导数小题 (1) (1)
- 格式:doc
- 大小:1.02 MB
- 文档页数:34
高考数学模拟卷基础题型训练(1)姓名:导数概念公式【笔记】课堂练习1、在曲线2y x =上切线倾斜角为4π的点是( D ) A .(0,0) B .(2,4) C .11(,)416 D .11(,)24【笔记】 2、曲线221y x =+在点(1,3)P -处的切线方程为( A )A .41y x =--B .47y x =--C .41y x =-D .47y x =+【笔记】 3、函数在322y x x =-+在2x =处的切线的斜率为 10【笔记】4、函数1y x x=+的导数是( A ) A .211x -B .11x -C .211x + D .11x+ 【笔记】5、函数cos xy x=的导数是( C ) A .2sin x x - B .sin x - C .2sin cos x x x x +- D . 2cos cos x x xx+- 【笔记】6、函数sin (cos 1)y x x =+的导数是( C )A .cos2cos x x -B .cos2sin x x +C .cos2cos x x +D .2cos cos x x +【笔记】课后作业(1) 姓名:1、32()32f x ax x =++,若'(1)4f -=,则a 的值等于( D )A .319 B .316 C .313 D .3102、函数sin 4y x =在点(,0)M π处的切线方程为( D )A .y x π=-B .0y =C . 4y x π=-D .44y x π=- 3、求下列函数的导数:(1)12y x =; (2)41y x=; (3)y 【答案】(1)11'12x y =, (2)54--=x y ;(3)5253-=x y4、若3'0(),()3f x x f x ==,则0x 的值为_________1±________5、函数sin x y x =的导数为___________2'sin cos xx x x y -=__________ 6、与曲线y =1ex 2相切于P (e ,e)处的切线方程是(其中e 是自然对数的底)高考数学模拟卷基础题型训练(2)姓名:1、已知曲线3:C y x =。
导数的计算练习题及答案1. 计算函数f(x) = 3x^2 - 4x + 2的导数f'(x)。
解答:根据函数f(x) = 3x^2 - 4x + 2,使用导数的定义来计算导数f'(x)。
f'(x) = lim(delta x -> 0) (f(x + delta x) - f(x)) / delta x代入函数f(x)的表达式:f'(x) = lim(delta x -> 0) [(3(x + delta x)^2 - 4(x + delta x) + 2) -(3x^2 - 4x + 2)] / delta x化简并展开:f'(x) = lim(delta x -> 0) [3(x^2 + 2x * delta x + (delta x)^2) - 4x - 4 * delta x + 2 - 3x^2 + 4x - 2] / delta xf'(x) = lim(delta x -> 0) [3x^2 + 6x * delta x + 3(delta x)^2 - 4x - 4* delta x + 2 - 3x^2 + 4x - 2] / delta xf'(x) = lim(delta x -> 0) [6x * delta x + 3(delta x)^2 - 4 * delta x] / delta xf'(x) = lim(delta x -> 0) [6x + 3 * delta x - 4]由于求导数时delta x趋近于0,所以delta x也可以看作一个无穷小量,其平方项可以忽略不计,即delta x^2 = 0。
化简结果:f'(x) = 6x - 4所以函数f(x) = 3x^2 - 4x + 2的导数f'(x)为6x - 4。
2. 计算函数g(x) = 2sin(x) + 3cos(x)的导数g'(x)。
导数典型例题导数作为考试内容的考查力度逐年增大.考点涉及到了导数的所有内容,如导数的定义,导数的几何意义、物理意义,用导数研究函数的单调性,求函数的最(极)值等等,考查的题型有客观题(选择题、填空题)、主观题(解答题)、考查的形式具有综合性和多样性的特点.并且,导数与传统内容如二次函数、二次方程、三角函数、不等式等的综合考查成为新的热点.一、与导数概念有关的问题【例1】函数f (x )=x (x -1) (x -2)…(x -100)在x=0处的导数值为 A.0 B.1002 C.200 D.100! 解法一 f '(0)=xf x f x ∆-∆+→∆)0()0(lim=xx x x x ∆--∆-∆-∆∆→∆0)100()2)(1(lim=lim 0→∆x (Δx -1)(Δx -2)…(Δx -100)=(-1)(-2)…(-100)=100! ∴选D.解法二 设f (x )=a 101x 101+ a 100x 100+…+ a 1x +a 0,则f '(0)= a 1,而a 1=(-1)(-2)…(-100)=100!. ∴选D.点评 解法一是应用导数的定义直接求解,函数在某点的导数就是函数在这点平均变化率的极限.解法二是根据导数的四则运算求导法则使问题获解.【例2】 已知函数f (x )=nn n k k n n n n x c nx c k x c x c c 1121221++++++ ,n ∈N *,则 x x f x f x ∆∆--∆+→∆)2()22(lim= .解 ∵xx f x f x ∆∆--∆+→∆)2()22(lim=2xf x f x ∆-∆+→∆2)2()22(lim+[]xf x f x ∆--∆-+→∆-)2()(2lim=2f '(2)+ f '(2)=3 f '(2),又∵f '(x )=1121--+++++n n n k k n n n x c x c x c c ,∴f '(2)=21(2nn n k n k n n c c c c 222221+++++ )=21[(1+2)n -1]= 21(3n -1). 点评 导数定义中的“增量Δx ”有多种形式,可以为正也可以为负,如xm x f x m x f x ∆--∆-→∆-)()(000lim,且其定义形式可以是xm x f x m x f x ∆--∆-→∆)()(000lim,也可以是00)()(limx x x f x f x --→∆(令Δx =x -x 0得到),本题是导数的定义与多项式函数求导及二项式定理有关知识的综合题,连接交汇、自然,背景新颖.【例3】 如圆的半径以2 cm/s 的等速度增加,则圆半径R =10 cm 时,圆面积增加的速度是 .解 ∵S =πR 2,而R =R (t ),t R '=2 cm/s ,∴t S '=t R )π(2'=2πR ·t R '=4πR ,∴t S '/R =10=4πR/R =10=40π cm 2/s.点评 R 是t 的函数,而圆面积增加的速度是相当于时间t 而言的(R 是中间变量),此题易出现“∵S =πR 2,S '=2πR ,S '/R =10=20π cm 2/s ”的错误.本题考查导数的物理意义及复合函数求导法则,须注意导数的物理意义是距离对时间的变化率,它是表示瞬时速度,因速度是向量,故变化率可以为负值.2004年高考湖北卷理科第16题是一道与实际问题结合考查导数物理意义的填空题,据资料反映:许多考生在求出距离对时间的变化率是负值后,却在写出答案时居然将其中的负号舍去,以致痛失4分.二、与曲线的切线有关的问题【例4】 以正弦曲线y =sin x 上一点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是A.⎦⎤⎢⎣⎡4π,0∪⎥⎦⎤⎢⎣⎡π,4π3 B. []π,0 C.⎥⎦⎤⎢⎣⎡4π3,4π D. ⎥⎦⎤⎢⎣⎡4π,0∪⎦⎤⎢⎣⎡4π3,2π 解 设过曲线y =sin x 上点P 的切线斜率角为α,由题意知,tan α=y '=cos x . ∵cos x ∈[-1,1], ∴tan α∈[-1,1],又α∈[)π,0,∴α∈⎦⎤⎢⎣⎡4π,0∪⎥⎦⎤⎢⎣⎡π,4π3.故选A.点评 函数y =f (x )在点x 0处的导数f '(x 0)表示曲线,y =f (x )在点(x 0,f (x 0))处的切线斜率,即k =tan α(α为切线的倾斜角),这就是导数的几何意义.本题若不同时考虑正切函数的图像及直线倾斜角的范围,极易出错.【例5】 曲线y =x 3-ax 2的切线通过点(0,1),且过点(0,1)的切线有两条,求实数a 的值.解 ∵点(0,1)不在曲线上,∴可设切点为(m ,m 3-am 2).而y '=3x 2-2ax , ∴k 切=3m 3-2am ,则切线方程为y =(3m 3-2am )x -2m 3-am 2. ∵切线过(0,1),∴2m 3-am 2+1=0.(*)设(*)式左边为f (m ),∴f (m )=0,由过(0,1)点的切线有2条,可知f (m )=0有两个实数解,其等价于“f (m )有极值,且极大值乘以极小值等于0,且a ≠0”.由f (m )=2m 3-am 2+1,得f '(m )= 6m 3-am 2=2m (3m -a ),令f '(m )=0,得m =0,m =3a, ∴a ≠0,f (0)·f (3a )=0,即a ≠0,-271a 3+1=0,∴a =3.点评 本题解答关键是把“切线有2条”的“形”转化为“方程有2个不同实根”的“数”,即数形结合,然后把三次方程(*)有两个不同实根予以转化.三次方程有三个不同实根等价于“极大值大于0,且极小值小于0”.另外,对于求过某点的曲线的切线,应注意此点是否在曲线上.三、与函数的单调性、最(极)值有关的问题【例6】 以下四图,都是同一坐标系中三次函数及其导函数的图像,其中一定不正确的序号是A.①、②B.①、③C.③、④D.①、④解 由题意知导函数的图像是抛物线.导函数的值大于0,原函数在该区间为增函数;导函数的值小于0,原函数在该区间为减函数,而此抛物线与x 轴的交点即是函数的极值点,把极值点左、右导数值的正负与三次函数在极值点左右的递增递减结合起来考虑,可知一定不正确的图形是③、④,故选C.点评 f '(x )>0(或<0)只是函数f '(x )在该区间单递增(或递减)的充分条件,可导函数f '(x )在(a ,b )上单调递增(或递减)的充要条件是:对任意x ∈(a ,b ),都有f '(x )≥0(或≤0)且f '(x )在(a ,b )的任意子区间上都不恒为零.利用此充要条件可以方便地解决“已知函数的单调性,反过来确定函数解析式中的参数的值域范围”问题.本题考查函数的单调性可谓新颖别致.【例7】函数y =f (x )定义在区间(-3,7)上,其导函数如图所示,则函数y =f (x )在区间(-3,7)上极小值的个数是 个.解 如图,A 、O 、B 、C 、E 这5个点是函数的极值点,观察这5个极值点左、右导数的正、负,可知O 点、C 点是极小值点,故在区间(-3,7)上函数y =f (x )的极小值个数是2个.点评 导数f '(x )=0的点不一定是函数y =f (x )的极值点,如使f '(x )=0的点的左、右的导数值异号,则是极值点,其中左正右负点是极大值点,左负右正点是极小值点.本题考查函数的极值可以称得上是匠心独运.【例8】 设函数f (x )与数列{a n }满足关系:①a 1>α,其中α是方程f (x )=x 的实数根;②a n+1=f (a n ),n ∈N *;③f (x )的导数f '(x )∈(0,1).(1)证明:a n >α,n ∈N *;(2)判断a n 与a n+1的大小,并证明你的结论. (1)证明:(数学归纳法)当n =1时,由题意知a 1>α,∴原式成立. 假设当n =k 时,a k >α,成立. ∵f '(x )>0,∴f (x )是单调递增函数.∴a k+1= f (a k )> f (α)=α,(∵α是方程f (x )= x 的实数根)即当n =k +1时,原式成立.故对于任意自然数N *,原式均成立.(2)解:g (x )=x -f (x ),x ≥α,∴g '(x )=1-f '(x ),又∵0< f '(x )<1,∴g '(x )>0. ∴g '(x )在[)+∞,α上是单调递增函数.而g '(α)=α-f (α)=0,∴g '(x )>g (α) (x >α),即x >f (x ). 又由(1)知,a n >α,∴a n >f (a n )=a n+1.点评 本题是函数、方程、数列、导数等知识的自然链接,其中将导数知识融入数学归纳法,令人耳目一新.四、与不等式有关的问题【例9】 设x ≥0,比较A =xe -x ,B =lg(1+x ),C =xx +1的大小.解 令f (x )=C -B=xx +1-lg(1+x ),则f '(x )=xx x ++-+1)1(2)11(2>0,∴f (x )为[)+∞,0上的增函数,∴f (x )≥f (0)=0,∴C ≥B .令g (x )=B -A =lg(1+x )-xe -x,则当x ≥0时,g '(x )=xx e x +---1)1(12≥0,∴g (x )为[)+∞,0上的增函数,∴g (x )≥g (0)=0,∴B ≥A .因此,C ≥B ≥A (x =0时等号成立).点评 运用导数比较两式大小或证明不等式,常用设辅助函数法,如f (a )=φ(a ),要证明当x >a 时,有f (a )=φ(a ),则只要设辅助函数F (x )= f (a )-φ(a ),然后证明F (x )在x >a 单调递减即可,并且这种设辅助函数法有时可使用多次,2004年全国卷Ⅱ的压轴题就考查了此知识点.五、与实际应用问题有关的问题【例10】 某汽车厂有一条价值为a 万元的汽车生产线,现要通过技术改造来提高该生产线的生产能力,提高产品的增加值,经过市场调查,产品的增加值y 万元与技术改造投入x 万元之间满足:①y 与(a -x )和x 2的乘积成正比;②当2ax =时,y =a 3.并且技术改造投入比率:)(2x a x-∈(]t ,0,其中t 为常数,且t ∈(]2,0.(1)求y =f (x )的解析式及定义域;(2)求出产品的增加值y 的最大值及相应的x 值. 解:(1)由已知,设y =f (x )=k (a -x )x 2,∵当2a x =时,y = a 3,即a 3=k ·2a ·42a ,∴k =8,则f (x )=8-(a -x )x 2.∵0<)(2x a x-≤t ,解得0<x ≤122+t at .∴函数f (x )的定义域为0<x ≤122+t at .(2)∵f '(x )= -24x 2+16ax =x (-24x +16a ),令f '(x )=0,则x =0(舍去),32ax =,当0<x <32a 时,f '(x )>0,此时f (x )在(0,32a)上单调递增;当x >32a 时,f '(x )<0,此时f (x )是单调递减.∴当122+t at ≥32a 时,即1≤t ≤2时,y max =f (32a )=32732a ;当122+t at <32a 时,即0<t <1时,y max =f (122+t at )=323)12(32+t t a . 综上,当1≤t ≤2时,投入32a 万元,最大增加值是32732a ,当0<t <1时,投入122+t at万元,最大增加值是323)12(32+t t a .点评 f '(x 0)=0,只是函数f (x )在x 0处有极值的必要条件,求实际问题的最值应先建立一个目标函数,并根据实际意义确定其定义域,然后根据问题的性质可以断定所建立的目标函数f (x )确有最大或最小值,并且一定在定义区间内取得,这时f (x )在定义区间内部又只有一个使f '(x 0)=0的点x 0,那么就不必判断x 0是否为极值点,取什么极值,可断定f (x 0)就是所求的最大或最小值.。
完整版)导数求导练习题1.若 $f(x) = \sin\alpha - \cos x$,则 $f'(\alpha)$ 等于什么?答:$f'(\alpha) = \cos\alpha$。
2.函数 $f(x) = ax^3 + 3x^2 + 2$,若 $f'(-1) = 4$,则 $a$ 的值等于什么?答:$f'(x) = 3ax^2 + 6x$,代入 $x=-1$ 得 $-3a + (-6) = 4$,解得 $a = -\frac{10}{3}$。
3.函数 $y=x\sin x$ 的导数是什么?答:$y' = \sin x + x\cos x$。
4.函数 $y=x^2\cos x$ 的导数是什么?答:$y' = 2x\cos x - x^2\sin x$。
5.若 $y=(2x^2-3)(x^2-4)$,则 $y'$ 等于什么?答:$y' = 4x^3 - 16x$。
6.若 $y=3\cos x - 4\sin x$,则 $y'$ 等于什么?答:$y' = -3\sin x - 4\cos x$。
7.与直线 $2x-6y+1=0$ 垂直,且与曲线 $y=x^3+3x^2-1$ 相切的直线方程是什么?答:曲线在点 $(-1.-1)$ 处的斜率为 $9$,所以切线方程为$y+1 = 9(x+1)$。
8.质点运动方程是 $s=t^2(1+\sin t)$,则当 $t=2$ 时,瞬时速度为什么?答:$v(t) = 2t(1+\sin t) + t^2\cos t$,代入 $t=2$ 得 $v(2) = 8+4\sqrt{2}$。
9.求曲线 $y=x^3+x^2-1$ 在点 $P(-1,-1)$ 处的切线方程。
答:曲线在点 $(-1,-1)$ 处的斜率为 $3(-1)^2+2(-1) = -1$,所以切线方程为 $y+1 = -(x+1)$。
第一讲:导数小题综合(一)【练习1】已知函数f(x)=e x+ax2(a∈R),若曲线y=f(x)在点P(m,f(m))(m>1)处的切线为l,且直线l在y轴上的截距小于1,则实数a的取值范围是()A.(,+∞)B.[−1,+∞)C.[,+∞)D.(−1,)【解答】函数f(x)=e x+ax2的导数为f′(x)=e x+2ax,可得曲线y=f(x)在点P(m,f(m))(m>1)处的切线斜率为e m+2am,即有切线的方程为y−(e m+am2)=(e m+2am)(x−m),可令x=0可得y=e m−me m−am2,由题意可得e m−me m−am2<1对m>1恒成立,则a>,由g(m)=+1=,由e m−me m−1+m2=(1−m)(e m−1−m),由m>1可得1−m<0,由y=e x−1−x的导数为y′=e x−1,当x>0时,y′>0,函数y递增;当x<0时,y′<0,函数y递减,可得y=e x−1−x的最小值为e0−1−0=0,可得m>1时,e m−1−m>0,则(1−m)(e m−1−m)<0,即g(m)<0,则<−1恒成立,可得a≥−1,即a的范围是[−1,+∞).故选:B.【练习2】若过点P(−1,m)可以作三条直线与曲线C:y=xe x相切,则m的取值范围是()A.(−,+∞)B.()C.(0,+∞)D.()【解答】设切点为(x0,y0),过点P的切线程为,代入点P坐标化简为m=,即这个方程有三个不等根即可,令,求导得到f′(x)=(−x−1)(x+2)e x,函数在(−∞,−2)上单调递减,在(−2,−1)上单调递增,在(−1,+∞)上单调递减,故得到f(−2)<m<f(−1),即故选:D.【练习3】已知函数f(x)=+sinx,其中f′(x)为函数f(x)的导数,求f(2018)+f(−2018)+f′(2019)−f′(−2019)=()A.2B.2019C.2018D.0【解答】函数f(x)=+sinx=sinx++1,设g(x)=sinx+,则g(−x)=sin(−x)+=−(sinx+)=−g(x),即g(−x)+g(x)=0,即f(−x)+f(x)=2,则f(2018)+f(−2018)=g(2018)+1+g(−2018)+1=2;又f′(x)=g′(x),由g(x)为奇函数,则g′(x)为偶函数,可得f′(2019)−f′(−2019)=g′(2019)−g′(−2019)=0,即有f(2018)+f(−2018)+f′(2019)−f′(−2019)=2.故选:A.【练习4】已知f(x)=sinx−cosx,实数α满足f′(α)=3f(α),则tan2α=()A.−B.−C.D.【解答】f′(x)=cosx+sinx;∴f′(α)=cosα+sinα;又f′(α)=3f(α);∴cosα+sinα=3sinα−3cosα;∴2cosα=sinα;∴tanα=2;∴.故选:A.【练习5】已知点P在曲线y=sinx上,α为曲线在点P处的切线的倾斜角,则α的取值范围是.【解答】y′=cosx∴tana=cosx∵−1≤cosx≤1即−1≤tanα≤1∵0≤α≤π∴0≤α≤或≤α<π故答案为:[0,]∪[,π).【练习6】已知函数f(x)是定义在(0,+∞)的可导函数,f′(x)为其导函数,当x>0且x≠1时,>0,若曲线y=f(x)在x=1处的切线的斜率为−,则f(1)=.【解答】当x>0且x≠1时,>0,可得:x>1时,2f(x)+xf′(x)>0;1>x>0时,2f(x)+xf′(x)<0.令g(x)=x2f(x),x∈(0,+∞).∴g′(x)=2xf(x)+x2f′(x)=x[2f(x)+xf′(x)].可得:x>1时,g′(x)>0;1>x>0时,g′(x)<0.可得:函数g(x)在x=1处取得极值,∴g′(1)=2f(1)+f′(1)=0,f′(1)=−,∴f(1)==.故答案为:.【练习7】已知函数f(x)=−x3−x2,则曲线y=f(x)在点(1,f(1))处的切线斜率为.【解答】∵f(x)=−x3−x2,∴f′(x)=−x2−2x,令x=1,即可得斜率为:k=−3.故答案为−3.【练习8】已知f(x)=+2xf′(1),则f′(2)=.【解答】根据题意,f(x)=+2f′(1)x,则f′(x)=2f′(1)−,当x=1时,有f′(1)=2f′(1)−1,解可得f′(1)=1,则f′(x)=2−,则f′(2)=2−=,故答案为:【练习9】已知,则f'(1)=.【解答】f′(x)=lnx+x−,令x=1,则f′(1)=1−f′(1),解得f′(1)=,故应填.【练习10】已知定义在R上的函数f(x)的导函数为f′(x),若f(x)=f(2−x),且当x>1时,f′(x)<0,则满足不等式f(m+1)≤f(2m)的实数m的取值范围是.【解答】由f(x)=f(2−x),得函数关于x=1对称,当x>1时,f′(x)<0,此时函数为减函数,不妨设f(x)=−(x−1)2,则不等式f(m+1)≤f(2m)等价为−(m+1−1)2≤−(2m−1)2,即−m2≤−4m2+4m−1,即3m2−4m+1≤0,得≤m≤1,故实数m的取值范围是[,1],故答案为:[,1],。
导数练习题1.已知函数f (x )=ax 3+bx 2+cx 在x =±1处取得极值,在x =0处的切线与直线3x +y =0平行.(1)求f (x )的解析式;(2)已知点A (2,m ),求过点A 的曲线y =f (x )的切线条数. 解 (1)f ′(x )=3ax 2+2bx +c ,由题意可得⎩⎪⎨⎪⎧f ′(1)=3a +2b +c =0,f ′(-1)=3a -2b +c =0,f ′(0)=c =-3,解得⎩⎪⎨⎪⎧a =1,b =0,c =-3.所以f (x )=x 3-3x .(2)设切点为(t ,t 3-3t ),由(1)知f ′(x )=3x 2-3,所以切线斜率k =3t 2-3, 切线方程为y -(t 3-3t )=(3t 2-3)(x -t ).又切线过点A (2,m ),代入得m -(t 3-3t )=(3t 2-3)(2-t ),解得m =-2t 3+6t 2-6. 设g (t )=-2t 3+6t 2-6,令g ′(t )=0, 即-6t 2+12t =0,解得t =0或t =2.当t 变化时,g ′(t )与g (t )的变化情况如下表:作出函数草图(图略),由图可知:①当m >2或m <-6时,方程m =-2t 3+6t 2-6只有一解,即过点A 只有一条切线; ②当m =2或m =-6时,方程m =-2t 3+6t 2-6恰有两解,即过点A 有两条切线; ③当-6<m <2时,方程m =-2t 3+6t 2-6有三解,即过点A 有三条切线. 2.已知函数f (x )=a ln x -bx 2.(1)当a =2,b =12时,求函数f (x )在[1e,e]上的最大值;(2)当b =0时,若不等式f (x )≥m +x 对所有的a ∈[0,32],x ∈(1,e 2]都成立,求实数m 的取值范围.解 (1)由题意知,f (x )=2ln x -12x 2,f ′(x )=2x -x =2-x2x ,当1e ≤x ≤e 时,令f ′(x )>0得1e≤x <2;令f ′(x )<0,得2<x ≤e,∴f (x )在[1e ,2)上单调递增,在(2,e]上单调递减,∴f (x )max =f (2)=ln 2-1.(2)当b =0时,f (x )=a ln x ,若不等式f (x )≥m +x 对所有的a ∈[0,32],x ∈(1,e 2]都成立,则a ln x ≥m +x 对所有的a ∈[0,32],x ∈(1,e 2]都成立,即m ≤a ln x -x ,对所有的a ∈[0,32],x ∈(1,e 2]都成立,令h (a )=a ln x -x ,则h (a )为一次函数,m ≤h (a )min .∵x ∈(1,e 2],∴ln x >0,∴h (a )在[0,32]上单调递增,∴h (a )min =h (0)=-x ,∴m ≤-x 对所有的x ∈(1,e 2]都成立.∵1<x ≤e 2,∴-e 2≤-x <-1,∴m ≤(-x )min =-e 2.即实数m 的取值范围为(-∞,-e 2]. 3.设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数. (1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N *,求g n (x )的表达式; (2)若f (x )≥ag (x )恒成立,求实数a 的取值范围;(3)设n ∈N *,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明. 解 由题设得,g (x )=x1+x(x ≥0).(1)由已知,g 1(x )=x1+x ,g 2(x )=g (g 1(x ))=x1+x 1+x 1+x=x 1+2x ,g 3(x )=x1+3x,…,可得g n (x )=x1+nx. 下面用数学归纳法证明.①当n =1时,g 1(x )=x1+x,结论成立.②假设n =k 时结论成立,即g k (x )=x1+kx.那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k (x )1+g k (x )=x1+kx 1+x 1+kx=x 1+(k +1)x,即结论成立.由①②可知,结论对n ∈N *成立.(2)已知f (x )≥ag (x )恒成立,即ln(1+x )≥ax 1+x 恒成立.设φ(x )=ln(1+x )-ax1+x (x ≥0),则φ′(x )=11+x -a (1+x )2=x +1-a(1+x )2,当a ≤1时,φ′(x )≥0(当且仅当x =0,a =1时等号成立),∴φ(x )在[0,+∞)上单调递增.又φ(0)=0,∴φ(x )≥0在[0,+∞)上恒成立,∴a ≤1时,ln(1+x )≥ax1+x恒成立(当且仅当x =0,a =1时等号成立). 当a >1时,对x ∈(0,a -1]有φ′(x )≤0,∴φ(x )在(0,a -1)上单调递减∴φ(a -1)<φ(0)=0.即a >1时,存在x >0,使φ(x )<0,故知ln(1+x )≥ax1+x不恒成立,综上可知,a 的取值范围是(-∞,1].(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+n n +1,n -f (n )=n -ln(n +1),比较结果为g (1)+g (2)+…+g (n )>n -ln(n +1). 证明如下:方法一:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x 1+x ,x >0.令x =1n ,n ∈N *,则1n +1<ln n +1n.下面用数学归纳法证明.①当n =1时,12<ln 2,结论成立.②假设当n =k 时结论成立,即12+13+…+1k +1<ln(k +1).那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2<ln(k +1)+ln k +2k +1=ln(k +2),即结论成立.由①②可知,结论对n ∈N *成立.方法二:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x 1+x ,x >0.令x =1n ,n ∈N *,则ln n +1n >1n +1.故有ln 2-ln 1>12,ln 3-ln 2>13,…,ln(n +1)-ln n >1n +1,上述各式相加可得ln(n +1)>12+13+…+1n +1,结论得证.D1、已知函数()2f x m x =+与函数()11ln 3,22g x x x x ⎛⎫⎡⎤=--∈ ⎪⎢⎥⎣⎦⎝⎭的图像上至少存在一对关于x 轴对称的点,则实数m 的取值范围是( )。
1.设正弦函数y =sin x 在x =0和x =π2附近的平均变化率为k 1,k 2,则k 1,k 2的大小关系为( )A .k 1>k 2B .k 1<k 2C .k 1=k 2D .不确定2.设y =-2e xsin x ,则y ′等于( )A .-2e x cos xB .-2e xsin xC .2e x sin xD .-2e x(sin x +cos x )3.已知m <0,f (x )=mx 3+27x m,且f ′(1)≥-18,则实数m 等于( )A .-9B .-3C .3D .94.若曲线y =x 3-2ax 2+2ax 上任意点处的切线的倾斜角都是锐角,求整数a 的值.5.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-32t 2+2t ,那么速度为零的时刻是( )A .0秒B .1秒末C .2秒末D .1秒末和2秒末6.已知二次函数f (x )的图象如图所示,则其导函数f ′(x )的图象大致形状是( )7.曲线y =13x 3+12x 2在点T (1,56)处的切线与两坐标轴围成的三角形的面积为( )A.4918B.4936C.4972D.49144 8.(2009年高考安徽卷)设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈[0,5π12],则导数f ′(1)的取值范围是( )A .[-2,2]B .[2,3]C .[3,2]D .[2,2]9.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________.10.下列图象中,有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R ,a ≠0)的导函数f ′(x )的图象,则f (-1)=________.11.已知函数f (x )=x 3-3x 及y =f (x )上一点P (1,-2),过点P 作直线l .(1)求使直线l 和y =f (x )相切且以P 为切点的直线方程; (2)求使直线l 和y =f (x )相切且切点异于P 的直线方程.12.(2008年高考海南、宁夏卷)设函数f (x )=ax -b x,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.13.函数y =3x 2-6ln x 的单调增区间为________,单调减区间为________.14.(2009年高考北京卷)设函数f (x )=x 3-3ax +b (a ≠0).(1)若曲线y =f (x )在点(2,f (2))处与直线y =8相切,求a ,b 的值; (2)求函数f (x )的单调区间与极值点.15.函数f (x )=x 3-6b 2x +3b 在(0,1)内有极小值,则( )A .b >0B .b <12C .0<b <22D .b <1 16.已知函数f (x )的导数为f ′(x )=4x 3-4x ,且f (x )的图象过点(0,-5),当函数f (x )取得极大值-5时,x 的值应为( )A .-1B .0C .1D .±117.直线y =a 与函数f (x )=x 3-3x 的图象有相异的三个公共点,则a 的取值范围是________.1,解析:选A.∵y =sin x ,∴y ′=(sin x )′=cos x ,k 1=cos0=1,k 2=cos π2=0,∴k 1>k 2.2, 解析:选D.∵y =-2e xsin x ,∴y ′=(-2e x )′sin x +(-2e x)·(sin x )′=-2e x sin x -2e xcos x=-2e x(sin x +cos x ).3, 解析:选B.由于f ′(x )=3mx 2+27m,故f ′(1)≥-183m +27m≥-18,由m <0得3m+27m≥-183m 2+18m +27≤03(m +3)2≤0,故m =-3.4解:∵曲线y =x 3-2ax 2+2ax ,∴该曲线上任意点处切线的斜率k =y ′=3x 2-4ax +2a . 又∵切线的倾斜角都是锐角,∴k >0恒成立,即3x 2-4ax +2a >0恒成立.∴Δ=(-4a )2-4×3×2a =16a 2-24a <0,∴0<a <32.又∵a ∈Z ,∴a =1.5解析:选D.∵s =13t 3-32t 2+2t ,∴v =s ′(t )=t 2-3t +2,令v =0得,t 2-3t +2=0,解得t 1=1,t 2=2.6解析:选B.设二次函数为y =ax 2+b (a <0,b >0),则y ′=2ax ,又∵a <0,故选B.7, 解析:选D.易知点T 为切点,由f ′(1)=2,故切线方程为:y =2x -76,其在两坐标轴的截距分别为712,-76,故直线与两坐标轴围成的三角形面积S =12×712×|-76|=49144.8, 解析:选D.∵f ′(x )=sin θ·x 2+3cos θ·x ,∴f ′(1)=sin θ+3cos θ=2sin(θ+π3).∵θ∈[0,5π12],∴θ+π3∈[π3,3π4].∴sin(θ+π3)∈[22,1].∴2sin(θ+π3)∈[2,2].9, 解析:由已知切点在切线上,所以f (1)=12+2=52,切点处的导数为切线的斜率,所以f ′(1)=12,所以f (1)+f ′(1)=3.答案:310, 解析:∵f ′(x )=x 2+2ax +(a 2-1),∴导函数f ′(x )的图象开口向上.又∵a ≠0,其图象必为第三张图.由图象特征知f ′(0)=0, 且-a >0, ∴a =-1.故f (-1)=-13-1+1=-13.11, 解:(1)由f (x )=x 3-3x 得,f ′(x )=3x 2-3,过点P 且以P (1,-2)为切点的直线的斜率f ′(1)=0,∴所求直线方程为y =-2;(2)设过P (1,-2)的直线l 与y =f (x )切于另一点(x 0,y 0),则f ′(x 0)=3x 02-3. 又直线过(x 0,y 0),P (1,-2),故其斜率可表示为y 0-(-2)x 0-1=x 03-3x 0+2x 0-1,又x 03-3x 0+2x 0-1=3x 02-3,即x 03-3x 0+2=3(x 02-1)·(x 0-1),解得x 0=1(舍)或x 0=-12,故所求直线的斜率为k =3×(14-1)=-94,∴y -(-2)=-94(x -1),即9x +4y -1=0.12, 解:(1)方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +bx2,于是⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x.(2)证明:设P (x 0,y 0)为曲线上任一点,由y ′=1+3x2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=(1+3x 02)(x -x 0),即y -(x 0-3x 0)=(1+3x 02)(x -x 0).令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为(0,-6x 0).令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为S =12|-6x 0||2x 0|=6.故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.13, 解析:y ′=6x -6x =6x 2-6x.∵定义域为(0,+∞),由y ′>0得x >1,∴增区间为(1,+∞); 由y ′<0得0<x <1.∴减区间为(0,1).答案:(1,+∞) (0,1)14, 解:(1)f ′(x )=3x 2-3a ,因为曲线y =f (x )在点(2,f (2))处与直线y =8相切,所以⎩⎪⎨⎪⎧ f ′(2)=0,f (2)=8,即⎩⎪⎨⎪⎧3(4-a )=0,8-6a +b =8.解得a =4,b =24.(2)f ′(x )=3(x 2-a )(a ≠0).当a <0时,f ′(x )>0,函数f (x )在(-∞,+∞)上单调递增;此时函数f (x )没有极值点.当a >0时,由f ′(x )=0得x =±a .当x ∈(-∞,-a )时,f ′(x )>0,函数f (x )单调递增; 当x ∈(-a ,a )时,f ′(x )<0,函数f (x )单调递减. 当x ∈(a ,+∞)时,f ′(x )>0,函数f (x )单调递增.此时x =-a 是f (x )的极大值点,x =a 是f (x )的极小值点.15, 解析:选C.f ′(x )=3x 2-6b 2,令f ′(x )=0,得x =±2b .∵f (x )在(0,1)内有极小值, ∴0<2b <1.∴0<b <22.16, 解析:选B.可以求出f (x )=x 4-2x 2+c ,其中c 为常数.由于f (x )过(0,-5),所以c =-5,又由f ′(x )=0,得极值点为x =0和x =±1.又x =0时,f (x )=-5.故x 的值为0.17, 解析:令f ′(x )=3x 2-3=0,得x =±1,可求得f (x )的极大值为f (-1)=2, 极小值为f (1)=-2,如图所示,-2<a <2时,恰有三个不同公共点. 答案:(-2,2)。
导数满分必刷题(每日一练)1.设函数f (x) =x - (x +1) ln(x +1)(1)若方程f (x) =t 在⎡-1,1⎤上有两个实数解,求t 的取值范围;⎣⎢ 2 ⎥⎦(2)证明:当m >n > 0 时,(1+m)n < (1+n)m .2.已知函数f (x )=e x -ax .(1)讨论f (x )的单调性;(2)当a =-1,若关于x 的不等式f (x)≥mx 在(0, +∞)上恒成立,求实数m 的取值范围.3.已知函数f (x)= ln x +ax2 - 3x (a ∈R)(1)若函数f (x )在点(1 , f (1))处的切线方程为y =-2 ,求函数f (x )的极值;m(x1-x2)(2)若a=1,对于任意x1 , x2 ∈[1, 5],当x1 <x2 时,不等式f(x1)-f(x2)>恒成立,求实数m 的取值范围. x1x24.已知函数f (x) =x + (1-a) ln x +a(a ∈R) .x(1)讨论函数f (x) 的单调性;(2)当a > 0 时,若f (x)≥ 2 恒成立,求实数a 的取值范围.5.已知函数f (x) =x -a- ln x(a ∈R) 有两个极值点x ,x ,且x <x .x 1 2 1 2(1)求实数a 的取值范围,并讨论f (x )的单调性;(2)证明:f (x2 )> ln2.6.已知函数f (x )=x2 - 2a ln x ,其中a ∈R .(1)当a = 1时,求函数f (x )在⎡1, e⎤上的最值;⎢⎣e ⎥⎦(2)(i)讨论函数f(x)的单调性;(ii)若函数f (x )有两个零点,求a 的取值范围.7.己知函数f (x) =1x2 +mx - e x +1(m ∈R).2(Ⅰ)若f (x )在R 上是减函数,求m 的取值范围;(Ⅱ)当m >1 时,证明f (x )有一个极大值点和一个极小值点.8.已知函数f ( x) =e x , g( x) =ax - 1 ,其中e = 2.71828 ⋅⋅⋅为自然对数的底数.(1)讨论函数h (x)=f (x)⋅g (x)的单调性;(2)设a ∈ N+, f (x) ≥g (x) 恒成立,求a 的最大值(ln 3 ≈ 1.1, ln 2 ≈ 0.69) .9.已知函数f (x) =ae x-1 -ln x-1, a ∈R x(1)若a = 1,求f (x )的极值;(2)若f (x )> 0 恒成立,求实数a 的取值范围.10.已知函数 f (x )= ln x - ax . (1)讨论 f (x )的单调性;(2)若函数 f (x )有两个零点x 1 、 x 2 (x 1 < x 2 ). ①求 a 的取值范围;②证明: x 1 ⋅ x 2 > e 2 .11.已知函数f (x)=xe x (其中e 为自然对数的底数). (1)求函数f (x )的最小值;(2)求证:f (x)>e x + ln x -1 . 212.已知函数f (x )=ax3 +x2 + 3x - 2 (a ∈R ). 3(1)若a =-1,求函数y =f (x)单调区间;(2)当x ∈(1, e3 )时,不等式f '(x)>x ln x + 2恒成立,求实数a 的取值范围.13.已知函数f (x)=e x -x -mx2 ,x ∈(0, +∞).(1)若f (x )是增函数,求实数m 的取值范围;(2)当m = 1时,求证:f ( x) >1 .41 14.已知函数f(x)=e x-a(x2+x)(a∈R),且函数f(x)有且仅有两个极值点x,x2(其中x1 <x2 ).(1)求实数a 的取值范围;(2)证明:f (x )<5a.1 415.设函数f (x)=x -a ln x +a ,其中a ∈R .(I)当a = 2时,求曲线y =f (x)在点(1,f (1))处的切线方程;(Ⅱ)设x1,x2 是f (x )的两个零点,且x1 <x2(i)求实数a 的取值范围:(ii)证明:f '<0.16.已知函数f (x) =e x -1-a sin x(a ∈R) .(1)当a = 1时,判断f (x) 在(0, +∞)的单调性;(2)当x ∈[0,π]时,f (x) ≥ 0恒成立,求实数a 的取值范围.17.已知函数f (x) =ln x +m (m ∈R ).e x(1)若f (x) 在[1, e]上是单调函数,求实数m 的取值范围;(2)若m = 2 ,求证:f (x) <.218.已知函数 f (x ) = -mx + ln x +1, g (x ) = cos x + x sin x -1.(Ⅰ)讨论函数 f (x ) 的单调区间与极值;(Ⅱ)若 m > 1 ,对任意 x ∈[1, 2] ,总存在 x ∈[0,π] ,使得不等式 f (x ) - g (x) > 1 2 1 2 12 成立,试求实数 m 的取值范围.⎣ ⎦19.已知函数 f (x ) = 1ax 3 - 4x (a ∈ R ). 3(1)讨论函数 f (x )的单调性; (2)若 a = 1, ∀x 1 , x 2 ∈ ⎡1, 2 ⎤ 且 x 1 ≠ x 2 ,都有立,求实数 m 的取值范围.f (x 1 ) - f (x 2 ) < m ln x 1 - ln x 2 成20.已知函数f (x )=e x sin x .(e 是自然对数的底数)(1)求f (x )的单调递减区间;(2)记g (x)=f (x)-ax ,0 < a < 3 ,试讨论g (x)在(0,π)上的零点个数.(参考数π据:e 2 ≈ 4.8)21.已知函数f (x) =x -1.e x(1)若x < 2 ,求证:f (x) <f (4 -x);(2)若函数F(x)=f(x)-a有两个零点x1,x2(x1<x2).①求实数a 的范围;②求证:f '⎛x1+x2⎫< 0 .2 ⎪ ⎝⎭22.已知函数f (x) =e x-1 +λln x(λ∈R)(1)若λ= 1,对于给定的点P(O,t),过点P 恰有两条直线与曲线y =实数t 的取值范围;f ( x) 相切,求(2)①若函数F (x) =f (x) +λ有两个零点x1 , x2 (0 <x1 <x2 ) ,求实数λ的取值范围;②求证:1<x <1 <x .e 1 223.已知函数f (x)= ln x -ax +1,其中a ∈R .(1)记g (x)=f (x)+x2 ,求g (x)的单调区间;(2)是否存在k ∈Z ,使得f (x )+ax - 2 >k ⎛1-2 ⎫对任意x > 1恒成立?若存在,x ⎪⎝⎭ 请求出k 的最大值;若不存在,请说明理由.24.已知函数f (x)=(x -1)-(x + 2)sin x .(1)当x ∈⎡π,π⎤时,求y =f (x)零点的个数;⎢⎣2⎥⎦(2)当x ∈[0, 2π]时,求y =f (x)极值点的个数.25.已知函数f (x) =x ln x -ae x +a ,其中a ∈R .(1)若f (x )是定义域内的单调递减函数,求a 的取值范围;(2)当a ≥ 1时,求证:对任意x ∈ (0, +∞) ,恒有f (x)< cos x -1成立.26.已知函数f (x)=e x cos x ,x ∈⎡0,π⎤.(1)求函数f (x) 的最值;⎣⎢ 2 ⎥⎦(2)若不等式f (x)≥kx -1对于x ∈⎡0,π⎤恒成立,求实数k 的取值范围;⎣⎢ 2 ⎥⎦(3)对于任意x ∈⎡0,π⎤,证明:f (x)≥1 (1+x)(2 -x2 ).⎣⎢ 2 ⎥⎦227.已知函数 f (x ) = ln x - ax +1,其中a ∈ R . (1)求 f (x )的单调区间;(2)当 a = 1时,斜率为 k 的直线l 与函数 f (x )的图象交于两点A (x 1 , y 1 ),B (x 2 , y 2 ), 其中 x < x ,证明: x <1< x ;121k +1 228.已知函数f (x)=x -e a+x (a ∈R ).(1)若a = 1,求函数f (x )在x = 0 处的切线;(2)若f (x )有两个零点x1 ,x2 ,求实数a 的取值范围,并证明:x1 +x2 > 2 .29.设函数f (x )=-2 cos x -x, g (x )=- ln x -k(k > 0) .x (1)求函数f (x )的递增区间;(2)若对任意x ∈⎡0,1 ⎤,总存在x∈⎡1,1⎤,使得f (x ) <g(x ) ,求实数k 的取值1 ⎢⎣2 ⎥⎦ 2 ⎢⎣2⎥⎦ 1 2 范围.30.已知函数f (x)=a- ln x (a ∈R). x(1)讨论f (x )的单调性;(2)若x ,x 是方程f (x)= 2 的两个不同实根,证明:x +x >.1 2 1 2 e32。
一、选择题(每题只有一个选项是正确的,每题5分,共60分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
)1.某函数的导数为y′=12(x-1),那么这个函数可能是 ()A.y=ln1-x B.y=ln11-xC.y=ln(1-x) D.y=ln11-x2.(2021•江西)设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,那么曲线y=f(x)在点(1,f(1))处切线的斜率为 ()A.4 B.-14 C.2 D.-123.(2021•辽宁)曲线y=xx-2在点(1,-1)处的切线方程为 ()A.y=x-2 B.y=-3x+2C.y=2x-3 D.y=-2x+14.曲线y=ex在点(2,e2)处的切线与坐标轴所围成三角形的面积为 ()A.94e2 B.2e2 C.e2 D.e225.函数y=f(x),y=g(x)的导函数的图象如图,那么y=f(x),y=g(x)的图象可能是()6.设y=8x2-lnx,那么此函数在区间(0,14)和(12,1)内分别 ()A.单调递增,单调递减B.单调递增,单调递增C.单调递减,单调递增D.单调递减,单调递减7.以下关于函数f(x)=(2x-x2)ex的判断正确的选项是 ()①f(x)>0的解集是{x|0<x<2};②f(-2)是极小值,f(2)是极大值;③f(x)没有最小值,也没有最大值.A.①③ B.①②③C.② D.①②8.f(x)=-x3-x,x∈[m,n],且f(m)•f(n)<0,那么方程f(x)=0在区间[m,n]上() A.至少有三个实根 B.至少有两个实根C.有且只有一个实根 D.无实根9.函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,那么实数a的取值范围是() A.-1<a<2 B.-3<a<6 C.a<-3或a>6 D.a<-1或a>210.要做一个圆锥形漏斗,其母线长为20cm,要使其体积最大,其高应为 ()A.2033cm B.100cm C.20cm D.203cm11.(2021•河南省实验中学)假设函数f(x)=(2-m)xx2+m的图象如下图,那么m的范围为 ()A.(-∞,-1) B.(-1,2) C.(1,2) D.(0,2)12.定义在R上的函数f(x)满足f(4)=1.f′(x)为f(x)的导函数,函数y=f′(x)的图象如下图.假设两正数a,b满足f(2a+b)<1,那么b+2a+2的取值范围是 ()A.(13,12) B.(-∞,12)∪(3,+∞)C.(12,3) D.(-∞,-3) 二、填空题(本大题共4小题,每题5分,共20分,请将答案填在题中的横线上。
C()2()64f f ππ> D()()43f f ππ> 61.定义域为R 的连续函数)(x f ,对于任意x 都有:)2()2(x f x f -=+,且其导函数)(x f '满足0)()2(>'-x f x .则当42<<a 时:A. )(log )2()2(2a f f f a <<B. )(log )2()2(2a f f f a <<C. )2()2()(log 2f f a f a <<D. )2()(log )2(2a f a f f <<62.已知f (x )=x (1+lnx ),若k ∈Z ,且k (x ﹣2)<f (x )对任意x >2恒成立,则k 的最大值为( )A . 3B . 4C . 5D . 663.定义:如果函数f (x )在[a ,b]上存在x 1,x 2(a <x 1<x 2<b )满足f′(x 1)=,f′(x 2),则称函数f (x )是[a ,b]上的“双中值函数”.已知函数f (x )=x 3﹣x 2+a 是[0,a]上“双中值函数”,则实数a 的取值范围是( )A . (,)B . (0,1)C . (,1)D . (,1)64.已知α,β是三次函数的两个极值点,且α∈(0,1),β∈(1,2),则的取值范围是( )A .B .C .D . 65.f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f′(x )g (x )+f (x )g′(x )>0,且g (﹣3)=0,则不等式f (x )g (x )<0的解集是( )A .(﹣∞,﹣3)∪(0,3)B .(﹣∞,﹣3)∪(3,+∞)C .(﹣3,0)∪(3,+∞)D .(﹣3,0)∪(0,3) 66.设函数()ln(1),()(0)1ax f x x g x x x =+=≥+, 若()()f x g x ≥恒成立,则a 的取值范围是A. 2a ≤B. 2a ≥C. 1a ≤D. 1a ≥67.设函数()()y f x x R =∈的导函数为'()f x ,且()(),'()()f x f x f x f x =-<,则下列不等式成立的是A. 12(0)(1)(2)f e f e f -<<B.12(1)(0)(2)e f f e f -<< C.21(2)(1)(0)e f e f f -<< D.21(2)(0)(1)e f f e f -<< 68.函数3211()(21)(1)32f x x b x b b x =-+++在(0,2)内有极小值,则( ) A .01b << B .02b << C .11b -<< D .12b -<<试卷答案1.D【考点】函数在某点取得极值的条件;基本不等式.【专题】计算题.【分析】求出导函数,利用函数在极值点处的导数值为0得到a,b满足的条件;利用基本不等式求出ab的最值;注意利用基本不等式求最值需注意:一正、二定、三相等.【解答】解:∵f′(x)=12x2﹣2ax﹣2b,又因为在x=1处有极值,∴a+b=6,∵a>0,b>0,∴,当且仅当a=b=3时取等号,所以ab的最大值等于9.故选:D.【点评】本题考查函数在极值点处的导数值为0、考查利用基本不等式求最值需注意:一正、二定、三相等.2.D【考点】定积分.【专题】导数的综合应用.【分析】找出被积函数的原函数,计算定积分.【解答】解:=(x3+cosx)|=1+cos1+1﹣cos1=2;故选D.【点评】本题考查了定积分的计算;关键是正确找出被积函数的原函数.3.A【考点】函数的单调性与导数的关系;导数的运算.【专题】数形结合;转化思想;导数的综合应用;不等式的解法及应用.【分析】根据函数单调性和导数之间的关系进行求解即可.【解答】解:不等式x•f′(x)>0等价为当x>0时,f′(x)>0,即x>0时,函数递增,此时1<x<2,或者当x<0时,f′(x)<0,即x<0时,函数递减,此时x<0,综上1<x<2或x<0,即不等式的解集为(﹣∞,0)∪(1,2),故选:A【点评】本题主要考查不等式的求解,根据函数单调性和导数之间的关系是解决本题的关键.4.D考点:利用导数研究函数的单调性.专题:导数的概念及应用.分析:根据条件,构造函数构造函数g(x)=e﹣x f(x),判断函数的单调性即可得到结论.解答:解:构造函数g(x)=e﹣x f(x),则g′(x)=[e﹣x f(x)]′=﹣e﹣x f(x)+e﹣x f′(x)=e﹣x[﹣f(x)+f′(x)]<0则g(x)单调递减,则g(﹣2015)>g(0),即e2015f(﹣2015)>f(0),g(2015)<g(0),即e﹣2015f(2015)<f(0),即f(2015)<e2015f(0)故选:D.点评:本题主要考查函数值的大小比较,根据条件构造函数g(x)=e﹣x f(x),利用导数判断函数的单调性是解决本题的关键.5.B考点:利用导数研究函数的单调性.专题:导数的综合应用.分析:求函数的导数,判断函数的单调性,利用函数的单调性进行比较即可.解答:解:∵函数f(x)=x2﹣cosx为偶函数,∴f(﹣0.5)=f(0.5),f′(x)=2x+sinx,当0<x<时,f′(x)=2x+sinx>0,∴函数在(0,)上递增,∴f(0)<f(0.5)<f(0.6),即f(0)<f(﹣0.5)<f(0.6),故选:B点评:本题主要考查函数值的大小比较,求函数的导数,利用函数的单调性是解决本题的关键.6.D考点:古典概型及其概率计算公式.专题:计算题;概率与统计.分析:由极值的知识结合二次函数可得a>b,由分步计数原理可得总的方法种数,列举可得满足题意的事件个数,由概率公式可得.解答:解:求导数可得f′(x)=x2+2ax+b2,要满足题意需x2+2ax+b2=0有两不等实根,即△=4(a2﹣b2)>0,即a>b,又a,b的取法共3×3=9种,其中满足a>b的有(1,0),(2,0),(2,1),(3,0),(3,1),(3,2)共6种,故所求的概率为P=故选D点评:本题考查古典概型及其概率公式,涉及函数的极值问题,属基础题.7.A考点:函数的单调性与导数的关系.专题:创新题型;函数的性质及应用;导数的综合应用.分析:由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)=为减函数,由已知f (x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可.解答:解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g(x)的图象性质类似如图:数形结合可得,不等式f(x)>0⇔x•g(x)>0⇔或,⇔0<x<1或x<﹣1.故选:A.点评:本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.8.C考点:利用导数求闭区间上函数的最值.专题:导数的综合应用;不等式的解法及应用.分析:对x讨论,当x=0,当x∈(0,1]时,f(x)=ax3﹣3x+1≥0可化为:aa≥﹣,设g(x)=﹣,由导数判断单调性,即可求出a≥0;x∈[﹣1,0)时,求出a≤2,由此可得a的取值范围.解答:解:若x=0,则不论a取何值,f(x)≥0都成立;当x>0即x∈(0,1]时,f(x)=ax3﹣x+1≥0可化为:a≥﹣,设g(x)=﹣,则g′(x)=,所以g(x)在区间(0,1]上单调递增,因此g(x)max=g(1)=0,从而a≥0;当x<0即x∈[﹣1,0)时,f(x)=ax3﹣x+1≥0可化为:a≤﹣,设g(x)=﹣,则g′(x)=,g(x)在区间[﹣1,0)上单调递增,因此g(x)min=g(﹣1)=2,从而a≤2,则0≤a≤2.即有实数a的取值范围为[0,2].故选:C.点评:本题考查不等式恒成立问题的解法,是中档题,解题时要认真审题,注意导数性质的合理运用9.C10.A【考点】利用导数研究函数的单调性.【专题】计算题.【分析】先求出导函数,欲使函数f(x)在区间[1,2]上单调递增可转化成f′(x)≥0在区间[1,2]上恒成立,再借助参数分离法求出参数a的范围.【解答】解:f′(x)=9x2﹣2ax+1∵f(x)=3x3﹣ax2+x﹣5在区间[1,2]上单调递增∴f′(x)=9x2﹣2ax+1≥0在区间[1,2]上恒成立.即,即a≤5,故选A【点评】本题主要考查了利用导数研究函数的单调性,以及恒成立问题的转化,属于基础题.11.B【考点】函数的单调性与导数的关系.【专题】函数思想;构造法;导数的概念及应用.【分析】构造函数g(x)=xf(x),判断g(x)的单调性与奇偶性即可得出结论.【解答】解:令g(x)=xf(x),则g(﹣x)=﹣xf(﹣x)=xf(x)∴g(x)是偶函数.g′(x)=f(x)+xf′(x)∵∴当x>0时,xf′(x)+f(x)<0,当x<0时,xf′(x)+f(x)>0.∴g(x)在(0,+∞)上是减函数.∵<ln2<1<∴g()<g(ln2)<g()∵g(x)是偶函数.∴g(﹣)=g(),g(ln)=g(ln2)∴g(﹣)<g(ln)<g()故选:B.【点评】本题考查了导数与函数单调性的关系,函数单调性的应用,属于中档题.12.D【考点】函数的单调性与导数的关系;导数的运算.【专题】导数的概念及应用.【分析】构造函数F(x)=cosxf(x),求导数结合已知条件可得函数F(x)在x∈(0,)上单调递增,可得F()<F()<F(1)<F(),代值结合选项可得答案.【解答】解:∵x∈(0,),∴sinx>0,cosx>0,构造函数F(x)=cosxf(x),则F′(x)=﹣sinxf(x)+cosxf′(x)=cosx[f′(x)﹣tanxf(x)],∵对任意x∈(0,),不等式tanx•f(x)<f′(x)恒成立,∴F′(x)=cosx[f′(x)﹣tanxf(x)]>0,∴函数F(x)在x∈(0,)上单调递增,∴F()<F()<F(1)<F(),∴cos f()<cos f()<cos1f(1)<cos f(),∴f()<f()<cos1f(1)<f(),∴f()<f()<2cos1f(1)<f(),结合选项可知D错误.故选:D【点评】本题考查函数的单调性和导数的关系,构造函数是解决问题的关键,属中档题.13.A【考点】利用导数研究曲线上某点切线方程;点到直线的距离公式.【专题】导数的综合应用.【分析】利用导数求出曲线y=x2+1在点(1,2)处的切线方程,化圆的一般方程为标准式,求出圆心坐标和半径,由圆心到直线的距离减去圆的半径得答案.【解答】解:由y=x2+1,得y′=2x,∴y′|x=1=2,∴曲线y=x2+1在点(1,2)处的切线l的方程为:y﹣2=2(x﹣1),即2x﹣y=0.又圆x2+y2+4x+3=0的标准方程为(x+2)2+y2=1.圆心坐标为(﹣2,0),半径为1,∴圆心到直线l的距离为,则直线l上的任意点P与圆x2+y2+4x+3=0上的任意点Q之间的最近距离是.故选:A.【点评】本题考查了利用导数研究曲线上某点处的切线方程,考查了点到直线的距离公式,是中档题.14.C【考点】定积分在求面积中的应用.【专题】计算题.【分析】确定曲线交点的坐标,确定被积区间及被积函数,利用定积分表示面积,即可得到结论.【解答】解:由xy=1得,由得x D=1,所以曲边四边形的面积为:,故选C.【点评】本题考查面积的计算,解题的关键是确定曲线交点的坐标,确定被积区间及被积函数,利用定积分表示面积.15.B【考点】二元一次不等式(组)与平面区域;导数的几何意义.【专题】导数的综合应用;不等式的解法及应用.【分析】根据条件求出a,b的值以及函数f(x)的表达式,结合二元一次不等式(组)与平面区域的关系画出其表示的平面区域,再利用圆的方程画出图形,最后利用扇形面积公式计算即可.【解答】解:因为函数f(x)的图象过原点,所以f(0)=0,即b=2.则f(x)=x3﹣x2+ax,函数的导数f′(x)=x2﹣2x+a,因为原点处的切线斜率是﹣3,即f′(0)=﹣3,所以f′(0)=a=﹣3,故a=﹣3,b=2,所以不等式组为则不等式组确定的平面区域在圆x2+y2=4内的面积,如图阴影部分表示,所以圆内的阴影部分扇形即为所求.∵k OB=﹣,k OA=,∴tan∠BOA==1,∴∠BOA=,∴扇形的圆心角为,扇形的面积是圆的面积的八分之一,∴圆x2+y2=4在区域D内的面积为×4×π=,故选:B【点评】本题主要考查导数的应用,以及线性规划的应用,根据条件求出参数a,b的是值,然后借助不等式区域求解面积是解决本题的关键.16.A【考点】导数的运算.【专题】导数的概念及应用.【分析】对于这类参数取值问题,针对这些没有固定套路解决的选择题,最好的办法就是排除法.【解答】解:∵2f(x)+xf′(x)>x2,令x=0,则f(x)>0,故可排除B,D.如果 f(x)=x2+0.1,时已知条件 2f(x)+xf′(x)>x2成立,但f(x)>x 未必成立,所以C也是错的,故选 A故选A.【点评】本题考查了运用导数来解决函数单调性的问题.通过分析解析式的特点,考查了分析问题和解决问题的能力.17.D考点:利用导数研究函数的极值;函数在某点取得极值的条件.专题:压轴题;导数的综合应用.分析:先求出f′(x),令f′(x)=0,由题意可得lnx=2ax﹣1有两个解x1,x2⇔函数g(x)=lnx+1﹣2ax有且只有两个零点⇔g′(x)在(0,+∞)上的唯一的极值不等于0.利用导数与函数极值的关系即可得出.解答:解:∵f′(x)=lnx+1﹣2ax,(x>0)令f′(x)=0,由题意可得lnx=2ax﹣1有两个解x1,x2⇔函数g(x)=lnx+1﹣2ax有且只有两个零点⇔g′(x)在(0,+∞)上的唯一的极值不等于0..①当a≤0时,g′(x)>0,f′(x)单调递增,因此g(x)=f′(x)至多有一个零点,不符合题意,应舍去.②当a>0时,令g′(x)=0,解得x=,∵x,g′(x)>0,函数g(x)单调递增;时,g′(x)<0,函数g(x)单调递减.∴x=是函数g(x)的极大值点,则>0,即>0,∴ln(2a)<0,∴0<2a<1,即.故当0<a<时,g(x)=0有两个根x1,x2,且x1<<x2,又g(1)=1﹣2a>0,∴x1<1<<x2,从而可知函数f(x)在区间(0,x1)上递减,在区间(x1,x2)上递增,在区间(x2,+∞)上递减.∴f(x1)<f(1)=﹣a<0,f(x2)>f(1)=﹣a>﹣.故选:D.点评:本题考查了利用导数研究函数极值的方法,考查了分类讨论的思想方法,考查了推理能力与计算能力,属于难题.18.A【考点】函数的单调性与导数的关系.【专题】创新题型;函数的性质及应用;导数的综合应用.【分析】由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)=为减函数,由已知f (x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可.【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g(x)的图象性质类似如图:数形结合可得,不等式f(x)>0⇔x•g(x)>0⇔或,⇔0<x<1或x<﹣1.故选:A.【点评】本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.19.B【考点】导数的运算;数列的求和.【专题】压轴题.【分析】利用导数研究函数的单调性得到a的范围,再利用等比数列前n项和公式即可得出.【解答】解:∵=,f′(x)g(x)<f(x)g′(x),∴=<0,即函数单调递减,∴0<a<1.又,即,即,解得a=2(舍去)或.∴,即数列是首项为,公比的等比数列,∴==,由解得n=5,故选B.【点评】熟练掌握导数研究函数的单调性、等比数列前n项和公式是解题的关键.20.A【考点】函数在某点取得极值的条件;根的存在性及根的个数判断.【专题】综合题;压轴题;导数的综合应用.【分析】求导数f′(x),由题意知x1,x2是方程3x2+2ax+b=0的两根,从而关于f(x)的方程3(f(x))2+2af(x)+b=0有两个根,作出草图,由图象可得答案.【解答】解:f′(x)=3x2+2ax+b,x1,x2是方程3x2+2ax+b=0的两根,由3(f(x))2+2af(x)+b=0,则有两个f(x)使等式成立,x1=f(x1),x2>x1=f(x1),如下示意图象:如图有三个交点,故选A.【点评】考查函数零点的概念、以及对嵌套型函数的理解,考查数形结合思想.21.C【考点】定积分在求面积中的应用.【专题】计算题.【分析】利用定积分知识求解该区域面积是解决本题的关键,要确定出曲线y=,直线y=x﹣2的交点,确定出积分区间和被积函数,利用导数和积分的关系完成本题的求解.【解答】解:联立方程得到两曲线的交点(4,2),因此曲线y=,直线y=x﹣2及y轴所围成的图形的面积为:S=.故选C.【点评】本题考查曲边图形面积的计算问题,考查学生分析问题解决问题的能力和意识,考查学生的转化与化归能力和运算能力,考查学生对定积分与导数的联系的认识,求定积分关键要找准被积函数的原函数,属于定积分的简单应用问题.22.A考点:导数的运算;利用导数研究函数的单调性.专题:导数的概念及应用.分析:利用条件构造函数h(x)=xf(x),然后利用导数研究函数h(x)的单调性,利用函数的单调性比较大小.解答:解:设h(x)=xf(x),∴h′(x)=f(x)+x•f′(x),∵y=f(x)是定义在实数集R上的奇函数,∴h(x)是定义在实数集R上的偶函数,当x>0时,h'(x)=f(x)+x•f′(x)>0,∴此时函数h(x)单调递增.∵a=f()=h(),b=﹣2f(﹣2)=2f(2)=h(2),c=(ln)f(ln)=h(ln)=h(﹣ln2)=h(ln2),又2>ln2>,∴b>c>a.故选:A.点评:本题主要考查如何构造新的函数,利用单调性比较大小,是常见的题目.本题属于中档题.23.B考点:函数的单调性与导数的关系;利用导数研究函数的极值.专题:导数的综合应用.分析:第一步:在x2f′(x)+xf(x)=lnx两边同时除以x,使得左边为[xf(x)]';第二步:令g(x)=xf(x),用g(x)表示f(x),并写出f'(x);第三步:对f'(x)的分子再求导,从而求出分子的最大值;第四步:判断f'(x)的符号,即可判断f(x)的单调性.解答:解:由x2f′(x)+xf(x)=lnx,得xf′(x)+f(x)=,从而[xf(x)]'=,令g(x)=xf(x),则f(x)=,∴=,令h(x)=lnx﹣g(x),则h'(x)=(x>0),令h'(x)>0,即1﹣lnx>0,得0<x<e时,h(x)为增函数;令h'(x)<0,即1﹣lnx<0,得x>e时,h(x)为减函数;由f(e)=,得g(e)=ef(e)=1.∴h(x)在(0,+∞)上有极大值h(e)=lne﹣g(e)=1﹣1=0,也是最大值,∴h(x)≤0,即f'(x)≤0,当且仅当x=e时,f'(x)=0,∴f(x)在(0,+∞)上为减函数.故选:B.点评:本题考查了函数的单调性与其导函数的正负之间的关系,难度较大.“在x2f′(x)+xf(x)=lnx两边同时除以x”是解题的突破口,“求h(x)的极大值”是关键.24.A考点:函数y=Asin(ωx+φ)的图象变换;定积分.专题:三角函数的图像与性质.分析:由f(x)dx=0求得cos(φ+)=0,故有φ+=kπ+,k∈z.可取φ=,则f(x)=sin (x﹣).令x﹣=kπ+,求得x的值,可得函数f(x)的图象的一条对称轴方程.解答:解:∵函数f(x)=sin(x﹣φ),f(x)dx=﹣cos(x﹣φ)=﹣cos(﹣φ)﹣[﹣cos(﹣φ)]=cosφ﹣sinφ=cos(φ+)=0,∴φ+=kπ+,k∈z,即φ=kπ+,k∈z,故可取φ=,f(x)=sin(x﹣).令x﹣=kπ+,求得 x=kπ+,k∈Z,则函数f(x)的图象的一条对称轴为 x=,故选:A.点评:本题主要考查定积分,函数y=Asin(ωx+φ)的图象的对称性,两角和差的三角公式的应用,属于中档题.25.C26.A考点:函数的单调性与导数的关系;函数零点的判定定理.专题:计算题;函数的性质及应用;导数的综合应用.分析:首先可判断f(0)=1>0,f(﹣1)=1﹣1﹣﹣﹣…﹣<0;再判断f(x)在(0,+∞)上单调递增,在(﹣∞,﹣1)上单调递增,从而说明没有零点,从而解得.解答:解:∵,∴f(0)=1>0,f(﹣1)=1﹣1﹣﹣﹣…﹣<0;故在上有零点;f′(x)=1﹣x+x2﹣x3+ (x2014)易知f′(1)=1,当x>0且x≠1时,f′(x)=1﹣x+x2﹣x3+…+x2014==>0,故f(x)在(0,+∞)上单调递增,且f(0)>0;故f(x)在(0,+∞)上没有零点,当x<﹣1时,f′(x)=1﹣x+x2﹣x3+…+x2014==>0,故f(x)在(﹣∞,﹣1)上单调递增,且f(﹣1)<0,故f(x)在(﹣∞,﹣1)上没有零点;综上所述,函数的零点都在区间上,故选A.点评:本题考查了导数的综合应用及函数的零点的判断,属于基础题.27.B考点:函数的值.专题:函数的性质及应用.分析:根据题意转化为:>,对于x>1恒成立,构造函数h(x)=x•求导数判断,h′(x)=,且y=x﹣2﹣lnx,y′=1﹣>0在x>1成立,y=x﹣2﹣lnx在x>1单调递增,利用零点判断方法得出存在x0∈(3,4)使得f(x)≥f(x0)>3,即可选择答案.解答:解:∵f(x)=,g(x)=(k∈N*),对任意的c>1,存在实数a,b满足0<a<b<c,使得f(c)=f(a)=g(b),∴可得:>,对于x>1恒成立.设h(x)=x•,h′(x)=,且y=x﹣2﹣lnx,y′=1﹣>0在x>1成立,∴即3﹣2﹣ln3<0,4﹣2﹣ln4>0,故存在x0∈(3,4)使得f(x)≥f(x0)>3,∴k的最大值为3.故选:B点评:本题考查了学生的构造函数,求导数,解决函数零点问题,综合性较强,属于难题.28.B考点:定积分的简单应用;子集与真子集.专题:计算题.分析:先根据定积分求出集合P,根据集合子集的公式2n(其中n为集合的元素),求出集合A的子集个数,然后除去空集即可得到集合A的非空真子集的个数.解答: 解:∵P={x|∫0x (3t 2﹣10t+6)dt=0,x >0}, ∴P={2,3}因为集合A 中有2个元素,所以集合A 子集有22=4个,则集合A 的非空子集的个数是4﹣1=3. 故选B .点评:此题考查学生掌握子集与真子集的定义,会利用2n﹣1求集合的非空子集,是一道基础题. 29.D 因为定义域为π02⎛⎫ ⎪⎝⎭,,()()tan f x f x x '<,所以()s i n (f x x f x x '->,因为2()()s i n ()c o s 0s i n s i n f x f x x f x x xx ''-⎛⎫=> ⎪⎝⎭,所以()sin f x y x =在π02⎛⎫ ⎪⎝⎭,上单调递增,所以ππ612f f ⎛⎫⎛⎫⎪ ⎪⎝⎭<,即ππ63f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故选D. 30.A依题意22244x x y x y y x ++++⇒-+≤≤,点()P x y ,所在区域的面积为2612⨯=,x ,y 满足22min{42}2x y x x y x x y ++++=++,的区域面积为23220016(4)d 433x x x x ⎛⎫-+=-+=⎪⎝⎭⎰,故所求概率为1643129=,故选A 31.B【考点】函数的单调性与导数的关系;函数单调性的判断与证明;函数奇偶性的判断. 【专题】计算题.【分析】首先利用导数的几何意义及函数f (x )过原点,列方程组求出f (x )的解析式;然后根据奇函数的定义判断函数f (x )的奇偶性,且由f′(x )的最小值求出k 的最大值,则命题①④得出判断;最后令f′(x )=0,求出f (x )的极值点,进而求得f (x )的单调区间与最值,则命题②③得出判断. 【解答】解:函数f (x )=x 3+ax 2+bx+c 的图象过原点,可得c=0; 又f′(x )=3x 2+2ax+b ,且f (x )在x=±1处的切线斜率均为﹣1,则有,解得a=0,b=﹣4.所以f (x )=x 3﹣4x ,f′(x )=3x 2﹣4. ①可见f (x )=x 3﹣4x 是奇函数,因此①正确;x ∈[﹣2,2]时,[f′(x )]min =﹣4,则k≤f'(x )恒成立,需k≤﹣4,因此④错误.②令f′(x )=0,得x=±.所以f (x )在[﹣,]内递减,则|t ﹣s|的最大值为,因此②错误;且f (x )的极大值为f (﹣)=,极小值为f ()=﹣,两端点处f (﹣2)=f (2)=0,所以f(x)的最大值为M=,最小值为m=﹣,则M+m=0,因此③正确.故选B.【点评】本题主要考查导数的几何意义及利用导数研究函数单调性、最值的方法.32.D【考点】定积分在求面积中的应用.【分析】由题意画出图形,再利用定积分即可求得.【解答】解:如图,面积.故选D.【点评】本题主要考查定积分求面积.33.A【考点】利用导数研究曲线上某点切线方程.【专题】计算题;作图题;导数的综合应用.【分析】由题意作图,求导y′=,从而写出切线方程为y﹣e2=e2(x﹣4);从而求面积.【解答】解:如图,y′=;故y′|x=4=e2;故切线方程为y﹣e2=e2(x﹣4);当x=0时,y=﹣e2,当y=0时,x=2;故切线与坐标轴所围三角形的面积S=×2×e2=e2;故选A.【点评】本题考查了导数的求法及曲线切线的求法,同时考查了数形结合的思想,属于中档题.34.D【考点】利用导数研究函数的极值.【专题】导数的概念及应用;导数的综合应用.【分析】先对函数进行求导,根据函数f(x)在x=﹣3时取得极值,可以得到f′(﹣3)=0,代入求a值.【解答】解:对函数求导可得,f′(x)=3x2+2ax+3∵f(x)在x=﹣3时取得极值 [来源:]∴f′(﹣3)=0⇒a=5,验证知,符合题意故选:D.【点评】本题主要考查函数在某点取得极值的性质.属基础题.比较容易,要求考生只要熟练掌握基本概念,即可解决问题.35.A【考点】利用导数研究函数的单调性;导数的运算.【专题】导数的概念及应用.【分析】根据条件构造函数g(x)=,求函数的导数,利用函数的单调性和导数之间的关系即可得到结论【解答】解:构造函数g(x)=,则g′(x)==,∵对任意的x∈(﹣,)满足f′(x)cosx+f(x)sinx>0,∴g′(x)>0,即函数g(x)在x∈(﹣,)单调递增,则②g(﹣)<g(﹣),即<,∴<,即f(﹣))<f(﹣),故B正确;③g(0)<g(),即<,∴f(0)<f(),故③正确;④g(0)<g(),即<,∴f(0)<2f(),故④正确;由排除法,故选:A【点评】本题主要考查函数单调性的应用,利用条件构造函数是解决本题的关键,综合性较强,有一点的难度.36.C【考点】导数的运算;等比数列的性质.【专题】计算题.【分析】对函数进行求导发现f′(0)在含有x项均取0,再利用等比数列的性质求解即可.【解答】解:考虑到求导中f′(0),含有x项均取0,得:f′(0)=a1a2a3…a8=(a1a8)4=212.故选:C.【点评】本题考查多项式函数的导数公式,重点考查学生创新意识,综合与灵活地应用所学的数学知识、思想和方法.37.C【考点】抽象函数及其应用;导数的运算.【专题】计算题;函数的性质及应用.【分析】由f(x)=f(4﹣x),可知函数f(x)关于直线x=2对称,由xf′(x)>2f′(x),可知f(x)在(﹣∞,2)与(2,+∞)上的单调性,从而可得答案.【解答】解:∵函数f(x)对定义域R内的任意x都有f(x)=f(4﹣x),∴f(x)关于直线x=2对称;又当x≠2时其导函数f′(x)满足xf′(x)>2f′(x)⇔f′(x)(x﹣2)>0,∴当x>2时,f′(x)>0,f(x)在(2,+∞)上的单调递增;同理可得,当x<2时,f(x)在(﹣∞,2)单调递减;∵2<a<4,∴1<log2a<2,∴2<4﹣log2a<3,又4<2a<16,f(log2a)=f(4﹣log2a),f(x)在(2,+∞)上的单调递增;∴f(log2a)<f(3)<f(2a).故选C.【点评】本题考查抽象函数及其应用,考查导数的性质,判断f(x)在(﹣∞,2)与(2,+∞)上的单调性是关键,属于中档题.38.A【考点】定积分.【专题】导数的综合应用.【分析】由题设条件,需要先求出抛物线y2=2x与直线y=4﹣x的交点坐标,积分时可以以x作为积分变量,也可以y作为积分变量,故本题法一以x为积分变量,法2以y作为积分变量分别计算出两曲线所围成的图形的面【解答】解:联立方程组,得,y1=﹣2,y2=6,∵抛物线y2=4x与直线y=x﹣3所围成的平面图形的面积,∴S==(y2+3y﹣)|=;故选:A.【点评】本题考查定积分,解答本题关键是确定积分变量与积分区间,有些类型的题积分时选择不同的积分变量,故求解时要注意恰当地选择积分变量达到简单解题的目的.39.B【考点】导数的运算.【专题】函数的性质及应用.【分析】构造函数,设F(x)=f(x)﹣g(x),因为函数f(x),g(x)在[a,b]上均可导,且f′(x)<g′(x),所以F(x)在[a,b]上可导,并且F′(x)<0,得到函数的单调性,利用单调性得到F(a)<F(x)<F(b),即f(x)﹣g(x)<f(a)﹣g(a),得到选项.【解答】解:设F(x)=f(x)﹣g(x),因为函数f(x),g(x)在[a,b]上均可导,且f′(x)<g′(x),所以F(x)在[a,b]上可导,并且F′(x)<0,所以F(x)在[a,b]上是减函数,所以F(a)<F(x)<F(b),即f(x)﹣g(x)<f(a)﹣g(a),f(x)+g(a)<g(x)+f(a);故选B.【点评】本题考查了函数的单调性,关键构造函数,利用求导判断函数的单调性.40.B【考点】利用导数求闭区间上函数的最值;导数的运算.【专题】转化思想;综合法;导数的综合应用.【分析】根据条件判断f′(x)与f(x)的关系,构造函数求出函数的最值,进行比较即可.【解答】解:∵f(1)=e,g(x)=f′(x)﹣f(x),g(1)=0,∴g(1)=f′(1)﹣f(1)=0,则f′(1)=f(1)=e,g′(x)>0恒成立,即g(x)为增函数,则当x>1时,g(x)>g(1)=0,即f′(x)﹣f(x)>0,当x<1时,g(x)<g(1)=0,即f′(x)﹣f(x)<0,构造函数m(x)=,则m′(x)==,则当x>1时,m′(x)>0,此时递增,当x<1时,m′(x)<0,此时递减,即函数m(x)取得极小值同时也是最小值m(1)===1即m(x)=≥1,则f(x)≥e x,则h(x)=f(x)﹣e x≥e x﹣e x=0,即h(x)的最小值为0.故选:B【点评】本题主要考查函数最值的应用,根据导数之间的关系,利用构造法是解决本题的关键.综合性较强,难度较大.41.A【考点】利用导数研究曲线上某点切线方程.【专题】导数的综合应用.【分析】根据题意和求导公式求出导数,求出切线的斜率为,再由基本不等式求出的范围,再求出斜率的最小值即可.【解答】解:由题意得,f′(x )=+2x ﹣b , ∴在点(b ,f (b ))处的切线斜率是: k=f′(b )=,∵b>0,∴f′(b )=≥,当且仅当时取等号, ∴在点(b ,f (b ))处的切线斜率的最小值是,故选A .【点评】本题考查了导数的几何意义,即在某点处的切线的斜率是该点处的导数值,以及基本不等式求最值的应用. 42.A【考点】导数的运算. 【专题】导数的概念及应用.【分析】先根据导数的运算法则求导,再代入值计算即可. 【解答】解:∵,∴f′(x )=2f′()x+cosx , ∴f′()=2f′()×+cos,解得f′()=,故选:A【点评】本题考查了导数的运算法则和导数值的求法,属于基础题. 43.D 44.B因为x x x f ln 2)(-=,所以1)1(=f ,切点为)1,1(,又'2()1f x x =-,所以'(1)121k f ==-=-,故曲线)(x f 在点()1,1处的切线方程为:)1(1--=-x y ,即20x y +-=.45.D 46.A考点: 三角函数中的恒等变换应用;函数的值域.分析:先对原函数进行求导可得到f′(x)的解析式,将x=﹣1代入可求取值范围.解答:解:∵∴∴=2sin()+4∵∴∴sin∴f′(﹣1)∈[3,6]故选A.点评:本题主要考查函数求导和三角函数求值域的问题.这两个方面都是高考中必考内容,难度不大.47.B【考点】利用导数研究函数的单调性.【专题】导数的综合应用.【分析】通过分析给出的选项的特点,每一个选项中要比较的三个式子都涉及含有e的负指数幂及f(x),所以设想构造函数g(x)=e﹣x•f(x),通过求其导函数,结合题目给出的f′(x)<f(x),得到函数g(x)的单调性,然后在函数g(x)的解析式中分别取x=0,1,﹣2,利用函数单调性即可得到结论.【解答】解:构造辅助函数,令g(x)=e﹣x•f(x),则g′(x)=(e﹣x)′•f(x)+e﹣x•f′(x)=﹣e﹣x•f(x)+e﹣x•f′(x)=e﹣x(f′(x)﹣f(x)).∵f′(x)<f(x),∴g′(x)=e﹣x(f′(x)﹣f(x))<0,∴函数令g(x)=e﹣x•f(x)为实数集上的减函数.则g(﹣2)>g(0)>g(1).∵g(0)=e0f(0)=f(0),g(1)=e﹣1f(1),g(﹣2)=e2f(﹣2),又f(﹣x)=f(x),∴g(﹣2)=e2f(2),∴e﹣1f(1)<f(0)<e2f(2).故选:B.【点评】本题考查了利用导函数判断原函数的单调性,考查了不等关系与不等式,训练了函数构造法,解答此题的关键是结合选项的特点,正确构造出辅助函数,使抽象问题变得迎刃而解,此题是中档题.48.D【考点】利用导数研究函数的单调性.【专题】计算题;导数的综合应用.【分析】设g(x)=e x(2x﹣1),y=a﹣ax,求导g′(x)=e x(2x+1),从而可得a>g(0)=﹣1,且g(﹣1)=﹣3e﹣1≥a+a,从而解得.【解答】解:设g(x)=e x(2x﹣1),y=a﹣ax,由题意知,存在唯一的整数x0,使g(x0)在直线y=a﹣ax的下方,∵g′(x)=e x(2x+1),∴当x<时,g′(x)<0,当x>时,g′(x)>0,∴g min(x)=g()=﹣2;且g(0)=﹣1,g(1)=3e>0,直线y=a﹣ax恒过点(1,0),且斜率为﹣a,结合图象可知,故y|x=0=a>g(0)=﹣1,且g(﹣1)=﹣3e﹣1≥y|x=﹣1=a+a,解得,﹣1<a≤﹣,故选D.【点评】本题考查了导数的综合应用及数形结合思想的应用.49.B【考点】函数的单调性与导数的关系.【专题】导数的概念及应用.【分析】根据题意构造函数g(x)=,由求导公式和法则求出g′(x),结合条件判断出g′(x)的符号,即可得到函数g(x)的单调区间,根据f(x)奇函数判断出g(x)是偶函数,由f(﹣1)=0求出g(﹣1)=0,结合函数g(x)的单调性、奇偶性,再转化f(x)>0,由单调性求出不等式成立时x的取值范围.【解答】解:由题意设g(x)=,则g′(x)=∵当x>0时,有xf′(x)﹣f(x)>0,∴当x>0时,g′(x)>0,∴函数g(x)=在(0,+∞)上为增函数,∵函数f(x)是奇函数,∴g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数,g(x)在(﹣∞,0)上递减,由f(﹣1)=0得,g(﹣1)=0,∵不等式f(x)>0⇔x•g(x)>0,∴或,即或,即有x>1或﹣a<x<0,∴使得f(x)>0成立的x的取值范围是:(﹣1,0)∪(1,+∞),故选:B.【点评】本题考查利用导数判断函数的单调性,由函数的奇偶性、单调性解不等式,考查构造函数法,转化思想和数形结合思想,属于综合题.50.B考点:导数的运算.专题:导数的概念及应用.分析:利用g′(x)=2x2,可得g(x)=x3+c,再利用g′(x)=2x2>,得到c<x3,继而得到c≤0,代入值求助即可.解答:解:∵x>0时,有g′(x)=2x2>,∴g(x)=x3+c,∴2x3>x3+c,∴c<x3,∵x>0,∴c≤0∴g(2)=+c,g(1)=+c,∴==+,∴﹣g(1)==2﹣≥2故选:B点评:本题考查了导数的运算,以及函数的单调性,以及参数的取值范围,属于中档题.51.A考点:利用导数研究函数的单调性;其他不等式的解法.专题:计算题;导数的综合应用;不等式的解法及应用.分析:不等式f(x)>+1可化为e x f(x)﹣e x﹣3>0;令F(x)=e x f(x)﹣e x﹣3,从而利用导数确定函数的单调性,再由单调性求解.解答:解:不等式f(x)>+1可化为e x f(x)﹣e x﹣3>0;令F(x)=e x f(x)﹣e x﹣3,则F′(x)=e x f(x)+e x f′(x)﹣e x=e x(f(x)+f′(x)﹣1);∵f(x)+f′(x)>1,∴e x(f(x)+f′(x)﹣1)>0;故F(x)=e x f(x)﹣e x﹣3在R上是增函数,又∵F(0)=1×4﹣1﹣3=0;故当x>0时,F(x)>F(0)=0;故e x f(x)﹣e x﹣3>0的解集为(0,+∞);即不等式f(x)>+1(e为自然对数的底数)的解集为(0,+∞);故选A.点评:本题考查了不等式的解法及构造函数的能力,同时考查了导数的综合应用,属于中档题.52.B考点:定积分在求面积中的应用.专题:计算题;导数的概念及应用.分析:联立两个解析式得到两曲线的交点坐标,然后对函数解析式求定积分即可得到曲线y=x2,y=围成的封闭图形的面积.解答:解:由曲线y=x2,y=,联立,因为x≥0,所以解得x=0或x=1所以曲线y=x2与y=所围成的图形的面积S=∫01(﹣x2)dx=﹣x3|01=故选:B.。