4 测井储层参数研究规范 - 2015
- 格式:pdf
- 大小:1.88 MB
- 文档页数:32
3 工作流程以油田钻井资料、地震资料为基础,通过井点地层精细对照、井断点的落实及地震精细解释,建立三维构造精细模型;通过储层精细划分、井点夹层描述、储层参数测井精细解释及取心井资料研究,建立三维储层精细模型 (包括沉积相模型);开展模型合理粗化方法研究,把精细地质模型不失真的输入到数值摹拟软件,并通过快速历史拟合,对模型进行验证,反馈信息,进一步修改完善地质模型。
最终实现油藏的高精度拟合,并把数值摹拟成果输出,进行各种剩余油指标的定量计算、统计分析,寻找剩余油潜力,结合油田开辟状况分析及开辟效果评价,制定合理、高效的油田开辟调整及挖潜方案。
同时实现油藏地质模型和数值摹拟模型的资源共享,初步建立“数字油藏”。
油藏描述工作流程见图1:图1 精细油藏描述工作流程4 精细油藏描述的基础资料4.1 基础地质资料4.1.1 地震资料:二维、三维地震资料。
4.1.2 钻井资料:工区内所有的探井、开辟井、取心井,包括井别、井位坐标、补心高、补心海拔、完钻井深、完钻层位、靶点坐标等信息。
4.1.3 测井资料:用于地层对照划分的常规测井曲线及相应的测井曲线数字带,特殊测井(核磁测井、成像测井等)曲线及数字带。
4.1.4 井斜资料:包括斜井、侧钻井、水平井的数字化井轨迹数据。
4.2 开辟动态资料4.2.1 开辟数据:油田、开辟单元及单井的开辟数据,包括油水井月数据、油田开辟月综合数据;井史资料(射孔、封堵、措施等数据)。
4.2.2 动态监测资料:包括动静液面、压力、试井、产液、吸水剖面,C/O 测井、剩余油饱和度测井等监测资料。
4.3 开辟实验资料4.3.1 取心井资料:常规岩心分析、岩石薄片、扫描电镜、X 衍射黏土矿物分析、X 衍射全岩矿物分析、润湿性、敏感性、毛管压力、相对渗透率曲线等资料。
4.3.2 高压物性资料:包括油、气、水的高压物性数据(溶解油气比、地下原油密度、粘度、原油体积系数、压缩系数、天然气组份、体积系数等)。
1、掌握储层物性,含油气水丰度和(油气水的可动性)是评价油气层的充要条件。
2、如果层内含油丰度相近而不同渗透带的渗透率相差较大,那么可以确定高渗透带内没有充满油,水是可动的,该层不高于(油气同层)。
3、进行井间对比的条件是:井距不远,储层的埋深相近,层位相近,储集类型和(物性)相近,油气水物理化学性质相近。
4、定量荧光仪测定的是(荧光强度)。
5、在平衡状态下,组分在固定相和流动相中的量之比称为(分配系数)。
6、岩心描述时,一般长度大于或等于(10)cm,颜色,岩性,结构,构造,含油情况有变化着,均需分层描述。
7、正常地下油气显示层在工程参数出现钻时降低,DC指数减小,立压降低等变化,在钻井液参数上,具有出口温度升高,相对密度(降低)和出口电导率(变小)等现象,而假油气显示没有上述变化。
8、氢火焰离子检测器属于(质量流速检测器)。
9、在下列各组参数中,是综合录井仪实时参数的是(立管压力,1号泵冲速率,4号泥浆体积)。
1.QFT定量荧光仪的激发波长是(254)nm。
2.QFT定量荧光仪检测到的荧光物质是(以萘族为主的化合物)。
3.假岩心一般出现在岩心的(顶部)。
4.全脱分析时盐水必须使用(饱和盐水)。
5.普通电动脱气器使用时,一定要注意脱气器钻井液出口量,应为满管的(2/3)最佳。
6.DC指数是建立在(泥岩沉积压实)的理论基础上的。
7.Slgma方法是根据(岩石骨架强度)理论基础建立的。
8.在钻井过程中,用岩性对比地层时,最有效,最可靠的的方法是(岩性标准层标志层)。
9.岩石热解地化录井参数TMAX的含义是热解(S2)的最高点所对应的温度。
10.直接测量项目按被测参数的性质和及时性可分为:实时参数和(计算参数)。
11.转盘扭矩是反应(地层变化)及钻头使用情况的一项重要参数。
12.出入口钻井液温度的测量可以掌握(地温梯度),帮助判断油气层,还可以探测超压地层。
13.从色谱组分分析仪注样开始到全部组分分析完成所用的时间为一个(出峰时间)。
关于测井资料处理解释结论的建议一、原有关标准的情况SY/T5360-1995《单井测井资料数字处理流程》标准7.4.1结论级别:油层、气层、油水同层、气水同层、水淹层、含油水层、含气水层、水层、干层、可能油气层。
共计10种处理解释结论。
SY/T6161-1995《天然气层测井解释规程》标准,结论级别按SY/T5360-1995《单井测井资料数字处理流程》标准执行,未另行制定。
SY/T6451-2000《探井测井处理解释技术规范》标准3.6.4.1对孔隙型或以孔隙型为主的储层,测井解释结论划分为:油层、差油层、油水同层、含油水层、气层、差气层、气水同层、含气水层、水淹层、水层、干层、可能油气层。
共计12种处理解释结论。
3.6.4.2对型缝型或以裂缝型为主的储层及溶洞型储层,测井解释结论根据裂缝及溶洞的发育程度按Ⅰ、Ⅱ、Ⅲ类储层划分。
Q/SHSLJ 0799-2002《试油层测试要求及成果资料质量评定》标准,划分为油层、气层、油(气)水同层、低产油(气)层、稠油层、可能油(气)层、含油(气)水层、水层、干层。
共计13种结论。
二、解释结论划分建议解释结论划分建议为:油层、低产油层、油水同层、含油水层、可能油层;气层、低产气层、气水同层、含气水层、可能气层;水淹层、水层、干层,共计13种解释结论。
油层:在现有试油工艺及技术条件下,具有工业价值,且含水〈5%的纯油层。
工业油流标准,见表1。
低产油层:在现有试油工艺及技术条件下,日产油量在工业油流标准以下,干层以上者。
测井处理孔隙度一般为5%~6%,渗透率小于0.5×10-3μm2,含油饱和度在30%~45%之间。
油水同层:在现有试油工艺及技术条件下,能计量出油日产量的油水同出层,含水在5%~90%之间。
含油水层:在现有试油工艺及技术条件下,以产水为主带油花,不能计量出日产油量的水层。
可能油层:根据测井等资料认为可能产油储层。
气层:在现有试油工艺及技术条件下,具有工业价值的纯气层或带凝析油者,且含水〈5%。
储层“四性”关系与电测油层的解释五、储层“四性”关系与电测油层的解释(一)、储层的“四性”关系储层的“四性”关系是指储层的岩性、物性、含油性与电性之间的关系。
沉积相是控制岩性、物性和含油性的主要因素,电性是对其三者的综合反映,不同的沉积相带,决定了不同岩性、物性和含油性,并决定了不同的电性特征。
只有正确地认识岩性,准确地掌握沉积环境、沉积规律和所处的沉积相带,认清各种岩性在电测曲线上的反应,才能正确地认识它的物性和含油性,才能与电性特征进行有机的结合,正确地进行油水层判断,提高解释符合率和钻井成功率。
测井曲线能反映不同的岩性,尤其对储集层及其围岩有较强的识别能力。
南泥湾油田松700井区长4+5、长6储集层测井显示:自然电位曲线为负异常,自然伽玛低值,微电极两条曲线分开,声波时差曲线相对较低,而且比较稳定,电阻率曲线随含油性不同而变化。
泥岩表现为:自然电位为基线,自然伽玛高值,微电极两条曲线重合,声波时差曲线相对较高,且有波动,电阻率曲线表现为中-高阻。
过渡岩性的特征界于纯砂岩与泥岩之间。
储层的钙质夹层显示为,声波时差低值,自然伽玛低值,电阻率高值;而泥质、粉砂质夹层显示为,自然伽玛增高,电阻率增大。
普通视电阻率曲线的极大值对应高阻层底界面。
感应曲线及八侧向曲线在储集层由于侵入而分开,而在泥岩及致密层3条曲线较接近。
但是,由于该区大部分井采用清水泥浆,所以,井径曲线在渗透层曲线特征不明显,微电极曲线在渗透层特征不明显。
长4+5储层岩性致密,渗透率值比较集中,在渗透性较好的储层段,一般含油性较好。
长4+5油层组含油层的曲线特征比较明显,油、水层的特征总体上便于识别。
电阻率曲线是识别油水层最重要的曲线。
理论上来说,感应曲线因其在地层中的电流线是环状的,那么,地层的等效电阻是并联的,它比普通视电阻率曲线及侧向测井更能识别相对低阻的地层。
所以,一般最好用感应测井曲线识别油水层。
油层电阻率幅度大,含油段的储层电阻率是水层电阻率的1.5—4倍,深、浅探测幅度差小,含油层的深感应电阻率大致为50—150Ω•m。
测井资料综合解释方法3-划分储层和储层地质参数计算⑸储层的测井划分砂泥岩剖面储层的划分砂泥岩剖面的渗透层主要是砂岩、粉砂岩,有时也有生物灰岩等。
在现有的测井系列中,自然伽马、自然伽马能谱、自然电位、微电极及井径等是比较有效的划分储层的测井方法。
自然伽马:泥岩在自然伽马曲线上表现为高值,盐岩、灰岩等在自然伽马曲线上表现为低值,砂岩在自然伽马曲线上表现为中、低值,一般为40-90API。
自然电位:泥岩在自然电位曲线上显示为比较平直的直线,当泥浆电阻率R mf大于地层水电阻率R w时,渗透性砂岩在自然电位曲线上显示为相对平直直线的负异常,反之,当R mf < R w时,渗透性砂岩显示为正异常。
渗透层泥质越少,地层渗透性越好,自然电位异常幅度越大。
微电极:当地层为砂岩渗透层时,微电极的微电位电极曲线幅度大于微梯度电极曲线幅度,曲线呈幅度差,幅度差越大,渗透性越好,当地层为非渗透性地层,微电极曲线为相互重叠的锯齿状尖峰。
井径:对于疏松砂岩地层,渗透性砂岩地层的井径大于钻头直径,对于地层比较致密的砂岩地层,渗透性砂岩地层的井径小于钻头直径。
碳酸盐岩剖面渗透性地层的划分碳酸盐岩剖面渗透性一般表现为四种形式,即:裂缝-孔洞型、裂缝-孔隙型、裂缝型和孔隙型。
碳酸盐岩剖面的渗透层在测井曲线中表现为“三高一低”的规律,即低电阻率、低自然伽马、低中子伽马、高声波时差。
目前已形成的裂缝测井系列包括:裂缝识别测井、电导率检异常检测、定向微电阻率、地层微电阻率扫描、环形声波测井、阵列声波、声波全波列测井、井内声波测井、井内声波电视、方位侧向测井、定向伽马测井等。
特别是井眼成像测井的发展与完善,可以准确判断裂缝的发育情况和发育层段,确定裂缝层系的深度,提供裂缝产状信息,提供较大裂缝的张开或填充(闭合)的信息。
在比较理想的情况下,可区分油气层。
(6)储层地质参数的计算机处理用测井资料确定储层地质参数,主要计算组成岩石的矿物成分,确定储层泥质含量、孔隙度、含油气饱和度、束缚水饱和度及渗透率等。