西华大学常用数学模型5_微分方程模型
- 格式:ppt
- 大小:1.06 MB
- 文档页数:36
在解决实际问题时,弄清问题中的变量之间的函数关系或其转变趋势是相当重要的,而在一些较为复杂的转变进程中,变量之间的函数关系无法直接取得。
可是,在许多情形下,咱们往往能够在理论或体会的基础上找到问题中的一些变量及其导数之间的关系。
也确实是找出一个或几个含有未知函数及其导数所知足的方程,那个(些)方程就称为微分方程(组)。
然后通过求解微分方程(组)取得变量之间的函数关系,或在微分方程(组)的基础上进行数值计算和渐进性态研究,从而了解整个系统的进展转变规律。
为了研究一些实际问题的转变规律,往往需要对所研究的问题进行适当的简化和假设,再成立数学模型,当问题中涉及变量的转变率时,就能够够通过微分方程来建模。
微分方程模型主若是解决与导数,也即转变率相关的问题,可是;实际问题中一样并非会直接显现“导数”或“转变率”等词语,这时,就需要咱们认真分析,从中找出这些信息,一样来讲,若是问题中涉及到“速度”、“增加”、“改变”、“转变”、“增加”、“减少”、“衰变”(在放射性问题中)、“扩散”、“边际的”(在经济学中)等问题时,往往就能够够用微分方程(组)来建模。
微分方程模型的类型很多,在解决实际问题时,要依照具体情形选择不同的模型,成立模型时,应第一将实际问题概念化为文字方程,许多问题都遵循下面的模式:总讯宗勋净转变率=净增加率━净减少率若是变量之间的关系能够用这种形式来描述,咱们就不难给出相应的微分方程(组)了。
在成立了微分方程模型以后,咱们固然希望能取得微分方程的解,可是,关于大多数微分方程而言,要想直接求解往往是困难的,乃至是不可能的,现在咱们能够通过对方程的定性分析取得有关的一些有效信息。
§1 确信性存贮模型为了使生产和销售有条不紊地进行,一样的工商企业总需要存贮必然数量的原料或商品,但是大量的库存不但积存了资金,而且会使仓库的保管费用增加。
因此,寻求合理的库存量乃是现代企业治理的一个重要课题。
需要注意的是,存贮问题的原型能够是真正的仓库存货,水库存水,也能够是运算机的存贮器的设计问题,乃至是大脑的存贮问题。