储层参数
- 格式:pdf
- 大小:386.21 KB
- 文档页数:19
一名词解释1. 储层表征(ReservoirCharacterization ):定量地确定储层的性质、识别地质信息及空间变化的过程。
2. 油藏地质模型是将油藏各种地质特征在三维空间的变化及分布定量表述出来的地质模型。
是油气藏类型、几何形态、规模、油藏内部结构、储层参数及流体分布的高度概括。
3•储层静态模型针对某一具体油田(或开发区)的一个(或)一套储层,将其储层特征在三维空间上的变化和分布如实地加以描述而建立的地质模型。
4•储层参数分布模型储层参数(孔隙度、渗透率、泥质含量等)在三维空间变化和分布的表征模型。
5.确定性建模确定性建模对井间未知区给出确定性的预测结果,即试图从已知确定性资料的控制点如井 点出发,推测出点间确定的、唯一的、真实的储层参数。
从上式可以看出,胶结率反映了胶结作用降低砂体原始孔隙体积的百分数,亦即反映了胶结作用的强度。
7•油层组油层组为岩性、电性和物性、地震反射结构特征相同或相似的砂层组的组合,是一相对的“不等时同亚相”沉积复合体。
&储能参数储能参数(h 、炉、S )eo1. 油藏描述:油藏描述(ReservoirDescription ),以沉积学、构造地质学和石油地质学的理论为指导,用地质、地震、测井及计算机手段,定性分析和定量描述油藏在三度空间特征的一种综合研究方法体系。
2. 储层预测模型预测模型是比静态模型精度更高的储层地质模型,它具有对控制点间及以外地区的储层参数能作一定精度的内插和外推预测的功能。
3. 有效厚度夹层是指在工业油流的储层中达不到有效厚度标准的各类岩层。
4. 流体单元模型流体单元模型是由许多流动单元块体(指根据影响流体在岩石中流动的地质参数在储层中进一步划分的纵横向连续的储集带,在该带中,影响流体流动的地质参数在各处都相似,并且岩层特点在各处也相似)镶嵌组合而成的模型,属于离散模型的范畴。
5. 随机建模是指以已知的信息为基础,以随机函数为理论,应用随机模拟方法,产生一组等概率储层模型的方法。
陆相页岩油储层评价关键参数及方法在石油勘探开发领域中,页岩油储层评价是一个至关重要的环节。
而对于陆相页岩油储层的评价,更是需要考虑到其特殊的地质条件和油气成藏特点。
本文将从多个方面对陆相页岩油储层评价的关键参数及方法进行深入探讨,并共享个人观点和理解。
一、岩石地球物理参数评价在陆相页岩油储层评价中,岩石地球物理参数是至关重要的。
包括岩石的孔隙度、渗透率、孔喉结构、裂缝特征等参数,都直接影响着储层的含油气性能。
利用密度、声波、电阻率等地球物理勘探技术,对储层进行详细的参数评价是至关重要的。
1. 孔隙度和渗透率孔隙度和渗透率是评价页岩储层储层性质的重要参数。
其中,孔隙度直接关系到储集空间的大小,而渗透率则是衡量岩石孔隙连接性的重要指标。
通过密度测井、核磁共振等技术,可以获得储层的孔隙度和渗透率数据,从而评价储层的含油气能力。
2. 孔隙结构和裂缝特征页岩储层中的孔隙结构和裂缝特征对于油气的储集和运移具有重要影响。
通过核磁共振、微观成像等高分辨率技术,可以对储层孔隙结构和裂缝进行定量描述,为后续的油藏开发提供重要依据。
二、地质条件评价除了岩石地球物理参数外,对于陆相页岩油储层评价,还需要考虑其特殊的地质条件。
包括构造背景、沉积环境、岩相特征等多个方面的评价。
1. 构造背景构造背景直接影响着储层的形成和演化。
对于陆相页岩储层来说,构造背景的复杂性常常导致储层的非均质性和非均一性,因此需要对构造背景进行详细评价,为储层开发提供依据。
2. 沉积环境沉积环境对于储层的孔隙结构、岩相特征等都有着重要影响。
通过对沉积环境的综合分析,可以更好地理解储层的特点和规律,为勘探开发提供指导。
三、评价方法及技术针对陆相页岩油储层评价的复杂性和特殊性,需要结合多种评价方法和技术来进行综合评价。
1. 地震技术地震技术在陆相页岩油储层评价中有着重要应用。
通过地震反演、地震成像等技术,可以获取储层的地质构造、岩性分布等重要信息。
2. 岩心分析岩心分析是对储层岩石进行详细分析的重要手段。
煤层气煤层气(Coalbed Methane)储层参数,主要包括煤的等温吸附特性参数、煤层气含量、渗透率、储层压力、原地应力,以及有关煤岩煤质特征的镜质组反射率、显微组分、水分、灰分和挥发分等,相应的测试分析技术有:煤的高压等温吸附试验(容量法)、煤层气含量测定、煤层气试井和煤岩煤质分析等。
煤的高压容量法等温吸附实验,是煤层气资源可采性评价和指导煤层气井排采生产的关键技术参数,等温吸附数据测定准确性,直接关系到煤层气开发项目的成败和煤层气产业的发展。
许多研究表明,煤是具有巨大内表面积的多孔介质,象其它吸附剂如硅胶、活性碳一样,具有吸附气体的能力。
煤层气以物理吸附方式储存在煤中,主要证据有:甲烷的吸附热比气化热低2—3倍(Moffat &Weale,1955;Y ang &Saunders,1985),氮气和氢气的吸附也与甲烷一样,这表明煤对气体的吸附是无选择性的;大量试验也证明,煤对气体吸附是可逆的(Daines,1968;Maver 等,1990)。
结合国内外资料,推荐吸附样粒度为60—80目。
煤的平衡水分—当煤样在温度30℃、相对湿度96%条件下,煤中孔隙达到水分平衡时的含水量。
测试平衡水平的主要目的是:恢复储层条件下煤的含水情况,为煤的吸附实验做准备。
煤层气含量—指单位重量煤中所含的标准状态下(温度20℃、压力101.33kpa)气体的体积,单位是cm3/g或m3/t。
它是煤层气资源评价和开发过程中计算煤层气资源量和储量、预测煤层气井产量的重要煤储层参数之一。
煤层气含量的测定方法大体上可分为两类:直接法(解吸法)和间接法(包括等温吸附曲线法和单位体积密度测井法)。
在直接法中,保压取心解吸法是精确获得原地煤层气含量最好的方法。
直接法的基本原理煤心煤样的煤层气总量由三部分气体量构成:一是损失气(lost gas),二是实测气(measured gas),三是残余气(residual gas)。
由岩石电性和弹性参数求取地层储层参数池美瑶; 唐新功; 向葵; 孙斌【期刊名称】《《科学技术与工程》》【年(卷),期】2019(019)027【总页数】6页(P41-46)【关键词】储层参数; 孔隙度; 渗透率; 饱和度; 电阻率【作者】池美瑶; 唐新功; 向葵; 孙斌【作者单位】长江大学"油气资源与勘探技术"教育部重点实验室武汉 430100; 长江大学非常规油气湖北省协同创新中心武汉 430100; 中国石化华东分公司石油勘探开发研究院(南京) 南京210011【正文语种】中文【中图分类】P313.1随着油气开发的不断深入,勘探难度日益加大,油气储层越来越复杂,对储层预测的精度要求也就越来越高,对储层参数的准确求取可对油气储层预测提供帮助,降低勘探开发的风险。
作为重要的储层参数之一,渗透率是孔隙流体在其中通过的能力的体现[1]。
目前有多种求取渗透率的方法。
中外不少学者对孔隙度与渗透率的关系进行了研究并得出了不同的经验关系式。
1927年, Kozeny[2]建立了第一个孔渗经验关系式。
Carman[3]对 Kozeny模型进行了修正得到了著名的KC方程。
高旺来[4]通过对安塞油田低渗透储层岩石物性特征测试分析,发现低渗透岩心物性对上覆压力具有一定的敏感性,孔隙度与渗透率也不存在线性关系。
张学文等[5]综合分析低渗透油藏的毛管压力曲线和相对渗透率曲线,得到了低渗透砂岩油藏的油水相对渗透率曲线的特征。
罗万静等[6]、吕伟峰等[7]、薛永超等[8]分别总结了近年来中外低渗岩石的孔隙度、渗透率及渗透率的不同求取方法和技术。
李亚军等[9]、颜其彬等[10]、宋延杰等[11]分别考虑喉道半径等不同的影响因素,建立了不同的岩石渗透率模型。
张涛等[12]建立了考虑了气体滑脱效应的致密砂岩储层气、水相对渗透率模型。
吴伟[13]建立了油水相对渗透率端点特征参数与油藏渗透率和孔隙度之间的定量预测模型。