九年级数学第二十七章《相似三角形》测试题
- 格式:doc
- 大小:391.50 KB
- 文档页数:4
九年级数学第二十七章相似综合复习测试习题(含答案)如图,在△ABC中,△ABC=80°,△BAC=40°,AB的垂直平分线分别与AC,AB相交于点D,E,连接BD,求证:△ABC△△BDC.【答案】见解析.【解析】【分析】由线段垂直平分线的性质,得DA=DB,则∠ABD=∠BAC=40°,从而求得∠CBD=40°,即可证出∠ABC∠∠BDC.【详解】∠DE是AB的垂直平分线,∠AD=BD.∠∠BAC=40°,∠∠ABD=40°.∠∠ABC=80°,∠∠DBC=40°,∠∠DBC=∠BAC.∠∠C=∠C,∠∠ABC∠∠BDC.【点睛】本题考查了相似三角形的判定和性质、线段的垂直平分线的性质,题目难度不大.77.如图,在△ABC中,D、E分别是边AC、BC的中点,F是BC延长线上一点,△F=△B.(1)若AB=10,求FD的长;(2)若AC=BC,求证:△CDE△△DFE.【答案】(1) FD=5; (2)证明见解析.【解析】【分析】(1)利用三角形中位线的性质得出DE∠AB,进而得出∠DEC =∠B,即可得出FD=DE,即可得出答案;(2)利用等腰三角形的性质和平行线的性质得出∠B=∠A=∠CED=∠CDE,即可得出∠CDE=∠F,即可得出∠CDE∠∠DFE.【详解】解:(1)∠D、E分别是AC、BC的中点,∠DE//AB,DE=12AB=5又∠DE//AB,∠∠DEC= ∠B.而∠F= ∠B,∠∠DEC =∠B,∠FD=DE=5;(2)∠AC=BC,∠∠A=∠B.又∠CDE=∠A,∠CED= ∠B,∠∠CDE=∠B.而∠B=∠F,∠∠CDE=∠F,∠CED=∠DEF,∠∠CDE∠∠DFE.【点睛】此题主要考查了相似三角形的判定与性质以及等腰三角形的性质和平行线的性质等知识,熟练利用相关性质是解题关键.78.正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M 点在BC上运动时,保持AM和MN垂直.(1)证明:Rt ABM Rt MCN∆∆∽;(2)当M点运动到什么位置时Rt ABM Rt AMN∆∆∽,并请说明理由.【答案】(1)详见解析;(2)当M点运动到BC为中点位置时,Rt ABM Rt AMN∆∆∽.【分析】(1)理由等角的余角相等证明MBA NMC∠=∠,然后根据直角三角形相似的判定方法可判断Rt ABM Rt MCN∆∆∽;(2)设正方形的边长为2a,若M为BC的中点,则2AB BC a==,BM MC a==,理由勾股定理可得到AM=,由于Rt ABM Rt MCN∆∆∽,利用相似比可计算出MN,接着证明AB BMAM MN=,从而可判断Rt ABM Rt AMN∆∆∽.【详解】(1)证明:四边形ABCD 为正方形,90B C ∴∠=∠=︒,AM MN ⊥,90AMN ∴∠=︒,90AMB NMC ∴∠+∠=︒,而90AMB MAB ∠+∠=︒,MBA NMC ∴∠=∠,Rt ABM Rt MCN ∴∆∆∽;(2)解:当M 点运动到BC 为中点位置时,Rt ABM Rt AMN ∆∆∽.理由如下:设正方形的边长为2a ,四边形ABCD 为正方形,2AB BC a ∴==,BM MC a ==,AM ∴=,Rt ABM Rt MCN ∆∆∽, ∴2AM AB MN MC==,12MN AM ∴==,AB AM ==BM MN == ∴AB BM AM MN=, 而90ABM AMN ∠=∠=︒,Rt ABM Rt AMN ∴∆∆∽.【点睛】本题考查正方形的性质、相似三角形的判定和性质.梯形的面积公式等知识,解题的关键是熟练掌握相似三角形的判定,学会用方程的思想思考问题,属于中考常考题型.79.如图,在平行四边形ABCD中,过点A作AE△BC,垂足为E,连接DE,F为线段DE上一点,且△AFE=△B(1)求证:△ADF△△DEC;(2)若AB=8,AD=6,AE的长.【答案】(1)见解析(2)6【分析】(1)利用对应两角相等,证明两个三角形相似∠ADF∠∠DEC.(2)利用∠ADF∠∠DEC,可以求出线段DE的长度;然后在在Rt∠ADE中,利用勾股定理求出线段AE的长度.【详解】解:(1)证明:∠四边形ABCD是平行四边形,∠AB∠CD,AD∠BC∠∠C+∠B=180°,∠ADF=∠DEC∠∠AFD+∠AFE=180°,∠AFE=∠B,∠∠AFD=∠C在∠ADF与∠DEC中,∠∠AFD=∠C,∠ADF=∠DEC,∠∠ADF∠∠DEC(2)∠四边形ABCD 是平行四边形,∠CD=AB=8.由(1)知∠ADF ∠∠DEC , ∠AD AF DE CD=,∠AD CD DE 12AF ⋅===在Rt ∠ADE 中,由勾股定理得:AE 6===80.如图,正方形ABCD 的顶点A 在等腰直角三角形DFG 的斜边FG 上,G 与BC 相交于点E ,连接CF .(1)求证:ADG CDF ≌;(2)求证:ABE CFE ∽△△; (3)若正方形ABCD 的边长为2,点E 是BC 的中点,求FG 的长.【答案】(1)见解析;(2)见解析;(3 【分析】(1)根据正方形和等腰直角三角形的边长相等可以得到两组对应边,再用直角去掉公共角得到一组对应角,即可判定全等.(2)由(1)的全等推出∠CFE 为直角,即可利用一组直角和一组对顶角判定ABE CFE ∽△△.(3)根据ABE CFE ∽△△得到对应边成比例,将线段代入求出CF,EF,再由ADC CDF ≌△△得到AG=CF,即可算出FG .【详解】(1)∠四边形ABCD 是正方形,DFC △是等腰直角三角形,∠90ADC CDF ∠=∠=︒,AD CD =,DG DF =,∠ADG ADF ADF CDF ∠+∠=∠+∠,∠ADG CDF ∠=∠,在ADG 和CDF 中,DG DF ADG CDF DA DC =⎧⎪∠=∠⎨⎪=⎩, ∠ADG CDF ≌(SAS).(2)由(1)知ADG CDF ≌,∠45DGA DFC ∠=∠=︒,又∠45DFG ∠=︒,∠90CFE B ∠=︒=∠,又∠AEB CEF ∠=∠,∠ABE CFE ∽△△.(3)由(2)知ABE CFE ∽△△, ∠AB AE BE CF EC EF==, ∠正方形ABCD 的边长为2,点E 是BC 的中点,∠1BE EC ==,2AB =,∠AE =∠21CF EF==,∠CF =,EF =由(1)知ADC CDF ≌△△,5AG CF ==,∠5FG AG AE EF =++=. 【点睛】本题考查了三角形全等的判定和性质,三角形相似的判定和性质,关键在于熟悉相关基础知识,结合图形转换成所需条件.。
人教版数学九年级下册第二十七章 相似 章末复习卷一、选择题:1、制作一块3m ×2m 长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( C )A .360元B .720元C .1080元D .2160元 2.如果x ∶y =2∶3,则下列各式不成立的是( D ) A.x +y y =53 B.y -x y =13C.x 2y =13D.x +1y +1=343.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC ,若BD =2AD ,则( B )A.AD AB =12 B .AE EC =12 C.AD EC =12 D .DE BC =12 4. 下列各组图形中有可能不相似的是( A ) A .各有一个角是45°的两个等腰三角形 B .各有一个角是60°的两个等腰三角形 C .各有一个角是105°的两个等腰三角形 D .两个等腰直角三角形5.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,且∠ ,将 绕点A 顺时针旋转 ,使点E 落在点处,则下列判断不正确的是 DA. ′是等腰直角三角形B. AF 垂直平分C. ′∽D. ′是等腰三角形6. 下列图形中不是位似图形的是( C )7.已知△ABC中,AB=AC,∠A=36°,以点A为位似中心把△ABC的各边放大2倍后得到△AB′C′,则∠B的对应角∠B′的度数为( C )A.36° B.54° C.72° D.144°8、若四条线段a,b,c,d成比例,且a=3 cm,b=2 cm,c=9 cm,则线段d的长为( C )A.4 cmB.5 cmC.6 cmD.8 cm9.如图,在△ABC中,DE∥BC,,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,则DE 的长为( C )A.6 B.8 C.10 D.1210. 如图所示3个图形中是位似图形的有( B )A.1个 B.2个 C.3个 D.0个二、填空题:11、在比例尺为1:6 000 000 的海南地图上,量得海口与三亚的距离约为3.7 厘米,则海口与三亚的实际距离约为 222 千米.12. 若k=a-2bc=b-2ca=c-2ab,且a+b+c≠0,则k= -1 .13.若△ABC∽△A1B1C1,AB=2,A1B1=3;则△A1B1C1与△ABC的相似比为 3∶2 .14.如图,有三个三角形,其中相似的是①与② .15. 如图,四边形ABCD与四边形EFGH位似,位似中心点是O,OEOA=35,则FGBC=35.三、解答题16.若a+23=b4=c+56,且2a-b+3c=21.试求a∶b∶c.解:a∶b∶c=4∶8∶7.17.已知四边形ABCD和A1B1C1D1中,ABA1B1人教版九年级数学下册复习_第27章_相似_单元测试卷(有答案)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 已知,则下面结论成立的是()A. B. C. D.2. 下列各组中的四条线段成比例的是()A.,,,B.,,,C.,,,D.,,,3. 如图,若,则的度数是()A. B. C. D.4. 下列各组线段中,能成比例的是()A.,,,B.,,,C.,,,D.,,,5. 若点是线段的黄金分割点,设,则的长为()A. B. C. D.或6. 如图,,,、分别交于点、,则图中相似的三角形有()A.个B.个C.个D.个7. 正常人的体温一般在,室温太高、太低都会感觉不舒服.有人研究认为人的满意温度与正常体温的比是黄金分割比,根据你的生活体验和数学知识,该温度约为()A. B. C. D.8. 如图,中,若,,,则的长为()A. B. C. D.9. 若的各边都分别扩大到原来的倍,得到,下列结论正确的是()A.与的对应角不相等B.与不一定相似C.与的相似比为D.与的相似比为10. 如果线段、、、满足,那么下列等式不一定成立的是()A. B. C. D.二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 如图,在矩形中,、分别是、的中点.若矩形与矩形是相似的矩形,则________.12. 如图,,,已知,,则图中线段的长________,________,________.13. 若两个三角形的相似比为,且较大的三角形的周长为,则较小的三角形的周长为________ .14. 如图,在中,、分别是、边上的点;,,.当________时,.15. 如果两个位似图形的对应线段长分别为和,且两个图形的面积之差为,则较大的图形的面积为________.16. 如图,添加一个条件:________=tag_underline,使,17. 如图,在中,点、分别在、上,.若,,则的值为________.18. 已知,则的值为________.19. 小亮带着他弟弟在阳光下散步,小亮的身高为米,他的影子长米.若此时他的弟弟的影子长为米,则弟弟的身高为________米.20. 如图,中,,,,为的中点,若动点以的速度从点出发,沿着的方向运动,设点的运动时间为秒,连接,当是直角三角形时,的值为________.三、解答题(本题共计8 小题,共计60分,)21.(4分) 如图,是由经过位似变换得到的(1)求出与的相似比,并指出它们的位似中心;(2)是的位似图形吗?如果是,求相似比;如果不是说明理由;(3)如果相似比为,那么的位似图形是什么?22.(8分) 【问题情境】如图,中,,,我们可以利用与相似证明,这个结论我们称之为射影定理,试证明这个定理;【结论运用】如图,正方形的边长为,点是对角线、的交点,点在上,过点作,垂足为,连接,(1)试利用射影定理证明;(2)若,求的长.23. (8分)如图,在中,,于,求证:,.24.(8分) 如图,在中,,是边上的高,是边上的一点,,,垂足分别为,.(1)求证:;(2)与是否垂直?若垂直,请给出证明;若不垂直,请说明理由.25.(8分) 如图,在平面直角坐标系中,的三个顶点分别为,,.(1)以原点为位似中心,将缩小为原来的,得到.请在第一象限内,画出.(2)在(1)的条件下,点的对应点的坐标为________,点的对应点的坐标为________.26. (8分)已知矩形与矩形是位似图形,为位似中心.已知矩形的周长为,,,求与的长.27. (8分)要制作两个形状相同的三角形框架,其中一个三角形框架的三边长分别为、、,另一个三角形框架的一边长为,它的另外两边长分别可以为多少?28.(8分) 如图,在中,,,,动点(与点,不重合)在边上,交于点.(1)当的面积与四边形的面积相等时,求的长;(2)当的周长与四边形的周长相等时,求的长;(3)试问在上是否存在点,使得为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出的长.参考答案与试题解析人教版九年级数学下册复习第27章相似单元测试卷一、选择题(本题共计10 小题,每题3 分,共计30分)1.【答案】A【考点】比例的性质【解析】根据等式的性质,可得答案.【解答】、两边都除以,得,故符合题意;、两边除以不同的整式,故不符合题意;、两边都除以,得,故不符合题意;、两边除以不同的整式,故不符合题意;2.【答案】A【考点】比例线段比例的性质【解析】理解成比例线段的概念,注意在线段两两相乘时,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等.【解答】解:根据两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.所给选项中,只有中,,四条线段成比例,故选:.3.【答案】C【考点】相似三角形的性质【解析】根据三角形的内角和等于求出,再根据相似三角形对应角相等可得.【解答】解:在中,,∵,∴.故选.4.【答案】D【考点】比例线段【解析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.对选项一一分析,排除错误答案.【解答】解:、,故选项错误;、,故选项错误;、,故选项错误;、,故选项正确.故选.5.【答案】D【考点】黄金分割【解析】根据黄金分割的概念得到较长线段根据黄金分割的概念得到较长线段,再根据,即可得出答案.【解答】解:∵是的黄金分割点,∴较长线段,∵,∴,∴较短的线段;故选.6.【答案】B【考点】相似三角形的判定【解析】根据,可以判定图中所有的三角形相似,即可得出与相似的三角形.【解答】解:,∴,,∵,∴,∴与相似三角形有对.故选.7.【答案】C【考点】黄金分割【解析】根据人的满意温度与正常体温的比是黄金分割比,可知该温度约为.【解答】解:∵人的满意温度与正常体温的比是黄金分割比,而正常人的体温一般在,∴人的满意温度约为.故选.8.【答案】D【考点】平行线分线段成比例【解析】由,根据比例的性质,可得,又由,根据平行线分线段成比例定理,即可求得的长.【解答】解:∵,∴,又∵,∴,∴.故选.9.【答案】C【考点】相似图形相似三角形的判定【解析】相似三角形的对应边之比等于相似比,据此即可解答.【解答】解:因为的各边都分别扩大到原来的倍,得到,那么的各边为的倍,即与的相似比为.故选 . 10.【答案】 C【考点】比例的性质 【解析】根据比例的性质,对所给选项进行整理,找到不一定正确的选项即可. 【解答】解: 、∵,∴,即,正确,不符合题意;、∵,∴,即,正确,不符合题意;、∵,∴ , ,∴,错误,符合题意,、∵ 、 、正确,∴ 相除可得,正确,不符合题意; 故选 .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 11.【答案】【考点】相似多边形的性质 【解析】首先设 ,则 ,进而利用矩形 与矩形 是相似的矩形,则,进而求出即可. 【解答】解:设 ,则 ,∵ 矩形 与矩形 是相似的矩形, ∴,人教版九年级下册数学《相似》单元测试(Word 版有答案)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为34,则△ABC 与△DEF 对应中线的比为( )A.34B.43C.916D.169 2.已知b a =513,则a -b a +b的值是( )A.23B.32C.94D.493.如图,在四边形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O.若AD =1,BC =3,则AO CO 的值为( )A.12B.13C.14D.194.如图,在△ABC 中,DE ∥BC ,DE 分别与AB ,AC 相交于点D ,E.若AD =12,DB =4,则DE ∶BC 的值为( )A.23B.12C.34D.355.如图,不能判定△AOB 和△DOC 相似的条件是( )A .AO ·CO =BO ·DO B.AO DO =ABCDC .∠A =∠D D .∠B =∠C6.如图,矩形ABCD ∽矩形ADFE ,AE =1,AB =4,则AD =( )A .2B .2.4C .2.5D .37.已知如图①,②中各有两个三角形,其边长和角的度数如图上标注,则对图①,②中的两个三角形,下列说法正确的是( )A .只有①相似B .只有②相似C .都不相似D .都相似8.如图,在8×4的矩形网格中,每个小正方形的边长都是1.若△ABC 的三个顶点在图中相应的格点上,图中点D ,E ,F 也都在格点上,则下列与△ABC 相似的三角形是( )A .△ACDB .△ADFC .△BDFD .△CDE9.如图,点M 在BC 上,点N 在AM 上,CM =CN ,AM AN =BMCM,下列结论正确的是( )A .△ABM ∽△ACB B .△ANC ∽△AMB C .△ANC ∽△ACMD .△CMN ∽△BCA10.如图,在△ABC 中,DE ∥BC ,DF ∥AC ,EG ∥AB ,且AE ∶EC =3∶2.若BC =10,则FG 的长为( )A.1 B.2 C.3 D.411.阳光通过窗口AB照射到室内,在地面上留下2.7米的亮区DE(如图所示),已知亮区到窗口下的墙角的距离EC=8.7米,窗口高AB=1.8米,则窗口底边离地面的高BC为( )A.4米 B.3.8米 C.3.6米 D.3.4米12.在Rt△ABC和Rt△DEF中,已知∠C=∠F=90°,在下列条件中:①∠A=30°,∠E =60°;②AC=5,BC=4,DF=15,EF=12;③AB=5,AC=3,DE=10,DF=6;④AC∶AB =1∶3,DF=a,DE=3a.能够判断Rt△ABC∽Rt△DEF的有( )A.1个 B.2个 C.3个 D.4个13.如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点重合.若AB=2,BC=3,则△FCB′与△DGB′的面积之比为( )A.9∶4 B.16∶9 C.4∶3 D.3∶214.如图,将△ABC的高AD四等分,过每一个分点作底边的平行线,把三角形的面积分成四部分S1,S2,S3,S4,则S1∶S2∶S3∶S4等于( )A.1∶2∶3∶4 B.2∶3∶4∶5 C.1∶3∶5∶7 D.3∶5∶7∶9 15.如图,在△ABC中,AC=BC,CD是边AB上的高线,且有2CD=3AB=6,CE=EF=DF,则下列判断中不正确的是( )A.∠AFB=90° B.BE= 5C.△EFB∽△BFC D.∠ACB+∠AEB=45°16.如图1,在Rt△ABC中,∠ACB=90°,点P以每秒1 cm的速度从点A出发,沿折线AC —CB运动,到点B停止,过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图像如图2所示.当点P运动5秒时,PD的长是( )A.1.5 cm B.1.2 cm C.1.8 cm D.2 cm二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.如图,已知AD∥BE∥CF,且AB=4,BC=5 ,EF=4,则DE=.18.如图,已知△OAB与△OA′B′是位似比为1∶2的位似图形,点O为位似中心.若△OAB 内一点P(x,y)与△OA′B′内一点P′是一对对应点,则点P′的坐标是.19.如图,在△ABC 中,AB =AC =10,BC =16,点D 是边BC 上一动点(不与B ,C 重合),∠ADE =∠B =α,DE 交AC 于点E.则当BD =4时,CE = ;当∠AED =90°时,BD = . 三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)如图,矩形ABCD 中,AB =3,BC =6,点E 在对角线BD 上,且BE =1.8,连接AE 并延长交DC 于点F ,求CFCD的值.21.(本小题满分9分)如图,△ABC 的顶点坐标分别为A(1,1),B(2,3),C(3,0).(1)以点O 为位似中心画△DEF ,使它与△ABC 位似,且位似比为2;(2)在(1)的条件下,若M(a ,b)为△ABC 边上的任意一点,则△DEF 的边上与点M 对应的点M ′的坐标为 .22.(本小题满分9分)已知:如图,在△ABC 中,BC =10,BC 边上的高h =5,点E 在边AB 上,过点E 作EF ∥BC ,交AC 边于点F ,点D 为BC 上一点,连接DE ,DF ,△DEF 的面积为4,求点E 到BC 的距离.23.(本小题满分9分)如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于点E,交AC延长线于点F.求证:(1)△ADF∽△EDB;(2)CD2=DE·DF.24.(本小题满分10分)小明想利用太阳光测量楼高,他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2 m,CE =0.8 m,CA=30 m(点A,E,C在同一直线上).已知小明的身高EF是1.7 m,请你帮小明求出楼高AB.(结果精确到0.1 m)25.(本小题满分10分)如图,在△ABC中,BC=8 cm,AC=6 cm,点P从B出发,沿人教版数学九年级下册第二十七章相似章末专题训练人教版数学九年级下册第二十七章相似章末专题训练一、选择题1.下列各组图形相似的是( B )A.B.C.D.2.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( C )A.360元B.720元C.1080元D.2160元3.如图,直线l1∥l2∥l3,直线AC分别交,l1,l2,l3于点A,B,C,直线DF分别交,l1,l2,l3于点D,E,F.若DE=3,EF=6,AB=4,则AC的长是( D )A. 6B. 8C. 9D. 124.如图,已知DE∥BC,EF∥AB,则下列比例式错误的是( C )A. B.C. D.5.在△ABC和△DEF中,AB=AC,DE=DF,根据下列条件,能判断△ABC和△DEF相似的是( B )A.=B.=C.∠A=∠ED.∠B=∠D6.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有( C )A.1对B.2对C.3对D.4对7.如图,将一张直角三角形纸片BEC的斜边放在矩形ABCD的BC边上,恰好完全重合,BE、CE分别交AD于点F、G,BC=6,AF∶FG∶GD=3∶2∶1,则AB的长为( C )A. 1B.C.D. 28. 下列说法正确的是( A )A. 位似图形一定是相似图形B. 相似图形一定是位似图形C. 两个位似图形一定在位似中心的同侧D. 位似图形中每对对应点所在的直线必互相平行9.已知△ABC∽△DEF,△ABC的面积为1,△DEF的面积为4,则△ABC与△DEF的周长之比为( A )A. 1∶2B. 1∶4C. 2∶1D. 4∶110. 如图,△ABC∽△DEF,相似比为1∶2.若BC=1,则EF的长是( D )A.1 B.2 C.3 D.4二、填空题11.如图所示,C为线段AB上一点,且满足AC∶BC=2∶3,D为AB的中点,且CD=2 cm,则AB=________ cm.【答案】20则海口与三12.在比例尺为1:6 000 000 的海南地图上,量得海口与三亚的距离约为3.7 厘米,亚的实际距离约为千米.【答案】22213.在△ABC中,MN∥BC分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为__________.【答案】114.如图,在▱ABCD 中,对角线AC 、BD 相交于点O ,在BA 的延长线上取一点E ,连接OE 交AD 于点F.若CD =5,BC =8,AE =2,则AF = .【答案】16915.在△ABC 中,AB =6 cm ,AC =5 cm ,点D 、E 分别在AB 、AC 上.若△ADE 与△ABC 相似,且S △ADE ∶S 四边形BCED =1∶8,则AD =__________ cm. 【答案】2或 三、解答题16. 已知四条线段a ,b ,c ,d 的长度,试判断它们是否成比例: (1)a =16 cm,b =8 cm,c =5 cm,d =10 cm; (2)a =8 cm,b =5 cm,c =6 cm,d =10 cm.(1) 【答案】∵8×10=80,16×5=80,∴bd =ac.∴能够成比例. (2) 【答案】∵8×6=48,10×5=50,∴不能够成比例.17.问题背景:在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息如图1:甲组:测得一根直立于平地,长为80 cm 的竹竿的影长为60 cm ; 如图2:乙组:测得学校旗杆的影长为900 cm ;如图3:丙组:测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为350 cm ,影长为300 cm. 解决问题:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度?(2)如图3,设太阳光线MH 与⊙O 相切于点M ,请根据甲、丙两组得到的信息,求景灯灯罩的半径?【答案】解(1)∵同一时刻物高与影长成正比,∴=,即=,解得DE=1 200 cm;(2)连接OM,设OM=r,∵同一时刻物高与影长成正比,∴=,即=,解得NG=400 cm,在Rt△NGH中,NH===500 cm,设⊙O的半径为r,∵MH与⊙O相切于点M,∴OM⊥NH,∴∠NMO=∠NGH=90°,又∵∠ONM=∠GNH,∴△NMO∽△NGH,∴=,即=,又∵NO=NK+KO=(NG-KG)+KO=400-350+r=50+r,∴500r=300(50+r),解得r=75 cm.故景灯灯罩的半径是75 cm.18.如图已知,在△ABC中,CD⊥AB,BE⊥AC,BE交CD于点O.求证:△ABE∽△OCE.证明:因为CD⊥AB,BE⊥AC,所以∠AEB=∠ADC=90°.又∠A=∠A,所以∠ABE=∠OCE.又因为∠AEB=∠OEC,所以△ABE∽△OCE.18.如图所示,△ABC是等边三角形,点D、E分别在BC、AC上,且CE=BD,BE、AD相交于点F.求证:(1)△ABD≌△BCE;(2)△AEF∽△ABE.【答案】证明 (1)∵△ABC 是等边三角形, ∴AB =BC ,∠ABD =∠C =∠BAC =60°, 在△ABD 和△BCE 中,∴△ABD ≌△BCE (SAS); (2)∵△ABD ≌△BCE , ∴∠BAD =∠CBE , ∴∠EAF =∠ABE , ∵∠AEF =∠BEA , ∴△AEF ∽△ABE .19. 如图,在平面直角坐标系中,△ABC 的顶点坐标为A (-2,3),B (-3,2),C (-1,1).(1)若将△ABC 向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A 1B 1C 1; (2)画出△A 1B 1C 1绕原点旋转180°后得到的△A 2B 2C 2;(3)△A'B'C'与△ABC 是位似图形,请写出位似中心的坐标: ; (4)顺次连接C ,C 1,C',C 2,所得到的图形是轴对称图形吗? (1) 【答案】如答图.(2) 【答案】如答图.(3) 【答案】(0,0)(4) 【答案】如答图,所得图形是轴对称图形.20.如图,△ABC、△DEP是两个全等的等腰直角三角形,∠BAC=∠PDE=90°.(1)若将△DEP的顶点P放在BC上(如图1),PD、PE分别与AC、AB相交于点F、G.求证:△PBG∽△FCP;(2)若使△DEP的顶点P与顶点A重合(如图2),PD、PE与BC相交于点F、G.试问△PBG与△FCP还相似吗?为什么?【答案】(1)证明如图1,∵△ABC、△DEP是两个全等的等腰直角三角形,∴∠B=∠C=∠DPE=45°,∴∠BPG+∠CPF=135°,在△BPG中,∵∠B=45°,∴∠BPG+∠BGP=135°,∴∠BGP=∠CPF,∵∠B=∠C,∴△PBG∽△FCP;(2)解△PBG与△FCP相似.理由如下:如图2,∵△ABC、△DEP是两个全等的等腰直角三角形,∴∠人教版九年级下册数学《第27章相似》单元测试卷(解析版)一.选择题(共10小题)1.若a:b=3:2,且b2=ac,则b:c=()A.4:3B.3:2C.2:3D.3:42.下列各组中的四条线段成比例的是()A.a=,b=3,c=2,d=B.a=4,b=6,c=5,d=10C.a=2,b=,c=2,d=D.a=2,b=3,c=4,d=13.已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()A.AB2=AC•BC B.BC2=AC•BC C.AC=BC D.BC=AC 4.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若AD:DB=3:2,则AE:AC等于()A.3:2B.3:1C.2:3D.3:55.将直角三角形三边扩大同样的倍数,得到的新的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形6.如果两个相似多边形的面积比为4:9,那么它们的周长比为()A.4:9B.2:3C.:D.16:817.两三角形的相似比是2:3,则其面积之比是()A.:B.2:3C.4:9D.8:278.如图所示,每个小正方形的边长均为1,则下列A、B、C、D四个图中的三角形(阴影部分)与△EFG相似的是()A.B.C.D.9.如图,在△ABC中,已知∠ADE=∠B,则下列等式成立的是()A.B.C.D.10.如图,是小孔成像原理的示意图,根据图所标注的尺寸,这支蜡烛在暗盒中所成的像CD的长是()A.B.C.D.1 cm二.填空题(共5小题)11.若,则=.12.如果在比例尺为1:1000000的地图上,A、B两地的图上距离是5.8cm,那么A、B两地的实际距离是km.13.若线段AB=6cm,点C是线段AB的一个黄金分割点(AC>BC),则AC的长为cm (结果保留根号).14.已知:AM:MD=4:1,BD:DC=2:3,则AE:EC=.15.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的倍.三.解答题(共4小题)16.已知a:b:c=2:3:4,且2a+3b﹣2c=10,求a,b,c的值.17.某考察队从营地P处出发,沿北偏东60°前进了5千米到达A地,再沿东南方向前进到达C地,C地恰好在P地的正东方向.回答下列问题:(1)用1cm代表1千米,画出考察队行进路线图;(2)量出∠PAC和∠ACP的度数(精确到1°);(3)测算出考察队从A到C走了多少千米?此时他们离开营地多远?(精确到0.1千米).18.如图,△ABC中,AB=AC,∠A=36°,CE平分∠ACB交AB于点E,(1)试说明点E为线段AB的黄金分割点;(2)若AB=4,求BC的长.19.如图,l1∥l2∥l3,AB=3,AD=2,DE=4,EF=7.5.求BC、BE的长.2019年人教版九年级下册数学《第27章相似》单元测试卷参考答案与试题解析一.选择题(共10小题)1.若a:b=3:2,且b2=ac,则b:c=()A.4:3B.3:2C.2:3D.3:4【分析】根据比例的基本性质,a:b=3:2,b2=ac,则b:c可求.【解答】解:∵b2=ac,∴b:a=c:b,∵a:b=3:2,∴b:c=a:b=3:2.故选:B.【点评】利用比例的基本性质,对比例式和等积式进行互相转换即可得出结果.2.下列各组中的四条线段成比例的是()A.a=,b=3,c=2,d=B.a=4,b=6,c=5,d=10C.a=2,b=,c=2,d=D.a=2,b=3,c=4,d=1【分析】根据比例线段的概念,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等即可得出答案.【解答】解:A.×3≠2×,故本选项错误;B.4×10≠5×6,故本选项错误;C.2×=×2,故本选项正确;D.4×1≠3×2,故本选项错误;故选:C.【点评】此题考查了比例线段,理解成比例线段的概念和变形是解题的关键,注意在线段两两相乘的时候,要让最小的和最大的相乘,另外两条相乘,看它们的积是否相等进行判断.3.已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()A.AB2=AC•BC B.BC2=AC•BC C.AC=BC D.BC=AC 【分析】根据黄金分割的定义得出=,从而判断各选项.【解答】解:∵点C是线段AB的黄金分割点且AC>BC,∴=,即AC2=BC•AB,故A、B错误;∴AC=AB,故C错误;BC=AC,故D正确;故选:D.【点评】本题主要考查黄金分割,掌握黄金分割的定义和性质是解题的关键.4.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若AD:DB=3:2,则AE:AC等于()A.3:2B.3:1C.2:3D.3:5【分析】由DE∥CB,根据平行线分线段成比例定理,可求得AE、AC的比例关系.【解答】解:∵DE∥BC,AD:DB=3:2,∴AE:EC=3:2,∴AE:AC=3:5.故选:D.【点评】此题主要考查了平行线分线段成比例定理,根据已知得出AE与EC的关系是解题关键.5.将直角三角形三边扩大同样的倍数,得到的新的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形【分析】因为直角三角形三边扩大同样的倍数,而角的度数不会变,所以得到的新的三角形是直角三角形.【解答】解:因为角的度数和它的两边的长短无关,所以得到的新三角形应该是直角三角形,故选B.【点评】主要考查“角的度数和它的两边的长短无关”的知识点.6.如果两个相似多边形的面积比为4:9,那么它们的周长比为()A.4:9B.2:3C.:D.16:81【分析】直接根据相似多边形周长的比等于相似比,面积的比等于相似比的平方进行解答即可.【解答】解:∵两个相似多边形面积的比为4:9,∴两个相似多边形周长的比等于2:3,∴这两个相似多边形周长的比是2:3.故选:B.【点评】本题考查的是相似多边形的性质,即相似多边形周长的比等于相似比,面积的比等于相似比的平方.7.两三角形的相似比是2:3,则其面积之比是()A.:B.2:3C.4:9D.8:27【分析】根据相似三角形的面积比等于相似比的平方计算即可.【解答】解:∵两三角形的相似比是2:3,∴其面积之比是4:9,故选:C.【点评】本题考查的是相似三角形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.8.如图所示,每个小正方形的边长均为1,则下列A、B、C、D四个图中的三角形(阴影部分)与△EFG相似的是()A.B.C.D.【分析】根据相似三角形的判定,易得出△ABC的三边的边长,故只需分别求出各选项中三角形的边长,分析两三角形对应边是否成比例即可.【解答】解:∵小正方形的边长为1,∴在△ABC中,EG=,FG=2,EF=,A中,一边=3,一边=,一边=,三边与△ABC中的三边不能对应成比例,故两三角形不相似.故A错误;B中,一边=1,一边=,一边=,有,即三边与△ABC中的三边对应成比例,故两三角形相似.故B正确;C中,一边=1,一边=,一边=2,三边与△ABC中的三边不能对应成比例,故两三角形不相似.故C错误;D中,一边=2,一边=,一边=,三边与△ABC中的三边不能对应成比例,故两三角形不相似.故D错误.故选:B.【点评】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.9.如图,在△ABC中,已知∠ADE=∠B,则下列等式成立的是()A.B.C.D.【分析】首先证明△AED∽△ACB,再根据相似三角形的性质:对应边成比例可得答案.【解答】解:∵∠A=∠A,∠ADE=∠B,∴△AED∽△ACB,∴=.故选:A.【点评】此题主要考查了相似三角形的性质与判定,关键是掌握判断三角形相似的方法和相似三角形的性质.10.如图,是小孔成像原理的示意图,根据图所标注的尺寸,这支蜡烛在暗盒中所成的像CD的长是()A.B.C.D.1 cm【分析】据小孔成像原理可知△AOB∽△COD,利用它们的对应边成比例就可以求出CD 之长.【解答】解:如图过O作直线OE⊥AB,交CD于F,依题意AB∥CD∴OF⊥CD∴OE=12,OF=2而AB∥CD可以得△AOB∽△COD∵OE,OF分别是它们的高∴,∵AB=6,∴CD=1,故选:D.【点评】本题考查了相似三角形的应用,解题的关键在于理解小孔成像原理给我们带来的已知条件,还有会用相似三角形对应边成比例.二.填空题(共5小题)11.若,则=.【分析】根据合比定理[如果a:b=c:d,那么(a+b):b=(c+d):d(b、d≠0)]解答即可.【解答】解:∵,∴,即=.故答案为:.【点评】本题主要考查了合比定理:在一个比例里,第一个比的前后项的差与它的后项的比,等于第二个比的前后项的差与它们的后项的比,这叫做比例中的分比定理.12.如果在比例尺为1:1000000的地图上,A、B两地的图上距离是5.8cm,那么A、B两地的实际距离是58km.【分析】实际距离=图上距离:比例尺,根据题意代入数据可直接得出实际距离.【解答】解:根据题意,5.8÷=5800000厘米=58千米.即实际距离是58千米.故答案为:58.【点评】本题考查了比例线段的知识,注意掌握比例线段的定义及比例尺,并能够灵活运用,同时要注意单位的转换.13.若线段AB=6cm,点C是线段AB的一个黄金分割点(AC>BC),则AC的长为3(﹣1)cm(结果保留根号).【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.【解答】解:根据黄金分割点的概念和AC>BC,得:AC=AB=3(﹣1).故本题答案为:3(﹣1).【点评】此题考查了黄金分割点的概念,要熟记黄金比的值.14.已知:AM:MD=4:1,BD:DC=2:3,则AE:EC=8:5.【分析】过点D作DF∥BE,再根据平行线分线段成比例,而为公共线段,作为中间联系,整理即可得出结论.【解答】解:过点D作DF∥BE交AC于F,∵DF∥BE,∴△AME∽△ADF,∴AM:MD=AE:EF=4:1=8:2∵DF∥BE,∴△CDF∽△CBE,∴BD:DC=EF:FC=2:3∴AE:EC=AE:(EF+FC)=8:(2+3)∴AE:EC=8:5.【点评】本题主要考查平行线分线段成比例定理的应用,作出辅助线,利用中间量EF 即可得出结论.15.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的5倍.【分析】由题意一个三角形的各边长扩大为原来的5倍,根据相似三角形的性质及对应边长成比例来求解.【解答】解:∵一个三角形的各边长扩大为原来的5倍,∴扩大后的三角形与原三角形相似,∵相似三角形的周长的比等于相似比,∴这个三角形的周长扩大为原来的5倍,故答案为:5.【点评】本题考查了相似三角形的性质:相似三角形的周长的比等于相似比.。
人教版九年级下册数学第二十七章测试题一、单选题1.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD•AC D.AD AB AB BC2.如图,已知点P是边长为5的正方形ABCD内一点,且PB=3,BF⊥BP于B,若在射线BF上找一点M,使以点B,M,C为顶点的三角形与△ABP相似,BM的值为()A.3B.253C.3或253D.3或53.如图,AD∥BE∥CF,直线m,n与这三条平行线分别交于点A,B,C和点D,E,F,已知AB=5,BC=10,DE=4,则EF的长为()A.12B.9C.8D.44.如图,A、B、C、P、Q、甲、乙、丙、丁都是方格纸中的格点,如果△RPQ∽△ABC,那么点R应是甲、乙、丙、丁四点中的()A .甲B .乙C .丙D .丁5.如图,已知∠ABC =90°,BD ⊥AC 于D ,AB =4,AC =10,则AD =()A .85B .2C 10D .16.若b a =25,则a b a b -+的值为()A .14B .37C .35D .757.如图,在ABC 中,点P 在边AB 上,则在下列四个条件中::ACP B ∠∠=①;APC ACB ∠∠=②;2AC AP AB =⋅③;AB CP AP CB ⋅=⋅④,能满足APC 与ACB 相似的条件是()A .①②④B .①③④C .②③④D .①②③8.如图,DE ∥FG ∥BC ,若DB=4FB ,则EG 与GC 的关系是()A .EG=4GCB .EG=3GC C .EG=52GCD .EG=2GC9.如图,在正方形网格上有两个相似三角形△ABC 和△DEF ,则∠BAC 的度数为()A.105°B.115°C.125°D.135°10.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为()A.12m B.13.5m C.15m D.16.5m二、填空题11.在同一时刻,一杆高为2m,影长为1.2m,某塔的影长为18m,则塔高为_____m.12.若两个相似三角形的周长比是4:9,则对应中线的比是________.13.方格纸中每个小正方形的边长都是单位1,△OAB在平面直角坐标系中的位置如图所示.解答问题:(1)请按要求对△ABO作如下变换:①将△OAB向下平移2个单位,再向左平移3个单位得到△O1A1B1;②以点O为位似中心,位似比为2:1,将△ABC在位似中心的异侧进行放大得到△OA2B2.(2)写出点A1,A2的坐标:_______,________;(3)△OA2B2的面积为_______.14.如图,用长3m、4m、5m的三根木棒正好搭成一个Rt△ABC,AC=3,∠C=90°,用一束垂直于AB的平行光线照上去,AC、BC在AB的影长分别为AD、DB,则AD=_____,BD=_____.15.一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米.则这个建筑的高度是_____m.16.两个相似三角形的面积比为1:9,则它们的周长比为_____.17.如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且43OEEA=,则FGBC=______.18.上午某一时刻,身高1.7米的小刚在地面上的影长为3.4米,则影长26米的旗轩高度为___________米三、解答题19.如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F.(1)如果AB=6,BC=8,DF=7,求EF的长;(2)如果AB:AC=2:5,EF=9,求DF的长.20.已知:平行四边形ABCD,E是BA延长线上一点,CE与AD、BD交于G、F.求证:2CF GF EF=⋅.21.已知:如图,D是AC上一点,BE∥AC,BE=AD,AE分别交BD、BC于点F、G,且∠1=∠2.(1)填空:图中与△BEF全等的三角形是______,与△BEF相似的三角形是_____(不再添加任何辅助线);(2)对(1)中的两个结论选择其中一个给予证明.22.如图,AC是▱ABCD的对角线,在AD边上取一点F,连接BF交AC于点E,并延长BF交CD的延长线于点G.(1)若∠ABF=∠ACF,求证:CE2=EF•EG;(2)若DG=DC,BE=6,求EF的长.23.求证:相似三角形对应边上的中线之比等于相似比.(要求:先画出图形,再根据图形写出已知、求证和证明过程)24.已知如图,E为平行四边形ABCD的边AB的延长线上的一点,DE分别交AC、BC于G、F,试说明:DG是GE、GF的比例中项.25.如图,△ABC与△ADE中,∠C=∠E,∠1=∠2;(1)证明:△ABC∽△ADE.(2)请你再添加一个条件,使△ABC≌△ADE.你补充的条件为:.26.探究:如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥m于点D,CE⊥m于点E,求证:△ABD≌△CAE.应用:如图②,在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC =∠BAC,求证:DE=BD+CE.参考答案1.D【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【详解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴AC ABAB AD,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、ADAB=ABBC不能判定△ADB∽△ABC,故此选项符合题意.故选D.【点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.2.C【分析】由于∠ABC=∠PBF=90°,同时减去∠PBC后可得到∠ABP=∠CBF,若以点B,M,C为顶点的三角形与△ABP相似,那么必有:AB:PB=BC:BM或AB:BP=BM:BC,可据此求得BM的值.【详解】∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC=5;又∵∠PBF=90°,∴∠ABP=∠CBF=90°-∠CBP;若以点B,M,C为顶点的三角形与△ABP相似,则:①AB BMPB BC=,即535BM=,解得BM=253;②AB BCBP BM=,即553BM=,解得BM=3;故选C.【点睛】本题考查的知识点是相似三角形的判定和性质,解题关键是应注意相似三角形的对应顶点不明确时,要分类讨论,不要漏解.3.C【解析】试题解析:∵AD∥BE∥CF,∴AB DEBC EF=,即5410EF=,解得,EF=8,故选C.4.B【详解】∵△RPQ∽△ABC,∴RPQ PQABC BC∆=∆的高的高,即633RPQ∆=的高,∴△RPQ的高为6.故点R应是甲、乙、丙、丁四点中的乙处.故选B.5.A【解析】【分析】根据射影定理每一条直角边是这条直角边在斜边上的射影和斜边的比例中项即可得出BC的长.【详解】根据射影定理得:AB 2=AD•AC ,∴AD=168105=.故选A .【点睛】本题考查射影定理的知识,属于基础题,注意掌握每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.6.B【分析】根据比例设b=2k ,a=3k ,然后代入比例式计算即可得解.【详解】解:∵b a =25∴设b=2k,a=5k,则a b a b -+=5252k k k k -+=37故选B【点睛】本题考查比例的基本性质,解题关键是熟练掌握性质.7.D【分析】根据相似三角形的判定定理,结合图中已知条件进行判断.【详解】当ACP B ∠∠=,A A ∠∠= ,所以APC ∽ACB ,故条件①能判定相似,符合题意;当APC ACB ∠∠=,A A ∠∠= ,所以APC ∽ACB ,故条件②能判定相似,符合题意;当2AC AP AB =⋅,即AC :AB AP =:AC ,因为A A∠=∠所以APC ∽ACB ,故条件③能判定相似,符合题意;当AB CP AP CB ⋅=⋅,即PC :BC AP =:AB ,而PAC CAB ∠∠=,所以条件④不能判断APC 和ACB 相似,不符合题意;①②③能判定相似,故选D .【点睛】本题考查相似三角形的判定,熟练掌握判定定理是解题的关键.8.B【详解】分析:根据平行线分线段成比例定理即可得到答案.详解:∵DE ∥FG ∥BC ,DB=4FB ,∴31EG DF GC FB ===3.故选B .点睛:此题主要考查平行线分线段成比例定理的理解及运用.根据平行线分线段成比例定理解答是解题的关键.9.D【分析】根据相似三角形的对应角相等即可得出.【详解】∵△ABC ∽△EDF ,∴∠BAC =∠DEF ,又∵∠DEF =90°+45°=135°,∴∠BAC =135°,故选:D .【点睛】本题考查相似三角形的性质,解题的关键是找到对应角10.D【分析】利用直角三角形DEF 和直角三角形BCD 相似求得BC 的长后加上小明同学的身高即可求得树高AB.【详解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴BC DC EF DE=,∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴20 0.30.4 BC=,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案为16.5m.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.11.30.【解析】试题分析:设塔高为xm,根据题意可得,解得x=30.考点:投影.12.4:9【分析】相似三角形的面积之比等于相似比的平方.【详解】解:两个相似三角形的周长比是4:9,∴两个相似三角形的相似比是4:9,∴两个相似三角形对应中线的比是4:9,故答案为4:9.13.(1)①图见解析;②图见解析;(2)(0,﹣1),(﹣6,﹣2);(3)10.【解析】试题分析:(1)根据平移的方向和距离作出△O1A1B1;根据位似中心的位置以及位似比的大小作出△OA2B2;(2)根据三角形的位置得出点A1,A2的坐标即可;(3)根据△OA2B2的位置,运用割补法求得△OA2B2的面积即可.试题解析:(1)①如图所示,△O1A1B1即为所求;②如图所示,△OA2B2即为所求;(2)由图可得,点A1,A2的坐标分别为(0,﹣1),(﹣6,﹣2);(3)若以x轴为分割线,则△OA2B2的面积为:12×5×(2+2)=10.考点:作图-位似变换;作图-平移变换.14.95165【分析】由射影定理得到AC2=AD⋅AB,BC2=BD⋅AB,把相关线段的长度代入计算即可.【详解】解:依题意知,AC=3cm,AB=5cm,BC=4cm,∠C=90°.∵CD⊥AB,∴AC2=AD•AB,BC2=BD•AB,则9=5AD,16=5BD,所以AD=95,BD=165.故答案是:95;165.【点睛】本题考查了射影定理:①直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.②每一条直角边是这条直角边在斜边上的射影和斜边的比例中项. 15.24米.【分析】先设建筑物的高为h米,再根据同一时刻物高与影长成正比列出关系式求出h的值即可.【详解】设建筑物的高为h米,由题意可得:则4:6=h:36,解得:h=24(米).故答案为24米.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.16.1:3【详解】已知两个相似三角形的面积比为1:9,相似三角形的面积的比等于相似比的平方,周长的比等于相似比,由此可得这两个三角形的周长比为1:3,故答案为1:3.17.4 7【分析】利用位似图形的性质结合位似比等于相似比得出答案.【详解】四边形ABCD与四边形EFGH位似,其位似中心为点O,且OE4 EA3=,OE4 OA7∴=,则FG OE4 BC OA7==,故答案为4 7.【点睛】本题考查了位似的性质,熟练掌握位似的性质是解题的关键.18.13【分析】影子是光的直线传播形成的,物体、影子与光线组成一直角三角形;利用数学知识(相似三角形的边与边之间对应成比例)计算.【详解】解:由题意,根据光的直线传播,根据相似三角形对应边成比例;由题意可知:=身高旗杆高影长旗杆影长即:1.7=3.426旗杆高∴旗杆高=13m .故答案为13.【点睛】本题考查了相似三角形的知识,解题的关键是正确的构造直角三角形.19.(1)EF =4;(2)DF =15.【分析】(1)根据三条平行线截两条直线,所得的对应线段成比例可得AB DE BC EF=,再由AB=6,BC=8,DF=7即可求出EF 的长;(2)根据三条平行线截两条直线,所得的对应线段成比例可得AB DE BC EF =,再由AB :AC =2:5,EF=9,即可求出EF 的长..【详解】解:(1)∵AD ∥BE ∥CF ,∴AB DE BC EF =,即678EF EF -=,解得:EF =4;(2)∵AD ∥BE ∥CF ,∴AB DE AC DF =,即295DF DF-=,解得;DF =15.【点睛】本题考查的知识点是平行线分线段成比例的知识,解题关键是掌握三条平行线截两条直线,所得的对应线段成比例.20.详见解析【分析】由平行四边形对边互相平行,可得平行线分线段成比例,得出比例式进行等比代换即可得证.【详解】解:∵四边形ABCD 是平行四边形,∴AD BC ∥,AB CD ∥.∴GF DF CF BF =,CF DF EF BF =∴GF CF CF EF=,即2CF GF EF =⋅.【点睛】本题考查证明线段乘积关系,由平行线分线段成比例得到比例式是解决本题的关键.21.(1)△BEF ≌△DAF ;△BEF ∽△GBF ;(2)证明见解析.【解析】【分析】(1)结合图形,根据全等三角形的判定即可得解;根据相似三角形的判定,结合图形找出与△BEF 能够有两组对应角相等的三角形即可;(2)根据两直线平行,内错角相等可得∠1=∠E ,然后利用“角角边”证明△BEF 和△DAF 全等;根据∠1=∠2可得∠2=∠E ,又∠E 为公共角,可以证明△BEF 和△GBF 相似.【详解】(1)解:△BEF ≌△DAF ,△BEF ∽△GBF ;(2)证明:∵BE ∥AC ,∴∠1=∠E ,在△BEF 和△DAF 中,∵()1E BFE ADF BE AD ⎧∠=∠⎪∠=∠⎨⎪=⎩对顶角相等,∴△BEF ≌△DAF (AAS );∵BE ∥AC ,∴∠1=∠E ,∵∠1=∠2,∴∠2=∠E,又∵∠F为公共角,∴△BEF∽△GBF.【点睛】本题考查的知识点是相似三角形的判定,全等三角形的判定,熟练掌握三角形全等的判定方法,相似三角形的判定方法,解题关键是并准确识图找出相关的条件.22.(1)证明见解析;(2)3.【分析】(1)依据等量代换得到∠ECF=∠G,依据∠CEF=∠CEG,可得△ECF∽△EGC,进而得出CE FEGE CE=,即CE2=EF•EG;(2)依据AB=CD=DG,可得AB:CG=1:2,依据AB∥CG,即可得出EG=12,BG=18,再根据AB∥DG,可得192BF BG==,进而得到EF=BF-BE=9-6=3.【详解】解:(1)∵AB∥CG,∴∠ABF=∠G,又∵∠ABF=∠ACF,∴∠ECF=∠G,又∵∠CEF=∠CEG,∴△ECF∽△EGC,∴CE FEGE CE=,即CE2=EF•EG;(2)∵平行四边形ABCD中,AB=CD,又∵DG=DC,∴AB=CD=DG,∴AB:CG=1:2,∵AB∥CG,∴12 AB BECG GE==,即612 GE=,∴EG=12,BG=18,∵AB ∥DG ,∴1BF AB GF DG==,∴BF =12BG =9,∴EF =BF ﹣BE =9﹣6=3.【点睛】本题考查的知识点是相似三角形的判定与性质,平行四边形的性质,解题关键是熟练掌握平行四边形的判定方法与性质.23.证明见解析.【分析】先根据题意画出图形,写出已知,求证,再证明即可.【详解】已知,如图,△ABC ∽△A'B'C',''''''A B B C A C AB BC AC===k ,D 是AB 的中点,D'是A'B'的中点,求证:''C D k CD =.证明:∵D 是AB 的中点,D'是A'B'的中点,∴AD =12AB ,A'D'=12A'B',∴1''''''212A B A D A B AD AB AB ==,∵△ABC ∽△A'B'C',∴''''A B A C AB AC =,∠A'=∠A ,∵A''''D A C AD AC=,∠A'=∠A ,∴△A'C'D'∽△ACD,∴''''C D A CCD AC=k.【点睛】本题考查的知识点是相似三角形的性质,解题关键是注意文字叙述性命题的证明格式. 24.答案见解析【分析】根据平行四边形两条对边平行,得到两对相似三角形,写出对应边成比例,得到两个比例式中各有两条线段的比相等,根据等量代换得到比例式,再转化成乘积式,即可得出答案.【详解】解:∵四边形ABCD是平行四边形,∴DC∥AE,∴DG CG= GE AG∵AD∥BC,∴GF CG= DG AG∴DG GF= GE DG∴DG2=GE•GF,∴DG是GE、GF的比例中项.【点睛】此题考查了平行线分线段成比例,用到的知识点是平行四边形的性质、平行线分线段成比例定理,用到两次等量代换是本题的关键.25.(1)证明见解析;(2)见解析.【分析】(1)由∠1=∠2,证出∠BAC=∠DAE.再由∠C=∠E,即可得出结论;(2)由AAS证明△ABC≌△ADE即可.【详解】(1)∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠DAE.∵∠C=∠E,∴△ABC∽△ADE.(2)补充的条件为:AB=AD(答案不唯一);理由如下:由(1)得:∠BAC=∠DAE,在△ABC和△ADE中,BAC DAEC EAB AD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△ADE;故答案为AB=AD(答案不唯一).【点睛】本题主要考查全等三角形的判定及相似三角形的判定.26.证明见解析【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90o,而∠BAC=90o,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA.则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;(2)利用∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,得出∠CAE=∠ABD,进而得出△ADB≌△CEA即可得出答案.【详解】证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA 中,∴△ADB≌△CEA(AAS);(2)设∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”,“SAS”,“ASA”,“AAS”;本题得出∠CAE=∠ABD证三角形全等是解题关键.。
九年级数学下册《第二十七章相似》单元测试卷(附答案)一、单选题(本大题共12小题,每小题3分,共36分)(本大题共12小题,每小题3分,共36分) 1.下列每个矩形都是由五个同样的小正方形拼合组成,其中ABC和CDE的顶点都在小正方形的顶点上,则ABC与CDE一定相似的图形是()A.B.C.D.2.如图,身高1.2m的小淇晚上在路灯(AH)下散步,DE为他到达D处时的影子.继续向前走8m到达点N,影子为FN.若测得EF=10m,则路灯AH的高度为()A.6m B.7m C.8m D.9m3.如图,若方格纸中每个小正方形的边长均为1,则阴影部分的面积为()A.5B.6C.163D.1734.如图,在边长为1的正方形网格中,ABC与DEF是位似图形,则ABC与DEF的面积比是()A .4:1B .2:1C 2:1D .9:15.如图,取一张长为a ,宽为b 的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a 、b 应满足的条件是( )A .a 2B .a =2bC .a =2D .a =4b6.如图,AD BE CF ∥∥,若2AB =,5AC =,4EF =,则DE 的长度是( )A .6B .23 C .53 D .837.如果23a b =,那么2a b b -的结果是( ) A .12- B .43- C .43 D .12 8.如图,点D 为ABC 边AB 上任一点,DE BC ∥交AC 于点E ,连接BE CD 、相交于点F ,则下列等式中不成立...的是( )A .AD AE DB EC = B .DE DF BC FC = C .DE AE BC EC =D .EF AE BF AC= 9.如图,在平行四边形ABCD 中,点F 是AD 上一点,交AC 于点E ,交CD 的延长线于点G ,若2AF =3FD .则BE EG的值为( )A .35B .25C .23 D .1310.若()450m n m =≠,则下列等式成立的是( )A .45m n =B .54m n =C .45m n =D .54m n = 11.在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC 是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE (不含△ABC ),使得△ADE △△ABC (同一位置的格点三角形△ADE 只算一个),这样的格点三角形一共有( )A .4个B .5个C .6个D .7个12.如图,在平面直角坐标系中,C 为AOB 的OA 边上一点,:1:2AC OC =,过C 作CD OB ∥交AB 于点D ,C 、D 两点纵坐标分别为1、3,则B 点的纵坐标为( )A .4B .5C .6D .7 二、填空题13.如图所示, 用手电来测量古城墙高度,将水平的平面镜放置在点 P 处, 光线从点 A 出发,经过平面镜反射后,光线刚好照到古城墙 CD 的顶端 C 处. 如果 AB BD ⊥, , 1.5CD BD AB ⊥= 米, 1.8BP = 米, 12PD = 米, 那么该古城墙的高度是__________米14.如图,在△ABC 中,AB =9、BC =6,△ACB =2△A ,CD 平分△ACB 交于AB 点D ,点M 是AC 一动点(AM <12AC ),将△ADM 沿DM 折叠得到△EDM ,点A 的对应点为点E ,ED 与AC 交于点F ,则CD 的长度是__________;若ME //CD ,则AM 的长度是___________;15.若1()2b d a c a c ==≠,则b d a c-=-________. 16.如图,在矩形ABCD 中,E 是AD 边上一点,且2AE DE =,BD 与CE 相交于点F ,若DEF 的面积是3,则BCF △的面积是______.17.如图,ABC 与△A B C '''是位似图形,且顶点都在格点上,则位似中心的坐标是________.28.已知0234x y z ==≠,则xy yz zx +的值是________. 29.在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB =2m ,它的影子BC =1.5m ,木竿PQ 的影子有一部分落在了墙上,它的影子QN =1.8m ,MN =0.8m ,木竿PQ 的长度为 _____.20.如图,在平面直角坐标系中,直线1y x =+与x 轴,y 轴分别交于点A ,B ,与反比例函数k y x=的图象在第一象限交于点C ,若AB BC =,则k 的值为______.三、解答题(本大题共5小题,每小题8分,共40分)21.如图,小明同学为了测量路灯OP 的高度,先将长2m 的竹竿竖直立在水平地面上的B 处,测得竹竿的影长3m BE =,然后将竹竿向远离路灯的方向移动5m 到D 处,即5m BD =,测得竹竿的影长5m DF =(AB 、CD 为竹竿).求路灯OP 的高度.22.如图,BD ,AC 相交于点P ,连接AB ,BC ,CD ,DA ,△DAP =△CBP .(1)求证:△ADP △△BCP ;(2)直接回答△ADP 与△BCP 是不是位似图形;(3)若AB =8,CD =4,DP =3,求AP 的长.23.如图,四边形ABCD内接于圆O,AB是直径,点C是BD的中点,延长AD交BC的延长线于点E.(1)求证:CE CD=;(2)若3AB=,3BC=AD的长.24.如图,在ABC中,点D,E,F分别在边AB,AC,BC上,连接DE,EF,已知四边形BFED是平行四边形,DE1 BC4=.(1)若8AB=,求线段AD的长.(2)若ADE的面积为1,求平行四边形BFED的面积.25.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF 保持水平,并且边DE与点B在同一直线上、已知纸板的两条边DF=0.5m,EF=0.3m,测得边DF离地面的高度AC=1.5m,CD=10m,求树高AB.参考答案:1.A 2.A 3.C 4.A 5.B 6.D7.B 8.C 9.A 10.D 11.C 12.C13.10 14.5 2.5 15.1 216.27 17.(9,0)18.9 419.3.2m20.221.路灯OP的高度为7m22.(1)1 (2)不是位似图形;(3)6 23.(1)11 (2)124.(1)2 (2)625.树高AB是9米。
新人教版数学九下教师用书第二十七章《相似》测试题一、选择题(每小题6分,共36分)1、若△ABC∽△DEF,且AB=10 cm,BC=12 cm,DE=5 cm,则EF的长为()(A)4cm (B)5cm (C)6cm (D)7cm2、已知△ABC与△DEF2:1,则△ABC与△DEF的面积比为()(A)1:2 (B)2:1 (C2:1 (D)123、中午12点,身高为165cm的小冰的影长为55cm,同学小雪此时在同一地点的影长为60cm,那么小雪的身高为()(A)185cm (B)180cm (C)170cm (D)160cm4、下列两个图形:①两个等腰三角形;②两个直角三角形;③两个正方形;④两个矩形;⑤两个菱形;⑥两个正五边形.其中一定相似的有()(A)2组(B)3组(C)4组(D)5组5、两个相似三角形的最短边分别是5cm和3cm,它们的周长之差是12cm,那么小三角形的周长为()(A)14cm (B)16cm (C)18cm (D)20cm6、如图,一张矩形报纸ABCD的长AB=acm,宽BC=bcm,E、F分别是AB,CD的中点、将这张报纸沿着直线EF对折后,矩形AEFD的长与宽之比等于矩形ABCD的长与宽之比.则a:b等于()(A2:1 (B)123 1 (D)13二、填空题(每小题6分,共24分)7、如图:已知△ADE∽△ABC,AD=6cm,DB=3cm,BC=9.9cm,∠A=70°,∠B=50°,那么∠AED=____ ,DE=____ .(第七题)(第八题)(第九题)8、如图,在△ABC中,AC>AB,点D在AC上(点D与A、B不重合),若再增加一个条件就能使△ABD∽△ACB,则这个条件是____ .9、在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于D,则△ACD与△BCD的面积之比为____ .10、如图,铁道口栏杆的短臂OD长1.25m,长臂OE长16.5m,当短臂端点下降0.85m时,长臂端点升高了____ m(不计杆的高度)。
第二十七章?相似?全章综合测试题一、选择题1.如下图,在△ABC 中,DE ∥BC ,假设AD =1,DB =2,那么BC DE的值是( ) A .32 B .41 C .31D .21 2.如下图,△ABC 中DE ∥BC ,假设AD ∶DB =1∶2,那么以下结论中正确的选项是( )A .21=BC DE B .21=∆∆的周长的周长ABC ADEC .的面积的面积ABC ADE ∆∆31=D .的周长的周长ABC ADE ∆∆31=3.如下图,在△ABC 中∠BAC =90°,D 是BC 中点,AE ⊥AD 交CB 延长线于E 点,那么以下结论正确的选项是( ) A .△AED ∽△ACB B .△AEB ∽△ACD C .△BAE ∽△ACED .△AEC ∽△DAC4.如下图,在△ABC 中D 为AC 边上一点,假设∠DBC =∠A ,6=BC ,AC =3,那么CD 长为( )A .1B .23 C .2 D .25 5.假设P 是Rt △ABC 的斜边BC 上异于B ,C 的一点,过点P 作直线截△ABC ,截得的三角形与原△ABC 相似,满足这样条件的直线一共有( ) A .1条B .2条C .3条D .4条6.如下图,△ABC 中假设DE ∥BC ,EF ∥AB ,那么以下比例式正确的选项是( )A .BC DEDB AD =B .AD EF BC BF = C .FC BF EC AE =D .BCDE AB EF =7.如下图,⊙O 中,弦AB ,CD 相交于P 点,那么以下结论正确的选项是( ) A .PA ·AB =PC ·PB B .PA ·PB =PC ·PD C .PA ·AB =PC ·CDD .PA ∶PB =PC ∶PD8.如下图,△ABC 中,AD ⊥BC 于D ,对于以下中的每一个条件 ①∠B +∠DAC =90°②∠B =∠DAC③CD :AD =AC :AB ④AB 2=BD ·BC其中一定能断定△ABC 是直角三角形的一共有( ) A .3个 B .2个C .1个D .0个二、填空题9.如图9所示,身高的小华站在距路灯杆5m 的C 点处,测得她在灯光下的影长CD 为,那么路灯的高度AB 为______.10.如下图,△ABC 中,AD 是BC 边上的中线,F 是AD 边上一点,且61=EB AE ,射线CF 交AB 于E 点,那么FDAF等于______. 11.如下图,△ABC 中,DE ∥BC ,AE ∶EB =2∶3,假设△AED 的面积是4m 2,那么四边形DEBC 的面积为______.12.假设两个相似多边形的对应边的比是5∶4,那么这两个多边形的周长比是______.三、解答题13.,如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)作DE∥AB交AC于点E,请再写出另一个与△ABD相似的三角形,并直接写出DE的长.14.:如图,AB是半圆O的直径,CD⊥AB于D点,AD=4cm,DB=9cm,求CB的长.15.如下图,在由边长为1的25个小正方形组成的正方形网格上有一个△ABC,试在这个网格上画一个与△ABC相似,且面积最大的△A1B1C1(A1,B1,C1三点都在格点上),并求出这个三角形的面积.16.如下图,在5×5的方格纸上建立直角坐标系,A(1,0),B(0,2),试以5×5的格点为顶点作△ABC与△OAB相似(相似比不为1),并写出C点的坐标.17.如下图,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D点,OC交AB于E点.(1)求∠D的度数;(2)求证:AC2=AD·CE.18.:如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C点重合),∠ADE=45°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式;(3)当△ADE是等腰三角形时,求AE的长.19.:如图,△ABC 中,AB =4,D 是AB 边上的一个动点,DE ∥BC ,连结DC ,设△ABC的面积为S ,△DCE 的面积为S ′.(1)当D 为AB 边的中点时,求S ′∶S 的值; (2)假设设,,y SS x AD ='=试求y 与x 之间的函数关系式及x 的取值范围.励志赠言经典语录精选句;挥动**,放飞梦想。
第 1 页 共 4 页
第一学期大布中心学校九年级数学
《第二十七章相似三角形》测试题
姓名 班级 得分
一、选择题(每小题3分,共24分)
1、下列说法正确的是( )
A、任意两个等腰三角形都相似 B、任意两个菱形都相似
C、任意两个正五边形都相似 D、对应角相等的两个多边形相似
2、用一个2倍的放大镜照一个△ABC,下列命题中正确的是( )
A.ΔABC放大后角是原来的2倍 B.ΔABC放大后周长是原来的2倍
C.ΔABC放大后面积是原来的2倍 D.以上的命题都不对
3、两个三角形的面积比是1:9,则他们对应边上的高线的比为( )
A、1:9 B、1:3 C、3:1 D、1:3
4、已知,如图1,DE∥BC,AD:DB=1:2,则下列结论不正确的是( )
A、12DEBC B、19ADEABC的面积的面积
C、13ADEABC的周长的周长 D、18ADE的面积四边形BCED的面积
5、
如图2,已知ABCDEF∥∥,那么下列结论正确的是( )
A、ADBCDFCE B、BCDFCEAD C、CDBCEFBE D、CDADEFAF
6、如图3所示,给出下列条件:①BACD;②ADCACB;
③ACABCDBC;④ABADAC2。其中单独能够判定ABCACD△∽△的
个数为( )
A、1个 B、2个 C、3个 D、4个
7、如图4,为了测量一池塘的宽DE,在岸边找一点C,测得CD=30m,
在DC的延长线上找一点A,测得AC=5m,过点A作AB∥DE,交EC的延
长线于B,测得AB=6m,则池塘的宽DE为( )
A、25m B、30m C、36m D、40m
第 2 页 共 4 页
8、如图5,E是□ABCD的边BC延长线上的一点,连结AE交CD于
F,则图中共有相似三角形( )
A、1对 B、2对 C、3对 D、4对
二、填空题(每小题3分,共24分)
9、已知345xyz,则zyyx23 。
10、如图6,若DE∥BC,AD=3cm,DB=2cm,则DEBC ,
ABCS
ADES
。
11、两个相似三角形的面积之比为4:9,则这两个三角形周长之比为 。
12、高6m的旗杆在水平面上的影长为8m,此时测得一建筑物的影长为28m,则该建筑物
的高为 。
13、有一张比例尺为1∶4000的地图上,一块多边形地区的周长是60cm,面积是250cm2,
则这个地区的实际周长 m,面积是 m2。
14、在平面直角坐标系中,已知A(6,3)、B(10,0)两点,以坐标原点O为位似中心,相
似比为13,把线段AB缩小后得到线段A/B/,则A/B/的长度等于____________.
15、一个三角形的三边之比是3:4:5,另一个三角形的最短的边长
为6,另两边长为 时,这两个三角形相似。
16、如图7,已知△ABC周长为1,连结△ABC三边中点构成第二
个三角形,再连结第二个三角形三边中点构成第三个三角形,以此
类推,第10个三角形的周长为 。
三、解答题(共52分)
17、(10分)如图,△ABC在方格纸中
(1)请在方格纸上画出平面直角坐标系,
使A(2,3),C(6,2),并求出B点坐标;
(2)以原点O为位似中心,相似比为2,
在第一象限内将△ABC放大,画出放大后的
图形△A′B′C′;
第 3 页 共 4 页
18、(10分)如图,△ABC内接于⊙O,AD是△ABC的边BC上的高,AE是⊙O的直径,连
接BE,△ABE与△ADC相似吗?请证明你的结论。
19、(10分)如图所示,AB是斜靠在墙壁上的长梯,梯脚B距墙1.6米,梯上点D距墙
1.4米,BD长为0.55米,求梯子的长。
20、(10分)如图为了估算河的宽度,我们可以在河对岸选定一个目标点为A,再在河的
这一边选点B和C,使AB⊥BC,然而再选点E,使EC⊥BC,确定BC与AE的交点为D,测
得BD=120m,DC=60m,EC=50m,你能求出两岸之间AB的大致距离吗?(10分)
第 4 页 共 4 页
21、(12分)如图,已知AB是O⊙的直径,过点O作弦BC的平行线PO,交过点A的切
线AP于点P,连结AC.
(1)求证:ABCPOA△∽△;(2)若2OB,72OP,求BC的长.
22、(附加题20分)正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当
M点在BC上运动时,保持AM
和MN垂直,
(1)证明:RtRtABMMCN△∽△;
(2)设BMx,梯形ABCN的面积为y,求y与x之间的函数关系式;
当M点运动到什么位置时,四边形ABCN面积最大,并求出最大面积;
(3)当M点运动到什么位置时RtRtABMAMN△∽△,求x的值。