2018版高考数学大一轮复习第四章三角函数解三角形第4讲函数y=Asin(ωx+φ)的图象及应用课件理
- 格式:ppt
- 大小:15.57 MB
- 文档页数:39
§4.4函数y=A sin(ωx+φ)的图象及应用最新考纲考情考向分析1.了解函数y=A sin(ωx+φ)的物理意义;能画出y=A sin(ωx+φ)的图象.2.了解参数A,ω,φ对函数图象变化的影响.3.会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型. 以考查函数y=A sin(ωx+φ)的图象的五点法画图、图象之间的平移伸缩变换、由图象求函数解析式以及利用正弦型函数解决实际问题为主,常与三角函数的性质、三角恒等变换结合起来进行综合考查,加强数形结合思想的应用意识.题型为选择题和填空题,中档难度.1.y=A sin(ωx+φ)的有关概念y=A sin(ωx+φ)(A>0,ω>0),x∈R 振幅周期频率相位初相A T=2πωf=1T=ω2πωx+φφ2.用五点法画y=A sin(ωx+φ)(A>0,ω>0,x∈R)一个周期内的简图时,要找五个特征点如下表所示:x 0-φωπ2-φωπ-φω3π2-φω2π-φωωx+φ0π2π3π22πy=A sin(ωx+φ)0 A 0-A 03.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)(A >0,ω>0)的图象的两种途径知识拓展1.函数y =A sin(ωx +φ)+k 图象平移的规律:“左加右减,上加下减”.2.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.3.函数y =A sin(ωx +φ)的对称轴由ωx +φ=k π+π2,k ∈Z 确定;对称中心由ωx +φ=k π,k ∈Z 确定其横坐标.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)y =sin ⎝ ⎛⎭⎪⎫x -π4的图象是由y =sin ⎝ ⎛⎭⎪⎫x +π4的图象向右平移π2个单位长度得到的.( √ )(2)将函数y =sin ωx 的图象向右平移φ(φ>0)个单位长度,得到函数y =sin(ωx -φ)的图象.( × )(3)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T2.( √ )(4)由图象求函数解析式时,振幅A 的大小是由一个周期内图象中最高点的值与最低点的值确定的.( √ ) 题组二 教材改编2.[P55T2]为了得到函数y =2sin ⎝ ⎛⎭⎪⎫2x -π3的图象,可以将函数y =2sin 2x 的图象( )A .向右平移π6个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向左平移π3个单位长度答案 A3.[P58A 组T3]函数y =2sin ⎝ ⎛⎭⎪⎫12x -π3的振幅、频率和初相分别为( )A .2,4π,π3B .2,14π,π3C .2,14π,-π3D .2,4π,-π3答案 C解析 由题意知A =2,f =1T =ω2π=14π,初相为-π3.4.[P62例4]如图,某地一天从6~14时的温度变化曲线近似满足函数y =A sin(ωx +φ)+b ,则这段曲线的函数解析式为__________________________.答案 y =10sin ⎝⎛⎭⎪⎫π8x +3π4+20,x ∈[6,14]解析 从图中可以看出,从6~14时的是函数y =A sin(ωx +φ)+b 的半个周期,所以A =12×(30-10)=10,b =12×(30+10)=20,又12×2πω=14-6, 所以ω=π8.又π8×10+φ=2π+2k π,k ∈Z ,取φ=3π4,所以y =10sin ⎝ ⎛⎭⎪⎫π8x +3π4+20,x ∈[6,14].题组三 易错自纠5.要得到函数y =sin ⎝ ⎛⎭⎪⎫4x -π3的图象,只需将函数y =sin 4x 的图象( )A .向左平移π12个单位长度B .向右平移π12个单位长度C .向左平移π3个单位长度D .向右平移π3个单位长度答案 B解析 ∵y =sin ⎝ ⎛⎭⎪⎫4x -π3=sin ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x -π12, ∴要得到y =sin ⎝ ⎛⎭⎪⎫4x -π3的图象,只需将函数y =sin 4x 的图象向右平移π12个单位长度. 6.(2016·全国Ⅰ)将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移14个周期后,所得图象对应的函数为( )A .y =2sin ⎝ ⎛⎭⎪⎫2x +π4B .y =2sin ⎝ ⎛⎭⎪⎫2x +π3C .y =2sin ⎝ ⎛⎭⎪⎫2x -π4D .y =2sin ⎝ ⎛⎭⎪⎫2x -π3 答案 D解析 函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的周期为π,将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移14个周期即π4个单位长度, 所得函数为y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4+π6=2sin ⎝ ⎛⎭⎪⎫2x -π3, 故选D.7.(2018·长春模拟)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f (x )的解析式为____________________.答案 f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3 解析 由题图可知A =2,T 4=7π12-π3=π4,所以T =π,故ω=2, 因此f (x )=2sin(2x +φ), 又⎝⎛⎭⎪⎫7π12,-2为最小值点,所以2×7π12+φ=2k π+3π2,k ∈Z ,所以φ=2k π+π3,k ∈Z ,又|φ|<π, 所以φ=π3.故f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3.题型一 函数y =A sin(ωx +φ)的图象及变换典例 已知函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3.(1)求它的振幅、周期、初相;(2)用“五点法”作出它在一个周期内的图象;(3)说明y =2sin ⎝ ⎛⎭⎪⎫2x +π3的图象可由y =sin x 的图象经过怎样的变换而得到. 解 (1)y =2sin ⎝⎛⎭⎪⎫2x +π3的振幅A =2,周期T =2π2=π,初相φ=π3.(2)令X =2x +π3,则y =2sin ⎝ ⎛⎭⎪⎫2x +π3=2sin X .列表如下:x -π6 π12 π3 7π12 5π6 X 0 π2 π 3π2 2π y =sin X 01 0 -1 0 y =2sin ⎝⎛⎭⎪⎫2x +π32-2描点画出图象,如图所示:(3)方法一 把y =sin x 的图象上所有的点向左平移π3个单位长度,得到y =sin ⎝⎛⎭⎪⎫x +π3的图象;再把y =sin ⎝ ⎛⎭⎪⎫x +π3的图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到y =sin ⎝⎛⎭⎪⎫2x +π3的图象;最后把y =sin ⎝ ⎛⎭⎪⎫2x +π3上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y =2sin ⎝ ⎛⎭⎪⎫2x +π3的图象.方法二 将y =sin x 的图象上所有点的横坐标缩短为原来的12倍(纵坐标不变),得到y =sin2x 的图象;再将y =sin 2x 的图象向左平移π6个单位长度,得到y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6=sin ⎝⎛⎭⎪⎫2x +π3的图象;再将y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象上所有点的纵坐标伸长为原来的2倍(横坐标不变),即得到y =2sin ⎝⎛⎭⎪⎫2x +π3的图象.思维升华 (1)y =A sin(ωx +φ)的图象可用“五点法”作简图得到,可通过变量代换z =ωx +φ计算五点坐标.(2)由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)图象有两条途径:“先平移后伸缩”与“先伸缩后平移”.跟踪训练 (1)(2018·石家庄调研)若把函数y =sin ⎝ ⎛⎭⎪⎫ωx -π6的图象向左平移π3个单位长度,所得到的图象与函数y =cos ωx 的图象重合,则ω的一个可能取值是( ) A .2 B.32 C.23 D.12答案 A解析 y =sin ⎝ ⎛⎭⎪⎫ωx +ω3π-π6和函数y =cos ωx 的图象重合,可得ω3π-π6=π2+2k π,k ∈Z ,则ω=6k +2,k ∈Z .∴2是ω的一个可能值.(2)把函数y =sin x 的图象上所有点的横坐标缩小到原来的一半,纵坐标保持不变,再把所得函数图象向左平移π4个单位长度,得到的函数图象的解析式是________.答案 y =cos 2x解析 由y =sin x 图象上所有点的横坐标缩小到原来的一半,纵坐标保持不变,所得图象的解析式为y =sin 2x ,再向左平移π4个单位长度得y =sin 2⎝⎛⎭⎪⎫x +π4,即y =cos 2x .题型二 由图象确定y =A sin(ωx +φ)的解析式典例 (1)函数y =A sin(ωx +φ)的部分图象如图所示,则y =________________.答案 2sin ⎝⎛⎭⎪⎫2x -π6 解析 由题图可知,A =2,T =2⎣⎢⎡⎦⎥⎤π3-⎝ ⎛⎭⎪⎫-π6=π,所以ω=2,由五点作图法可知2×π3+φ=π2,所以φ=-π6,所以函数的解析式为y =2sin ⎝⎛⎭⎪⎫2x -π6.(2)已知函数f (x )=sin(ωx +φ) ⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,则y =f ⎝ ⎛⎭⎪⎫x +π6取得最小值时x 的集合为________.答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k π-π3,k ∈Z解析 根据所给图象,周期T =4×⎝ ⎛⎭⎪⎫7π12-π3=π,故π=2πω,∴ω=2,因此f (x )=sin(2x +φ),另外图象经过点⎝⎛⎭⎪⎫7π12,0,代入有2×7π12+φ=π+2k π(k ∈Z ),再由|φ|<π2,得φ=-π6,∴f (x )=sin ⎝⎛⎭⎪⎫2x -π6,∴f ⎝⎛⎭⎪⎫x +π6=sin ⎝⎛⎭⎪⎫2x +π6,当2x +π6=-π2+2k π(k ∈Z ),即x =-π3+k π(k ∈Z )时,y =f ⎝ ⎛⎭⎪⎫x +π6取得最小值.思维升华 y =A sin(ωx +φ)中φ的确定方法(1)代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入.(2)五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.跟踪训练 (2018·石家庄质检)已知函数f (x )=A sin(ωx +φ)+B ⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,将函数f (x )的图象向左平移m (m >0)个单位长度后,得到函数g (x )的图象关于点⎝ ⎛⎭⎪⎫π3,32对称,则m 的值可能为( )A.π6B.π2C.7π6D.7π12答案 D解析 依题意得⎩⎪⎨⎪⎧A +B =332,-A +B =-32,解得⎩⎪⎨⎪⎧A =3,B =32,T 2=πω=2π3-π6=π2, 故ω=2,则f (x )=3sin(2x +φ)+32. 又f ⎝ ⎛⎭⎪⎫π6=3sin ⎝ ⎛⎭⎪⎫π3+φ+32=332,故π3+φ=π2+2k π(k ∈Z ),即φ=π6+2k π(k ∈Z ). 因为|φ|<π2,故φ=π6,所以f (x )=3sin ⎝⎛⎭⎪⎫2x +π6+32.将函数f (x )的图象向左平移m 个单位长度后得到g (x )=3sin ⎝ ⎛⎭⎪⎫2x +π6+2m +32的图象,又函数g (x )的图象关于点⎝ ⎛⎭⎪⎫π3,32对称,即h (x )=3sin ⎝ ⎛⎭⎪⎫2x +π6+2m 的图象关于点⎝ ⎛⎭⎪⎫π3,0对称,故3sin ⎝⎛⎭⎪⎫2π3+π6+2m =0,即5π6+2m =k π(k ∈Z ),故m =k π2-5π12(k ∈Z ).令k =2,则m =7π12.题型三 三角函数图象性质的应用命题点1 三角函数模型典例 如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .10 答案 C解析 由题干图得y min =k -3=2,则k =5. ∴y max =k +3=8.命题点2 函数零点(方程根)问题典例 已知关于x 的方程2sin 2x -3sin 2x +m -1=0在⎝ ⎛⎭⎪⎫π2,π上有两个不同的实数根,则m 的取值范围是____________.答案 (-2,-1)解析 方程2sin 2x -3sin 2x +m -1=0可转化为m =1-2sin 2x +3sin 2x =cos 2x +3sin 2x=2sin ⎝ ⎛⎭⎪⎫2x +π6,x ∈⎝ ⎛⎭⎪⎫π2,π.设2x +π6=t ,则t ∈⎝ ⎛⎭⎪⎫76π,136π,∴题目条件可转化为m 2=sin t ,t ∈⎝ ⎛⎭⎪⎫76π,136π有两个不同的实数根.∴y 1=m 2和y 2=sin t ,t ∈⎝ ⎛⎭⎪⎫76π,136π的图象有两个不同交点,如图:由图象观察知,m 2的取值范围是⎝ ⎛⎭⎪⎫-1,-12, 故m 的取值范围是(-2,-1). 引申探究本例中,若将“有两个不同的实数根”改成“有实根”,则m 的取值范围是__________. 答案 [-2,1)解析 由上例题知,m 2的取值范围是⎣⎢⎡⎭⎪⎫-1,12, ∴-2≤m <1,∴m 的取值范围是[-2,1).命题点3 三角函数图象性质的综合典例 (2017·潍坊模拟)已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫2ωx +π3 (ω>0)的图象与x 轴相邻两个交点的距离为π2.(1)求函数f (x )的解析式;(2)若将f (x )的图象向左平移m (m >0)个单位长度得到函数g (x )的图象恰好经过点⎝ ⎛⎭⎪⎫-π3,0,求当m 取得最小值时,g (x )在⎣⎢⎡⎦⎥⎤-π6,7π12上的单调递增区间.解 (1)函数f (x )的图象与x 轴相邻两个交点的距离为π2,得函数f (x )的最小正周期为T =2×π2=2π2ω,得ω=1,故函数f (x )的解析式为f (x )=3sin ⎝⎛⎭⎪⎫2x +π3. (2)将f (x )的图象向左平移m (m >0)个单位长度得到函数g (x )=3sin ⎣⎢⎡⎦⎥⎤2(x +m )+π3=3sin ⎝ ⎛⎭⎪⎫2x +2m +π3的图象,根据g (x )的图象恰好经过点⎝ ⎛⎭⎪⎫-π3,0, 可得3sin ⎝ ⎛⎭⎪⎫-2π3+2m +π3=0,即sin ⎝ ⎛⎭⎪⎫2m -π3=0,所以2m -π3=k π(k ∈Z ),m =k π2+π6(k ∈Z ),因为m >0,所以当k =0时,m 取得最小值,且最小值为π6.此时,g (x )=3sin ⎝⎛⎭⎪⎫2x +2π3. 因为x ∈⎣⎢⎡⎦⎥⎤-π6,7π12,所以2x +2π3∈⎣⎢⎡⎦⎥⎤π3,11π6.当2x +2π3∈⎣⎢⎡⎦⎥⎤π3,π2,即x ∈⎣⎢⎡⎦⎥⎤-π6,-π12时,g (x )单调递增,当2x +2π3∈⎣⎢⎡⎦⎥⎤3π2,11π6,即x ∈⎣⎢⎡⎦⎥⎤5π12,7π12时,g (x )单调递增.综上,g (x )在区间⎣⎢⎡⎦⎥⎤-π6,7π12上的单调递增区间是⎣⎢⎡⎦⎥⎤-π6,-π12和⎣⎢⎡⎦⎥⎤5π12,7π12.思维升华 (1)三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,利用三角函数的有关知识解决问题. (2)方程根的个数可转化为两个函数图象的交点个数.(3)研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.跟踪训练 (1)(2018·兰州模拟)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,且过点⎝ ⎛⎭⎪⎫2,-12,则函数f (x )的解析式为__________. 答案 f (x )=sin ⎝⎛⎭⎪⎫πx 2+π6解析 据已知两个相邻最高点和最低点的距离为22,可得 ⎝ ⎛⎭⎪⎫T 22+(1+1)2=22,解得T=4,故ω=2πT =π2,即f (x )=sin ⎝ ⎛⎭⎪⎫πx 2+φ. 又函数图象过点⎝⎛⎭⎪⎫2,-12,故f (2)=sin ⎝ ⎛⎭⎪⎫π2×2+φ=-sin φ=-12,又-π2≤φ≤π2,解得φ=π6,故f (x )=sin ⎝ ⎛⎭⎪⎫πx 2+π6.(2)若函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)满足f (0)=f ⎝ ⎛⎭⎪⎫π3,且函数在⎣⎢⎡⎦⎥⎤0,π2上有且只有一个零点,则f (x )的最小正周期为________. 答案 π解析 ∵f (0)=f ⎝ ⎛⎭⎪⎫π3,∴x =π6是f (x )图象的一条对称轴,∴f ⎝ ⎛⎭⎪⎫π6=±1,∴π6×ω+π6=π2+k π,k ∈Z , ∴ω=6k +2,k ∈Z ,∴T =π3k +1(k ∈Z ).又f (x )在⎣⎢⎡⎦⎥⎤0,π2上有且只有一个零点,∴π6≤T 4≤π2-π6,∴2π3≤T ≤4π3, ∴2π3≤π3k +1≤4π3(k ∈Z ),∴-112≤k ≤16, 又∵k ∈Z ,∴k =0,∴T =π.三角函数图象与性质的综合问题典例 (12分)已知函数f (x )=23sin ⎝ ⎛⎭⎪⎫x 2+π4·cos ⎝ ⎛⎭⎪⎫x 2+π4-sin(x +π).(1)求f (x )的最小正周期;(2)若将f (x )的图象向右平移π6个单位长度,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.思维点拨 (1)先将f (x )化成y =A sin(ωx +φ)的形式再求周期; (2)将f (x )解析式中的x 换成x -π6,得g (x ),然后利用整体思想求最值.规范解答解 (1)f (x )=23sin ⎝ ⎛⎭⎪⎫x 2+π4cos ⎝ ⎛⎭⎪⎫x 2+π4 -sin(x +π)=3cos x +sin x [3分]=2sin ⎝⎛⎭⎪⎫x +π3,[5分]于是T =2π1=2π.[6分](2)由已知得g (x )=f ⎝ ⎛⎭⎪⎫x -π6=2sin ⎝⎛⎭⎪⎫x +π6,[8分]∵x ∈[0,π],∴x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,∴sin ⎝ ⎛⎭⎪⎫x +π6∈⎣⎢⎡⎦⎥⎤-12,1,[10分]∴g (x )=2sin ⎝⎛⎭⎪⎫x +π6∈[-1,2].[11分]故函数g (x )在区间[0,π]上的最大值为2,最小值为-1.[12分]解决三角函数图象与性质的综合问题的一般步骤 第一步:(化简)将f (x )化为a sin x +b cos x 的形式;第二步:(用辅助角公式)构造f (x )=a 2+b 2·⎝⎛⎭⎪⎫sin x ·a a 2+b 2+cos x ·b a 2+b 2;第三步:(求性质)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质; 第四步:(反思)反思回顾,查看关键点、易错点和答题规范.1.(2017·全国Ⅰ)已知曲线C 1:y =cos x ,C 2:y =sin ⎝ ⎛⎭⎪⎫2x +2π3,则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 答案 D解析 因为y =sin ⎝ ⎛⎭⎪⎫2x +2π3=cos ⎝⎛⎭⎪⎫2x +2π3-π2=cos ⎝ ⎛⎭⎪⎫2x +π6,所以曲线C 1:y =cos x 上各点的横坐标缩短到原来的12倍,纵坐标不变,得到曲线y =cos 2x ,再把得到的曲线y =cos 2x 向左平移π12个单位长度,得到曲线y =cos 2⎝ ⎛⎭⎪⎫x +π12=cos ⎝⎛⎭⎪⎫2x +π6.故选D.2.(2018·洛阳统考)若将函数f (x )=sin 2x +cos 2x 的图象向右平移φ个单位长度,所得图象关于y 轴对称,则φ的最小正值是( )84C.3π8D.5π4答案 C解析 f (x )=sin 2x +cos 2x =2cos ⎝ ⎛⎭⎪⎫2x -π4,将函数f (x )的图象向右平移φ个单位长度后所得图象对应的函数为y =2cos ⎝ ⎛⎭⎪⎫2x -π4-2φ,且该函数为偶函数, 故2φ+π4=k π(k ∈Z ),所以φ的最小正值为3π8.3.(2017·衡水中学模拟)若函数y =sin(ωx -φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在区间⎣⎢⎡⎦⎥⎤-π2,π上的图象如图所示,则ω,φ的值分别是( )A .ω=2,φ=π3B .ω=2,φ=-2π3C .ω=12,φ=π3D .ω=12,φ=-2π3答案 A解析 由题图可知,T =2⎣⎢⎡⎦⎥⎤π6-⎝ ⎛⎭⎪⎫-π3=π,所以ω=2πT=2,又sin ⎝ ⎛⎭⎪⎫2×π6-φ=0,所以π3-φ=k π(k ∈Z ),即φ=π3-k π(k ∈Z ),而|φ|<π2,所以φ=π3,故选A.4.(2018·湖南四校联考)函数y =sin x -3cos x 的图象可由函数y =sin x +3cos x 的图象至少向右平移的单位长度是( )23C.π3D.π4答案 B解析 y =sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3,y =sin x +3cos x =2sin ⎝⎛⎭⎪⎫x +π3,因此至少向右平移2π3个单位长度得到.5.(2017·昆明市两区七校模拟)将函数f (x )=3sin x -cos x 的图象沿着x 轴向右平移a (a >0)个单位长度,所得函数图象关于y 轴对称,则a 的最小值是( )A.π6B.π3C.π2D.2π3 答案 B解析 依题意得f (x )=2sin ⎝⎛⎭⎪⎫x -π6,因为函数f (x -a )=2sin ⎝ ⎛⎭⎪⎫x -a -π6的图象关于y 轴对称, 所以sin ⎝ ⎛⎭⎪⎫-a -π6=±1,a +π6=k π+π2,k ∈Z ,即a =k π+π3,k ∈Z ,因此正数a 的最小值是π3,故选B.6.函数f (x )=sin(2x +φ)⎝⎛⎭⎪⎫|φ|<π2的图象向左平移π6个单位长度后所得函数图象的解析式是奇函数,则函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最小值为( ) A .-32B .-12C.12D.32答案 A解析 由函数f (x )的图象向左平移π6个单位长度,得g (x )=sin ⎝ ⎛⎭⎪⎫2x +φ+π3的图象, 因为是奇函数,所以φ+π3=k π,k ∈Z ,又因为|φ|<π2,所以φ=-π3,所以f (x )=sin ⎝⎛⎭⎪⎫2x -π3.又x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,所以当x =0时,f (x )取得最小值-32. 7.(2017·青岛质检)将函数y =sin x 的图象上所有的点向右平移π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是______________.答案 y =sin ⎝ ⎛⎭⎪⎫12x -π10 解析 y =sin x ――――――――――――→向右平移π10个单位长度 y =sin ⎝ ⎛⎭⎪⎫x -π10―――――――――――→横坐标伸长到原来的2倍y =sin ⎝ ⎛⎭⎪⎫12x -π10. 8.(2017·河南洛阳统考)函数f (x )=2sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,0<φ<π2的部分图象如图所示,已知图象经过点A (0,1),B ⎝ ⎛⎭⎪⎫π3,-1,则f (x )=________.答案 2sin ⎝⎛⎭⎪⎫3x +π6解析 由已知得T 2=π3,∴T =2π3,又T =2πω,∴ω=3.∵f (0)=1,∴sin φ=12,又∵0<φ<π2,∴φ=π6,∴f (x )=2sin ⎝⎛⎭⎪⎫3x +π6(经检验满足题意).9.(2018·济南模拟)已知函数f (x )=cos ⎝ ⎛⎭⎪⎫3x +π3,其中x ∈⎣⎢⎡⎦⎥⎤π6,m ,若f (x )的值域是⎣⎢⎡⎦⎥⎤-1,-32,则m 的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤2π9,5π18解析 画出函数的图象如图所示.由x ∈⎣⎢⎡⎦⎥⎤π6,m ,可知5π6≤3x +π3≤3m +π3,因为f ⎝ ⎛⎭⎪⎫π6=cos 5π6=-32且f ⎝ ⎛⎭⎪⎫2π9=cos π=-1,要使f (x )的值域是⎣⎢⎡⎦⎥⎤-1,-32,只要2π9≤m ≤5π18,即m ∈⎣⎢⎡⎦⎥⎤2π9,5π18.10.(2018·长春调研)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________. 答案π2解析 f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎪⎫ωx +π4, 因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z ,所以ω2=π4+2k π,k ∈Z .又ω-(-ω)≤2πω2,即ω2≤π2,即ω2=π4, 所以ω=π2.11.已知函数y =A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的图象过点P ⎝ ⎛⎭⎪⎫π12,0,图象上与点P 最近的一个最高点是Q ⎝ ⎛⎭⎪⎫π3,5.(1)求函数的解析式;(2)求函数f (x )的单调递增区间. 解 (1)依题意得A =5,周期T =4⎝ ⎛⎭⎪⎫π3-π12=π,∴ω=2ππ=2.故y =5sin(2x +φ),又图象过点P ⎝ ⎛⎭⎪⎫π12,0, ∴5sin ⎝⎛⎭⎪⎫π6+φ=0,由已知可得π6+φ=k π,k ∈Z ,∵|φ|<π2,∴φ=-π6,∴y =5sin ⎝ ⎛⎭⎪⎫2x -π6. (2)由-π2+2k π≤2x -π6≤π2+2k π,k ∈Z ,得-π6+k π≤x ≤π3+k π,k ∈Z ,故函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).12.(2017·合肥质检)已知函数f (x )=4cos ωx ·sin ⎝ ⎛⎭⎪⎫ωx +π6+a (ω>0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π. (1)求a 和ω的值;(2)求函数f (x )在[0,π]上的单调递减区间. 解 (1)f (x )=4cos ωx ·sin ⎝ ⎛⎭⎪⎫ωx +π6+a=4cos ωx ·⎝⎛⎭⎪⎫32sin ωx +12cos ωx +a=23sin ωx cos ωx +2cos 2ωx -1+1+a =3sin 2ωx +cos 2ωx +1+a=2sin ⎝⎛⎭⎪⎫2ωx +π6+1+a . 当sin ⎝⎛⎭⎪⎫2ωx +π6=1时, f (x )取得最大值2+1+a =3+a .又f (x )最高点的纵坐标为2,∴3+a =2,即a =-1.又f (x )图象上相邻两个最高点的距离为π,∴f (x )的最小正周期为T =π, ∴2ω=2πT=2,ω=1. (2)∵x ∈[0,π],∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,13π6. 当2x +π6∈⎣⎢⎡⎦⎥⎤π2,3π2, 即x ∈⎣⎢⎡⎦⎥⎤π6,2π3时,f (x )单调递减, ∴f (x )在[0,π]上的单调递减区间为⎣⎢⎡⎦⎥⎤π6,2π3.13.将函数f (x )=sin(2x +θ)⎝ ⎛⎭⎪⎫-π2<θ<π2的图象向右平移φ(0<φ<π)个单位长度后,得到函数g (x )的图象,若f (x ),g (x )的图象都经过点P ⎝ ⎛⎭⎪⎫0,32,则φ的值为________. 答案 5π6 解析 g (x )=sin[2(x -φ)+θ]=sin(2x -2φ+θ),若f (x ),g (x )的图象都经过点P ⎝ ⎛⎭⎪⎫0,32, 所以sin θ=32,sin(-2φ+θ)=32, 又-π2<θ<π2, 所以θ=π3,sin ⎝ ⎛⎭⎪⎫π3-2φ=32.又0<φ<π,所以-5π3<π3-2φ<π3, 所以π3-2φ=-4π3. 即φ=5π6. 14.(2018·太原模拟)已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为________. 答案 π解析 f (x )=3sin ωx +cos ωx =2sin ⎝⎛⎭⎪⎫ωx +π6(ω>0). 由2sin ⎝ ⎛⎭⎪⎫ωx +π6=1,得sin ⎝⎛⎭⎪⎫ωx +π6=12, ∴ωx +π6=2k π+π6或ωx +π6=2k π+5π6(k ∈Z ). 令k =0,得ωx 1+π6=π6,ωx 2+π6=5π6, ∴x 1=0,x 2=2π3ω. 由|x 1-x 2|=π3,得2π3ω=π3,∴ω=2. 故f (x )的最小正周期T =2π2=π.15.(2017·长春质检)设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f ⎝ ⎛⎭⎪⎫16的值为________.答案 34解析 由题意知,点M 到x 轴的距离是12,根据题意可设f (x )=12cos ωx ,又由题图知12·2πω=1,所以ω=π, 所以f (x )=12cos πx , 故f ⎝ ⎛⎭⎪⎫16=12cos π6=34. 16.(2017·山东)设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2,其中0<ω<3.已知f ⎝ ⎛⎭⎪⎫π6=0.(1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位长度,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤-π4,3π4上的最小值. 解 (1)因为f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝⎛⎭⎪⎫ωx -π2, 所以f (x )=32sin ωx -12cos ωx -cos ωx =32sin ωx -32cos ωx =3⎝ ⎛⎭⎪⎫12sin ωx -32cos ωx =3sin ⎝⎛⎭⎪⎫ωx -π3. 由题设知f ⎝ ⎛⎭⎪⎫π6=0, 所以ωπ6-π3=k π,k ∈Z , 故ω=6k +2,k ∈Z .又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎝⎛⎭⎪⎫2x -π3, 所以g (x )=3sin ⎝ ⎛⎭⎪⎫x +π4-π3=3sin ⎝ ⎛⎭⎪⎫x -π12. 因为x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以x -π12∈⎣⎢⎡⎦⎥⎤-π3,2π3, 当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.。
第四章 三角函数、解三角形 4.4 函数y =Asin(ωx +φ)的图象及应用教师用书 理 苏教版1.y =A sin(ωx +φ)的有关概念2.用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个特征点 如下表所示:3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ) (A >0,ω>0)的图象的步骤如下【知识拓展】1.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.2.函数y =A sin(ωx +φ)的对称轴由ωx +φ=k π+π2,k ∈Z 确定;对称中心由ωx +φ=k π,k ∈Z 确定其横坐标. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)y =sin ⎝ ⎛⎭⎪⎫x -π4的图象是由y =sin ⎝ ⎛⎭⎪⎫x +π4的图象向右平移π2个单位得到的.( √ )(2)将函数y =sin ωx 的图象向右平移φ(φ>0)个单位长度,得到函数y =sin(ωx -φ)的图象.( × )(3)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( × )(4)函数y =A sin(ωx +φ)的最小正周期为T =2πω.( × )(5)把y =sin x 的图象上各点纵坐标不变,横坐标缩短为原来的12,所得图象对应的函数解析式为y =sin 12x .( × )(6)若函数y =A cos(ωx +φ)的最小正周期为T ,则函数图象的两个相邻对称中心之间的距离为T2.( √ )1.(教材改编)y =2sin(12x -π3)的振幅,频率和初相分别为______________.答案 2,14π,-π3解析 由题意知A =2,f =1T =ω2π=14π,初相为-π3.2.(教材改编)将y =12sin x 的图象上所有点的纵坐标伸长为原来的2倍,横坐标不变,便得到函数f (x )的图象,则f (x )=________. 答案 sin x解析 将函数y =12sin x 的图象上所有点的纵坐标伸长为原来的2倍,横坐标不变,便得到函数f (x )=2×12sin x =sin x 的图象.3.(2016·全国甲卷改编)函数y =A sin(ωx +φ)的部分图象如图所示,则函数的表达式为______________.答案 y =2sin ⎝⎛⎭⎪⎫2x -π6 解析 由图可知,T =2⎣⎢⎡⎦⎥⎤π3-⎝ ⎛⎭⎪⎫-π6=π,所以ω=2,由五点作图法可知2×π3+φ=π2,所以φ=-π6,所以函数的解析式为y =2sin ⎝⎛⎭⎪⎫2x -π6.4.(2016·南通模拟)已知函数f (x )=A cos(ωx +θ)的图象如图所示,f (π2)=-23,则f (-π6)=________.答案 -23解析 由题图知,函数f (x )的周期T =2(11π12-7π12)=2π3, 所以f (-π6)=f (-π6+2π3)=f (π2)=-23.5.(教材改编) 在同一平面直角坐标系中,画出三个函数f (x )=2sin(2x +π4),g (x )=sin(2x +π3),h (x )=cos(x -π6)的部分图象(如图),则a ,b ,c 对应的函数依次是______________.答案 h (x ),f (x ),g (x )解析 由于函数f (x ),g (x ),h (x )的最大值分别是2,1,1,因此结合图形可知,曲线b 为f (x )的图象;又g (x ),h (x )的最小正周期分别是π、2π,因此结合图形可知,曲线a ,c 分别是h (x ),g (x )的图象.题型一 函数y =A sin(ωx +φ)的图象及变换例1 (2015·湖北)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝⎛⎭⎪⎫5π12,0,求θ的最小值.解 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数解析式为f (x )=5sin ⎝ ⎛⎭⎪⎫2x -π6. (2)由(1)知f (x )=5sin ⎝ ⎛⎭⎪⎫2x -π6, 得g (x )=5sin ⎝⎛⎭⎪⎫2x +2θ-π6. 因为函数y =sin x 图象的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝ ⎛⎭⎪⎫5π12,0成中心对称,所以令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z . 由θ>0可知,当k =1时,θ取得最小值π6.引申探究在本例(2)中,将f (x )图象上所有点向左平移π6个单位长度,得到g (x )的图象,求g (x )的解析式,并写出g (x )图象的对称中心. 解 由(1)知f (x )=5sin(2x -π6),因此g (x )=5sin[2(x +π6)-π6]=5sin(2x +π6).因为y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +π6=k π,k ∈Z ,解得x =k π2-π12,k ∈Z .即y =g (x )图象的对称中心为(k π2-π12,0),k ∈Z . 思维升华 (1)五点法作简图:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.把函数y =sin x 的图象上所有点的横坐标缩小到原来的一半,纵坐标保持不变,再把所得函数图象向左平移π4个单位,得到的函数图象的解析式是________________. 答案 y =cos 2x解析 由y =sin x 图象上所有点的横坐标缩小到原来的一半,纵坐标保持不变,所得图象的解析式为y =sin 2x ,再向左平移π4个单位得y =sin 2(x +π4),即y =cos 2x .题型二 由图象确定y =A sin(ωx +φ)的解析式例2 如图是函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的图象,求A 、ω、φ的值,并确定其函数解析式. 解 方法一 (逐一定参法) 由图象知振幅A =3,又T =5π6-(-π6)=π,∴ω=2πT =2.由点(-π6,0)在图象上,令-π6×2+φ=0,得φ=π3,∴y =3sin(2x +π3).方法二 (待定系数法)由图象知A =3,又图象过点(π3,0)和(5π6,0),根据五点作图法原理(以上两点可判为“五点法”中的第三点和第五点),有⎩⎪⎨⎪⎧π3ω+φ=π,5π6ω+φ=2π,解得⎩⎪⎨⎪⎧ω=2,φ=π3.∴y =3sin(2x +π3).方法三 (图象变换法)由T =π,点(-π6,0),A =3可知图象由y =3sin 2x 向左平移π6个单位长度而得,∴y =3sin2(x +π6),即y =3sin(2x +π3),且ω=2,φ=π3.思维升华 求y =A sin(ωx +φ)+B (A >0,ω>0)解析式的步骤 (1)求A ,B ,确定函数的最大值M 和最小值m ,则A =M -m2,B =M +m2.(2)求ω,确定函数的周期T ,则ω=2πT.(3)求φ,常用方法如下:①代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入.②五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.具体如下:“第一点”(即图象上升时与x 轴的交点)为ωx +φ=0;“第二点”(即图象的“峰点”)为ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)为ωx +φ=π;“第四点”(即图象的“谷点”)为ωx +φ=3π2;“第五点”为ωx +φ=2π.(2016·徐州模拟)已知函数f (x )=sin(ωx +φ) (ω>0,|φ|<π2)的部分图象如图所示,则y =f (x +π6)取得最小值时x 的集合为__________________.答案 {x |x =k π-π3,k ∈Z }解析 根据所给图象,周期T =4×(7π12-π3)=π,故π=2πω,∴ω=2,因此f (x )=sin(2x+φ),另外图象经过点(7π12,0),代入有2×7π12+φ=k π(k ∈Z ),再由|φ|<π2,得φ=-π6,∴f (x +π6)=sin(2x +π6),当2x +π6=-π2+2k π (k ∈Z ),即x =-π3+k π(k ∈Z )时,y =f (x +π6)取得最小值.题型三 三角函数图象性质的应用 命题点1 三角函数模型的应用例3 (2015·陕西改编) 如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为________.答案 8解析 由题干图易得y min =k -3=2,则k =5. ∴y max =k +3=8.命题点2 函数零点(方程根)问题例4 已知关于x 的方程2sin 2x -3sin 2x +m -1=0在⎝ ⎛⎭⎪⎫π2,π上有两个不同的实数根,则m 的取值范围是________. 答案 (-2,-1)解析 方程2sin 2x -3sin 2x +m -1=0可转化为m =1-2sin 2x +3sin 2x=cos 2x +3sin 2x=2sin ⎝ ⎛⎭⎪⎫2x +π6,x ∈⎝ ⎛⎭⎪⎫π2,π. 设2x +π6=t ,则t ∈⎝ ⎛⎭⎪⎫76π,136π,∴题目条件可转化为m2=sin t ,t ∈⎝ ⎛⎭⎪⎫76π,136π有两个不同的实数根.∴y =m 2和y =sin t ,t ∈⎝ ⎛⎭⎪⎫76π,136π的图象有两个不同交点,如图:由图象观察知,m 2的范围为(-1,-12),故m 的取值范围是(-2,-1). 引申探究例4中,若将“有两个不同的实数根”改成“有实根”,则m 的取值范围是__________. 答案 [-2,1)解析 由例4知,m 2的范围是⎣⎢⎡⎭⎪⎫-1,12,∴-2≤m <1,∴m 的取值范围是[-2,1). 命题点3 图象与性质的综合应用例5 已知函数f (x )=3sin(ωx +φ)(ω>0,-π2≤φ<π2)的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π. (1)求ω和φ的值;(2)当x ∈[0,π2]时,求函数y =f (x )的最大值和最小值.解 (1)因为f (x )的图象上相邻两个最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2.又因为f (x )的图象关于直线x =π3对称,所以2·π3+φ=k π+π2,k ∈Z ,由-π2≤φ<π2,得k =0,所以φ=π2-2π3=-π6.综上,ω=2,φ=-π6.(2)由(1)知f (x )=3sin(2x -π6), 当x ∈[0,π2]时,-π6≤2x -π6≤5π6,∴当2x -π6=π2,即x =π3时,f (x )最大值=3;当2x -π6=-π6,即x =0时,f (x )最小值=-32.思维升华 (1)三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,建立数学模型,再利用三角函数的有关知识解决问题. (2)方程根的个数可转化为两个函数图象的交点个数.(3)研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.已知函数f (x )=cos(3x +π3),其中x ∈[π6,m ],若f (x )的值域是[-1,-32],则m 的取值范围是__________. 答案 [2π9,5π18]解析 画出函数的图象.由x ∈[π6,m ],可知5π6≤3x +π3≤3m +π3,因为f (π6)=cos 5π6=-32且f (2π9)=cos π=-1,要使f (x )的值域是[-1,-32],只要2π9≤m ≤5π18,即m ∈[2π9,5π18].4.三角函数图象与性质的综合问题典例 (14分)已知函数f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π).(1)求f (x )的最小正周期;(2)若将f (x )的图象向右平移π6个单位长度,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.思维点拨 (1)先将f (x )化成y =A sin(ωx +φ)的形式再求周期; (2)将f (x )解析式中的x 换成x -π6,得g (x ),然后利用整体思想求最值.规范解答解 (1)f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π)=3cos x +sin x[4分]=2sin(x +π3),[6分] 于是T =2π1=2π.[7分] (2)由已知得g (x )=f (x -π6)=2sin(x +π6),[9分]∵x ∈[0,π],∴x +π6∈[π6,7π6],∴sin(x +π6)∈[-12,1],[12分] ∴g (x )=2sin(x +π6)∈[-1,2].[13分]故函数g (x )在区间[0,π]上的最大值为2,最小值为-1.[14分]解决三角函数图象与性质的综合问题的一般步骤 第一步:(化简)将f (x )化为a sin x +b cos x 的形式; 第二步:(用辅助角公式)构造f (x )=a 2+b 2· (sin x ·a a 2+b2+cos x ·ba 2+b 2);第三步:(求性质)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质;第四步:(反思)反思回顾,查看关键点、易错点和答题规范.1.(教材改编)函数y =2sin(x 2+π5)的最小正周期是________.答案 4π解析 最小正周期T =2π12=4π.2.(2016·无锡期末)将函数f (x )=2sin 2x 的图象上每一点向右平移π6个单位长度,得函数y =g (x )的图象,则g (x )=__________.答案 2sin(2x -π3)解析 函数f (x )=2sin 2x 的图象上每一点向右平移π6个单位长度,可得函数g (x )=2sin 2(x-π6)=2sin(2x -π3)的图象,故g (x )=2sin(2x -π3). 3.已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为________. 答案 π解析 f (x )=3sin ωx +cos ωx =2sin(ωx +π6)(ω>0).由2sin(ωx +π6)=1,得sin(ωx +π6)=12,∴ωx +π6=2k π+π6或ωx +π6=2k π+56π(k ∈Z ).令k =0,得ωx 1+π6=π6,ωx 2+π6=56π,∴x 1=0,x 2=2π3ω.由|x 1-x 2|=π3,得2π3ω=π3,∴ω=2.故f (x )的最小正周期T =2π2=π.4.(2017·江苏通州中学月考)函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是________.答案 2,-π3解析 由题中图象可知34T =5π12-(-π3)⇒34T =3π4⇒T =π,则ω=2πT =2ππ=2.又图象过点(5π12,2),∴f (5π12)=2⇒2sin(5π6+φ)=2⇒sin(5π6+φ)=1.∵-π2<φ<π2,∴π3<φ+5π6<4π3,∴5π6+φ=π2,∴φ=-π3. 5.函数f (x )=sin(2x +φ)⎝⎛⎭⎪⎫|φ|<π2的图象向左平移π6个单位后所得函数图象的解析式是奇函数,则函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最小值为________.答案 -32解析 由函数f (x )的图象向左平移π6个单位得g (x )=sin ⎝ ⎛⎭⎪⎫2x +φ+π3的图象, 因为是奇函数,所以φ+π3=k π,k ∈Z ,又因为|φ|<π2,所以φ=-π3,所以f (x )=sin ⎝⎛⎭⎪⎫2x -π3.又x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,所以当x =0时,f (x )取得最小值为-32. 6.(2016·连云港模拟)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期是π,若将f (x )的图象向右平移π3个单位后得到的图象关于原点对称,则下列关于函数f (x )的图象说法正确的是________. ①关于直线x =π12对称②关于直线x =5π12对称③关于点⎝ ⎛⎭⎪⎫π12,0对称④关于点⎝⎛⎭⎪⎫5π12,0对称答案 ②解析 由题意知2πω=π,∴ω=2;又由f (x )的图象向右平移π3个单位后得到y =sin[2⎝ ⎛⎭⎪⎫x -π3+φ]=sin ⎝ ⎛⎭⎪⎫2x +φ-23π,此时关于原点对称,∴-2π3+φ=k π,k ∈Z ,∴φ=2π3+k π,k ∈Z ,又|φ|<π2,∴φ=-π3,∴f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3. 当x =π12时,2x -π3=-π6,∴①、③错误; 当x =5π12时,2x -π3=π2,∴②正确,④错误.7.(2016·苏北四市期末)函数f (x )=2sin(ωx +φ)(ω>0)的部分图象如图所示,若AB =5,则ω的值为________.答案π3解析 如图,过点A 作垂直于x 轴的直线AM ,过点B 作垂直于y 轴的直线BM ,直线AM 和直线BM 相交于点M ,在Rt△AMB 中,AM =4,BM =12·2πω=πω,AB =5,由勾股定理得AM 2+BM 2=AB 2, 所以16+(πω)2=25,πω=3,ω=π3.8.(2016·南通质检)设函数y =sin(ωx +π3)(0<x <π),当且仅当x =π12时,y 取得最大值,则正数ω的值为________. 答案 2解析 因为0<x <π,ω>0,所以ωx +π3∈(π3,ωπ+π3),又函数当且仅当x =π12时取得最大值,所以⎩⎪⎨⎪⎧ωπ+π3≤5π2,πω12+π3=π2,解得ω=2.9.(2016·扬州期末)已知函数f (x )=sin(2x +π3)(0≤x <π),且f (α)=f (β)=12(α≠β),则α+β=________. 答案7π6解析 因为0≤x <π,所以2x +π3∈[π3,7π3),所以由f (x )=12,得2x +π3=5π6或13π6,解得x =π4或11π12,由于f (α)=f (β)=12(α≠β),所以α+β=π4+11π12=7π6.10.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图象如图所示,则当t =1100秒时,电流强度是________安.答案 -5解析 由图象知A =10,T 2=4300-1300=1100,∴ω=2πT=100π,∴I =10sin(100πt +φ).∵图象过点⎝⎛⎭⎪⎫1300,10,∴10sin(100π×1300+φ)=10,∴sin(π3+φ)=1,π3+φ=2k π+π2,k ∈Z ,∴φ=2k π+π6,k ∈Z ,又∵0<φ<π2,∴φ=π6.∴I =10sin ⎝ ⎛⎭⎪⎫100πt +π6,当t =1100秒时,I =-5安. 11.(2016·江苏海安中学调研)若函数f (x )=sin(ωx +π6)(ω>0)图象的两条相邻的对称轴之间的距离为π2,且该函数图象关于点(x 0,0)成中心对称,x 0∈[0,π2],则x 0=________.答案512π 解析 两条相邻的对称轴之间的距离为T 2=π2,所以T =π.而T =2πω,得ω=2.因为f (x )的图象关于点(x 0,0)成中心对称,所以sin(2x 0+π6)=0.又因为x 0∈[0,π2],所以2x 0+π6∈[π6,76π],所以2x 0+π6=π,即x 0=512π.12.(2016·江苏扬州中学月考)将y =sin 2x 的图象向右平移φ个单位(φ>0),使得平移后的图象仍过点(π3,32),则φ的最小值为________.答案π6解析 由题意得sin(2π3-2φ)=32,∴-2φ+2π3=2k π+π3(k ∈Z )或-2φ+2π3=2k π+2π3(k ∈Z ),∴φ=-k π+π6 (k ∈Z )或φ=-k π (k ∈Z ), 又φ>0,∴φ的最小值为π6.13.设函数f (x )=A sin(ωx +φ) (A ,ω,φ是常数,A >0,ω>0).若f (x )在区间[π6,π2]上具有单调性,且f (π2)=f (2π3)=-f (π6),则f (x )的最小正周期为________.答案 π解析 记f (x )的最小正周期为T .由题意知T 2≥π2-π6=π3,由f (π2)=f (2π3)=-f (π6),且2π3-π2=π6, 可作出示意图如图所示(一种情况):∴x 1=(π2+π6)×12=π3,x 2=(π2+2π3)×12=7π12, ∴T 4=x 2-x 1=7π12-π3=π4,∴T =π. 14.设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值. 解 (1)f (x )=32-3sin 2ωx -sin ωx cos ωx =32-3×1-cos 2ωx 2-12sin 2ωx =32cos 2ωx -12sin 2ωx=-sin ⎝⎛⎭⎪⎫2ωx -π3. 依题意知2π2ω=4×π4,ω>0,所以ω=1.(2)由(1)知f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3.当π≤x ≤3π2时,5π3≤2x -π3≤8π3.所以-32≤sin ⎝⎛⎭⎪⎫2x -π3≤1.所以-1≤f (x )≤32. 故f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1.*15.函数f (x )=A sin(ωx +φ) (A >0,ω>0,0<φ<π2)的部分图象如图所示.(1)求f (x )的解析式;(2)设g (x )=[f (x -π12)]2,求函数g (x )在x ∈[-π6,π3]上的最大值,并确定此时x 的值.解 (1)由题图知A =2,T 4=π3,则2πω=4×π3,∴ω=32. 又f (-π6)=2sin[32×(-π6)+φ]=2sin(-π4+φ)=0,∴sin(φ-π4)=0,∵0<φ<π2,∴-π4<φ-π4<π4,∴φ-π4=0,即φ=π4,∴f (x )的解析式为f (x )=2sin(32x +π4).(2)由(1)可得f (x -π12)=2sin[32(x -π12)+π4]=2sin(32x +π8),∴g (x )=[f (x -π12)]2=4×1-x +π42=2-2cos(3x +π4),∵x ∈[-π6,π3],∴-π4≤3x +π4≤5π4,∴当3x +π4=π,即x =π4时,g (x )max =4.。
4.4 函数y =A sin(ωx +φ)的图象与性质考纲要求1.了解函数y =A sin(ωx +φ)的物理意义;能画出函数y =A sin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响.2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.31.把y =sin 12x 的图象上点的横坐标变为原来的2倍得到y =sin ωx 的图象,则ω的值为( ).A .1B .4C .14D .22.已知函数f (x )=2sin(ωx +φ)(其中ω>0,|φ|<π2)的最小正周期是π,且f (0)=3,则( ).A .ω=12,φ=π6B .ω=12,φ=π3C .ω=2,φ=π6D .ω=2,φ=π33.(2012安徽高考)要得到函数y =cos(2x +1)的图象,只要将函数y =cos 2x 的图象( ).A .向左平移1个单位B .向右平移1个单位C .向左平移12个单位D .向右平移12个单位4.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx -3π4的图象如图所示,则f ⎝ ⎛⎭⎪⎫7π12=__________.5.(2012湖南高考)已知函数f (x )=A sin(ωx +φ)(x ∈R ,ω>0,0<φ<π2)的部分图象如图所示.(1)求函数f (x )的解析式;(2)求函数g (x )=f ⎝ ⎛⎭⎪⎫x -π12-f ⎝ ⎛⎭⎪⎫x +π12的单调递增区间.一、三角函数y =A sin(ωx +φ)的图象【例1】设函数f (x )=sin ωx +3cos ωx (ω>0)的周期为π. (1)求它的振幅、初相;(2)用五点法作出它在一个周期上的图象;(3)说明函数f (x )的图象可由y =sin x 的图象经过怎样的变换而得到. 方法提炼1.用“五点法”作图应抓住四条:①将原函数化为y =A sin(ωx +φ)(A >0,ω>0)或y =A cos(ωx +φ)(A >0,ω>0)的形式;②求出周期T =2πω;③求出振幅A ;④列出一个周期内的五个特殊点,当画出某指定区间上的图象时,应列出该区间内的特殊点.2.图象变换法 (1)平移变换①沿x 轴平移,按“左加右减”法则; ②沿y 轴平移,按“上加下减”法则. (2)伸缩变换①沿x 轴伸缩时,横坐标x 伸长(0<ω<1)或缩短(ω>1)为原来的1ω倍(纵坐标y 不变);②沿y 轴伸缩时,纵坐标y 伸长(A >1)或缩短(0<A <1)为原来的A 倍(横坐标x 不变).请做演练巩固提升2,3二、求函数y =A sin(ωx +φ)+b 的解析式【例2-1】已知函数f (x )=A sin(ωx +φ)+b (ω>0,|φ|<π2)的图象的一部分如图所示:(1)求f (x )的表达式;(2)试写出f (x )的对称轴方程.【例2-2】已知函数f (x )=3sin(ωx +φ)-cos(ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f (x )图象的两相邻对称轴间的距离为π2.(1)求f ⎝ ⎛⎭⎪⎫π8的值; (2)将函数y =f (x )的图象向右平移π6个单位后,得到函数y =g (x )的图象,求g (x )的单调递减区间.方法提炼确定y =A sin(ωx +φ)+b (A >0,ω>0)的解析式的步骤: 1.求A ,b ,确定函数的最大值M 和最小值m ,则A =M -m 2,b =M +m 2.2.求ω,确定函数的周期T ,则ω=2πT.3.求φ,常用方法有:(1)代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).(2)五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.具体如下:“第一点”(即图象上升时与x 轴的交点)为ωx +φ=0;“第二点”(即图象的“峰点”)为ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)为ωx +φ=π;“第四点”(即图象的“谷点”)为ωx +φ=3π2;“第五点”为ωx +φ=2π.请做演练巩固提升4三、三角函数模型的应用【例3】已知某海湾内海浪的高度y (米)是时间t (0≤t ≤24,单位:小时)的函数,记作y =f (t 0 3 6 9 12 15 18 21 24 y 1.5 1.0 0.5 1.0 1.5 1.0 0.5 0.99 1.5经长期观测,y =f (t )的曲线可近似地看成是函数y =A cos ωt +b .(1)根据以上数据,求函数y =A cos ωt +b 的最小正周期T ,振幅A 及函数表达式; (2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内从8:00至20:00之间,有多少时间可供冲浪者进行运动?方法提炼三角函数模型在实际中的应用体现在两个方面,一是已知函数模型,利用三角函数的有关性质解决问题,其关键是准确理解自变量的意义及自变量与函数之间的对应法则,二是把实际问题抽象转化成数学问题,建立三角函数模型,再利用三角函数的有关知识解决问题,其关键是建模.请做演练巩固提升5不理解相位变换而致误【典例】(2012天津高考)将函数f (x )=sin ωx (其中ω>0)的图象向右平移π4个单位长度,所得图象经过点⎝ ⎛⎭⎪⎫3π4,0,则ω的最小值是( ). A .13 B .1 C .53D .2 解析:f (x )=sin ωx 的图象向右平移π4个单位长度得:y =sin ⎣⎢⎡⎦⎥⎤ω⎝⎛⎭⎪⎫x -π4.又所得图象过点⎝ ⎛⎭⎪⎫3π4,0,∴sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫3π4-π4=0.∴sin ωπ2=0.∴ωπ2=k π(k ∈Z ).∴ω=2k (k ∈Z ).∵ω>0,∴ω的最小值为2. 答案:D 答题指导:要熟练掌握“先平移再伸缩”和“先伸缩再平移”这两种变换方案.即前者平移|φ|个单位,后者平移⎪⎪⎪⎪⎪⎪φω个单位,原因在于相位变换和周期变换都是针对变量x 而言的,因此在用这样的变换法作图象时一定要注意平移与伸缩的先后顺序,否则会出现错误.1.设函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫A ≠0,ω>0,-π2<φ<π2的图象关于直线x =23π对称,它的周期是π,则下列结论一定正确的是( ).A .f (x )的最大值为AB .f (x )的一个对称中心是点⎝ ⎛⎭⎪⎫512π,0 C .f (x )的图象过点⎝ ⎛⎭⎪⎫0,12 D .f (x )在⎣⎢⎡⎦⎥⎤512π,23π上是减函数2.将函数y =sin x 的图象向左平移φ(0≤φ<2π)个单位后,得到函数y =sin ⎝⎛⎭⎪⎫x -π6的图象,则φ等于( ).A .π6B .5π6C .7π6D .11π63.(2012浙江高考)把函数y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是( ).4.(2012重庆高考)设函数f (x )=A sin(ωx +φ)(其中A >0,ω>0,-π<φ≤π)在x =π6处取得最大值2,其图象与x 轴的相邻两个交点的距离为π2.(1)求f (x )的解析式;(2)求函数g (x )=6cos 4x -sin 2x -1f ⎝⎛⎭⎪⎫x +π6的值域.5.如图,某市拟在长为8 km 的道路OP 的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM ,该曲线段为函数y =A sin ωx (A >0,ω>0),x ∈[0,4]的图象,且图象的最高点为S (3,23);赛道的后一部分为折线段MNP .为保证参赛运动员的安全,限定∠MNP =120°.(1)求A ,ω的值和M ,P 两点间的距离;(2)应如何设计,才能使折线段赛道MNP 最长?参考答案基础梳理自测 知识梳理 1.2πω ω2π2.-φω π2ω-φω πω-φω 3π2ω-φω 2πω-φω3.|φ| 1ω 1ω |φω| A A基础自测1.C 解析:y =sin 12x ――-----------→横坐标变为原来的2倍y =sin 12⎝ ⎛⎭⎪⎫12x =sin 14x ,∴ω=14.2.D 解析:由题意得ω=2πT=2,∴f (x )=2sin(2x +φ),又f (0)=3,即2sin φ=3,∴sin φ=32,∵|φ|<π2,∴φ=π3,故选D.3.C 解析:∵y =cos(2x +1)=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +12, ∴只须将y =cos 2x 的图象向左平移12个单位即可得到y =cos(2x +1)的图象.4.0 解析:由图象知32T =π,所以T =2π3.所以ω=3.所以f (x )=2s in ⎝⎛⎭⎪⎫3x -3π4. 故f ⎝ ⎛⎭⎪⎫7π12=2sin ⎝ ⎛⎭⎪⎫7π4-3π4=0. 5.解:(1)由题设图象知,周期T =2⎝ ⎛⎭⎪⎫11π12-5π12=π,所以ω=2πT=2,因为点⎝⎛⎭⎪⎫5π12,0在函数图象上,所以A sin ⎝ ⎛⎭⎪⎫2×5π12+φ=0,即sin ⎝ ⎛⎭⎪⎫5π6+φ=0. 又因为0<φ<π2,所以5π6<5π6+φ<4π3,从而5π6+φ=π,即φ=π6.又点(0,1)在函数图象上,所以A sin π6=1,得A =2.故函数f (x )的解析式为f (x )=2sin ⎝⎛⎭⎪⎫2x +π6. (2)g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12+π6-2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12+π6 =2sin 2x -2sin ⎝ ⎛⎭⎪⎫2x +π3 =2sin 2x -2⎝ ⎛⎭⎪⎫12sin 2x +32cos 2x=sin 2x -3cos 2x =2sin ⎝⎛⎭⎪⎫2x -π3. 由2k π-π2≤2x -π3≤2k π+π2,得k π-π12≤x ≤k π+5π12,k ∈Z ,所以函数g (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .考点探究突破【例1】解:(1)f (x )=sin ωx +3cos ωx =2⎝ ⎛⎭⎪⎫12sin ωx +32cos ωx =2sin ⎝⎛⎭⎪⎫ωx +π3. 又∵T =π,∴2πω=π,即ω=2.∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π3. ∴函数f (x )=sin ωx +3cos ωx 的振幅为2,初相为π3.(2)(3)把y =sin x 图象上所有的点向左平移π3个单位,得到y =sin ⎝⎛⎭⎪⎫x +π3的图象,再把y =sin ⎝⎛⎭⎪⎫x +π3的图象上所有点的横坐标缩短到原来的12(纵坐标不变),得到y =sin ⎝⎛⎭⎪⎫2x +π3的图象,然后把y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y =2sin ⎝⎛⎭⎪⎫2x +π3的图象. 【例2-1】解:(1)由图象可知,函数的最大值M =3,最小值m =-1,则A =3-(-1)2=2,b =3-12=1.又T =2⎝ ⎛⎭⎪⎫23π-π6=π,∴ω=2πT =2ππ=2,∴f (x )=2sin(2x +φ)+1.将x =π6,y =3代入上式,得sin ⎝ ⎛⎭⎪⎫π3+φ=1, ∴π3+φ=π2+2k π,k ∈Z , 即φ=π6+2k π,k ∈Z ,又∵|φ|<π2,∴φ=π6,∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π6+1. (2)由2x +π6=π2+k π(k ∈Z ),得x =π6+12k π,k ∈Z ,∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+1的对称轴方程为:x =π6+12k π,k ∈Z . 【例2-2】解:(1)f (x )=3sin(ωx +φ)-cos(ωx +φ)=2⎣⎢⎡⎦⎥⎤32sin(ωx +φ)-12cos(ωx +φ)=2sin ⎝⎛⎭⎪⎫ωx +φ-π6. 因为f (x )为偶函数,所以对x ∈R ,f (-x )=f (x )恒成立,因此sin ⎝ ⎛⎭⎪⎫-ωx +φ-π6=sin ⎝ ⎛⎭⎪⎫ωx +φ-π6,即-sin ωx cos ⎝⎛⎭⎪⎫φ-π6+cos ωx sin ⎝ ⎛⎭⎪⎫φ-π6=sin ωx cos ⎝ ⎛⎭⎪⎫φ-π6+cos ωx sin ⎝⎛⎭⎪⎫φ-π6, 整理得sin ωx cos ⎝⎛⎭⎪⎫φ-π6=0. 因为ω>0,且x ∈R ,所以cos ⎝⎛⎭⎪⎫φ-π6=0. 又因为0<φ<π,故φ-π6=π2.所以f (x )=2sin ⎝⎛⎭⎪⎫ωx +π2=2cos ωx . 由题意得2πω=2·π2,所以ω=2.故f (x )=2cos 2x .因此f ⎝ ⎛⎭⎪⎫π8=2cos π4= 2. (2)将f (x )的图象向右平移π6个单位后,得到f ⎝⎛⎭⎪⎫x -π6的图象.所以g (x )=f ⎝⎛⎭⎪⎫x -π6=2cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6=2cos ⎝ ⎛⎭⎪⎫2x -π3.当2k π≤2x -π3≤2k π+π(k ∈Z ),即k π+π6≤x ≤k π+2π3(k ∈Z )时,g (x )单调递减.因此g (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ). 【例3】解:(1)由表中数据,知周期T =12,∴ω=2πT =2π12=π6.由t =0,y =1.5,得A +b =1.5; 由t =3,y =1.0,得b =1.0,∴A =0.5,b =1,∴振幅为12,∴y =12cos π6t +1.(2)由题知,当y >1时才可对冲浪者开放, ∴12cos π6t +1>1,∴cos π6t >0, ∴2k π-π2<π6t <2k π+π2,k ∈Z ,即12k -3<t <12k +3,k ∈Z .①∵0≤t ≤24,故可令①中的k 分别为0,1,2, 得0≤t <3,或9<t <15,或21<t ≤24.∴在规定时间8:00至20:00之间,有6个小时的时间可供冲浪者运动,即9:00至15:00.演练巩固提升 1.B2.D 解析:∵y =sin ⎝ ⎛⎭⎪⎫x -π6=sin ⎝ ⎛⎭⎪⎫x -2π+116π=sin ⎝ ⎛⎭⎪⎫x +11π6,∴φ=11π6.3.A 解析:y =cos 2x +1图象上所有点的横坐标伸长到原来的2倍得y 1=cos x +1,再向左平移1个单位长度得y 2=cos(x +1)+1,再向下平移1个单位长度得y 3=cos(x +1),故相应图象为A.4.解:(1)由题设条件知f (x )的周期T =π,即2πω=π,解得ω=2.因f (x )在x=π6处取得最大值2,所以A =2.从而sin ⎝ ⎛⎭⎪⎫2×π6+φ=1,所以π3+φ=π2+2k π,k ∈Z .又由-π<φ≤π得φ=π6.故f (x )的解析式为f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6. (2)g (x )=6cos 4x -sin 2x -12sin ⎝⎛⎭⎪⎫2x +π2=6cos 4x +cos 2x -22cos 2x=(2cos 2x -1)(3cos 2x +2)2(2cos 2x -1) =32cos 2x +1⎝⎛⎭⎪⎫cos 2x ≠12.因cos 2x ∈[0,1],且cos 2x ≠12,故g (x )的值域为⎣⎢⎡⎭⎪⎫1,74∪⎝ ⎛⎦⎥⎤74,52.5.解:解法一:(1)连接MP .依题意,有A =23,T 4=3,又T =2πω,∴ω=π6,∴y =23sin π6x ,当x =4时,y =23sin 2π3=3,∴M (4,3),又P (8,0),∴MP =(-4)2+32=5.(2)在△MNP 中,∠MNP =120°,MP =5.设∠PMN =θ,则0°<θ<60°.由正弦定理得MP sin 120°=NP sin θ=MNsin(60°-θ).∴NP =1033sin θ,MN =1033sin(60°-θ). ∴NP +MN =1033sin θ+1033sin(60°-θ)=1033⎝ ⎛⎭⎪⎫12sin θ+32cos θ=1033sin(θ+60°).11 ∵0°<θ<60°,∴60°<θ+60°<120°, ∴当θ=30°时,折线段赛道MNP 最长.亦即,将∠PMN 设计为30°时,折线段赛道MNP 最长. 解法二:(1)同解法一.(2)在△MNP 中,∠MNP =120°,MP =5,由余弦定理得MN 2+NP 2-2MN ·NP ·cos∠MNP =MP 2, 即MN 2+NP 2+MN ·NP =25.故(MN +NP )2-25=MN ·NP ≤⎝ ⎛⎭⎪⎫MN +NP 22,从而34(MN +NP )2≤25,即MN +NP ≤1033,当且仅当MN =NP 时等号成立.亦即,设计为MN =NP 时,折线段赛道MNP 最长.。