微分方程模型(全)
- 格式:ppt
- 大小:1.74 MB
- 文档页数:59
微分模型课程安排一、微分模型简介二、微分静态模型1、血管分支模型2、最正确存贮模型三、微分动态模型1、水流出的时间2、CO2的吸收3、浓度变化问题4、服药问题5、人口模型四、香烟过滤嘴问题一、微分模型简介微分模型是数学模型中的最主要模型,也是应用最为广泛的数学模型。
通常微分模型可分为两类,静态模型与动态模型。
微分静态模型主要出现在解决一些简单的优化问题中。
此类问题通常可将所要解决的实际问题化简为一个一元或多元的目标函数的最值问题,只要对目标函数求导数或偏导数就可求得驻点,从而讨论问题的最优解决方案。
这种解决实际问题的方法在《高数》书中就有一定的讨论只不过当时不是学习的重点而已。
而微分动态模型,从名称上看我们就知到此方法是用来解决动态变化问题的。
当我们从实际问题中得到的目标量是一个随时间或空间在改变的量时,直接建立此目标量的动态变化方程是很困难的,通常可以先找到此问题的动态变化函数〔一般是一个微分方程或方程组〕,然后通过解方程的方法来求解出我们所需要的目标量所满足的方程。
同样在《高数》书中提到的微元法就是此方法的讨论,它是任何一项研究都必须要首先考虑和掌握的基本方法。
下边举几个例子看一下我们该怎样使用这两种方法.===================================================================== 二、微分静态模型微分静态模型的关键就是建立一个包含各个影响因素在内的目标函数。
具体分析步骤:〔1〕首先明确我们的优化目标;〔2〕明确影响这个目标的各个因素;〔3〕建立目标函数与各指标的代数关系;〔4〕对各指标变量求导数〔或偏导〕找极值点;〔5〕讨论目标的极值。
问题1血液在动物的血管中一刻不停地流动,为了维持血液循环动物的机体要提供能量。
能量的一部分用于供应血管壁以营养。
另一部分用来克服血液流动受到的阻力,消耗的总能量显然与血管系统的几何形状有关。
在长期的生物进化过程中,高级动物血管系统的几何形状应该已经到达消耗能量最小原则下的优化标准了。
常见的微分方程模型微分方程是数学的一个重要分支,广泛应用于自然科学和工程领域。
它描述了物理现象、社会问题和自然现象的变化规律,能够帮助我们理解和预测各种现象的发展趋势。
下面将介绍一些常见的微分方程模型。
1. 一阶线性微分方程一阶线性微分方程是最简单且常见的微分方程之一。
它可以描述许多实际问题,比如放射性衰变、人口模型等。
一阶线性微分方程的一般形式可以写为dy/dt = f(t) * y + g(t),其中f(t)和g(t)是已知函数,y是未知函数。
2. 指数衰减模型指数衰减模型是描述某种变化过程的常见微分方程。
它可以用来描述放射性物质的衰变、人口增长的趋势等。
指数衰减模型的一般形式是dy/dt = -ky,其中k是常数。
这个方程表示y的变化速率与y本身成比例,且反向。
3. 扩散方程扩散方程是描述物质或能量传递过程的微分方程。
它可以用来研究热传导、扩散现象等。
扩散方程的一般形式是∂u/∂t = D ∇²u,其中u是未知函数,D是扩散系数,∇²是Laplace算子。
这个方程表示u 的变化率与u的二阶导数成正比。
4. 多体问题多体问题是描述多个物体之间相互作用的微分方程模型。
它可以用来研究天体运动、分子碰撞等问题。
多体问题的方程通常包括牛顿第二定律和对应的初始条件,如F = ma和相关的速度、位置初值条件。
5. 随机微分方程随机微分方程是考虑了随机因素的微分方程模型。
它可以用来研究金融市场的波动、生态系统的不确定性等。
随机微分方程的方程形式通常会引入一个随机项,如dy/dt = f(t, y) dt + g(t, y) dW,其中dW是布朗运动,表示随机项。
以上介绍的是一些常见的微分方程模型,它们在理论和实际应用中都具有重要的地位。
通过研究这些模型,我们可以深入理解各种现象背后的数学规律,并且为实际问题提供解决方案。
微分方程模型不仅有助于推动数学的发展,还在科学研究、工程设计和技术创新等领域中发挥着重要作用。