
相关文档 最新文档