函数及其表示(公开课)
- 格式:ppt
- 大小:712.00 KB
- 文档页数:15
高中数学人教A版必修1第一章《12函数及其表示通用》优质课公开课教案教师资格证面试试讲教案高中数学人教A版必修1第一章《函数及其表示通用》优质课公开课教案一、教学目标1. 理解函数的定义,能够用恰当的方式描述函数的特点;2. 掌握用图象和方程表示函数的方法;3. 能够利用函数式关系解决实际问题。
二、教学重难点1. 函数的定义和特点;2. 函数图象和函数方程的表示方法;3. 实际问题转化为函数式关系的解决方法。
三、教学准备1. 教师准备(1)白板、黑板笔;(2)教材、教辅资料和多媒体资源。
2. 学生准备(1)预习上述知识点;(2)听课和做笔记。
四、教学过程1. 探究新课(15分钟)(1)引入新知识,谈论函数在什么情况下会出现;(2)引导学生讨论什么是自变量和因变量;(3)通过举例子,引导学生了解函数的定义。
2. 学习新知(30分钟)(1)教师讲解并示范如何用图象和方程表示函数;(2)指导学生进行练习,巩固理论知识。
3. 整合知识(20分钟)(1)教师通过例题展示如何将实际问题转化为函数式关系;(2)鼓励学生提问,并进行讨论。
4. 拓展延伸(15分钟)(1)教师展示一些有趣的数学问题,引导学生思考并解决;(2)鼓励学生独立思考和探索,发展数学思维。
五、课堂小结(10分钟)(1)教师对本节课进行总结,回顾重要概念和方法;(2)鼓励学生提问,解决疑惑。
六、作业布置(5分钟)(1)布置相关习题,巩固所学知识;(2)要求学生自主学习,并提出问题。
七、教学反思本节课通过启发学生的思维、解决实际问题,激发了学生的学习兴趣和积极性。
在教学过程中,我注意提问的方式和节奏的掌握,使得学生能够主动思考和回答问题。
同时,我也鼓励学生们互相合作,共同解决问题,培养了他们的团队合作精神。
总结起来,本节课培养了学生的数学思维和解决问题的能力,使他们对函数及其表示通用有了更深入的理解。
在今后的教学中,我将继续提倡学生自主学习和探索,培养他们的创造力和分析能力。
《函数的概念及其表示(第二课时)》教学设计◆教学目标1.能求简单函数的定义域,会求函数值,提升学生的数学运算素养.2.在理解函数概念的基础上,理解相同函数的含义,掌握相同函数的判定步骤,提升学生的数学抽象素养.3.了解区间的含义,能进行区间、不等式与数轴表示的相互转化,提升学生的直观想象素养.◆教学重难点◆教学重点:在理解函数概念的基础上,理解相同函数的含义,掌握相同函数的判定步骤.教学难点:体会函数记号的含义.◆课前准备PPT课件.◆教学过程一、复习引入问题1:在上一小节里,我们重新学习了函数的概念,请你默写这个概念.师生活动:学生可能并不能逐字逐句默写,但是只要抓住它的三个要素就予以肯定.预设的答案:对于数集A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.设计意图:通过默写为本节课的学习奠定基础.引语:函数是本章乃至整个高中数学的核心内容,概念就是它的基石,稳定的基石是搭建知识大厦的前提,我们这节课继续深入研究函数的概念.(板书:函数的概念)二、新知探究1.研读课本,理解区间的概念(1)求函数f (x )的定义域; (2)求f (-3),f (23)的值;(3)当a >0时,求f (a ),f (a -1)的值.师生活动:学生独立完成,老师挑选有代表性的解答进行投影点评,最后用PPT 演示教师点拨:在同时研究两个或多个函数时,常用不同符号表示不同的函数,除用符号f (x )外,还常用g (x )、F (x )、G (x )等符号来表示.设计意图:通过例1的学习,让学生对函数的定义域、对应关系、以及符号“y =f (x )”有具体的感受,能更透彻的理解,并且在求解定义域过程中,熟悉区间的使用.例2 下列函数中哪个与函数y =x 是同一个函数? (1)y =(x )2; (2)u =3v 3; (3)y =x 2;(4)m =n 2n.师生活动:老师先引导学生思考同一个函数的含义,然后让学生尝试判断,在判断中发现问题:正确化简解析式,定义域优先原则的应用以及函数记号的理解等,老师应该给予及时的解答与帮助.预设的答案:解:(1)y =(x )2=x (x ∈[0,+∞)),它与函数y =x (x ∈R )虽然对应关系相同,但是定义域不相同,所以这个函数与函数y =x (x ∈R )不是同一个函数.(2)u =3v 3=v (v ∈R ),它与函数y =x (x ∈R )不仅对应关系相同,而且定义域也相同,所以这个函数与函数y =x (x ∈R )是同一个函数.(3)y =x2=|x |=⎩⎪⎨⎪⎧-x ,x <0,x ,x ≥0,,它与函数y =x (x ∈R )虽然定义域都是实数集R ,但是当x <0时,它的对应关系与y =x (x ∈R )不相同,所以这个函数与函数y =x (x ∈R )不是同一个函数.(4)m =n 2n=n (n ∈(-∞,0)∪(0,+∞)),它与函数y =x (x ∈R )的对应关系相同但定义域不相同,所以这个函数与函数y =x (x ∈R )不是同一个函数.追问1:两个函数相等的含义是什么?(函数的三要素都相等.值域是由定义域和对应关系决定的,所以只要两个函数的定义域和对应关系一致,这两个函数就相等.)追问2:你能总结判断两个函数是否相同的步骤吗?(先求函数的定义域,如果定义域不相同,则不是相同函数,结束判断;如果相等,则判断对应关系是否相同,定义域和对应关系均相等才能得出相等的结论.高中阶段对应关系一般都是以解析式的形式给出,我们一般需要先考虑化简解析式再判断,若解析式也相等,则是相同函数,若否,则不是相同函数.)追问3:你如何理解函数u =3v 3的对应关系?(因为u ==v (v ∈R ),所以对于R 中的任一实数v ,通过对应关系u =v ,在R 中都有唯一的一个实数u 与之对应,因为u =v ,所以就是任一实数与它本身的对应.)追问4:你能结合函数的图象验证你的判断吗?(能.老师PPT 投影图象,让学生论述.比如在(1)中,y =(x )2的图象为一条射线,对应定义域为[0,+∞),对比y =x 的图象,缺少第三象限的部分.)yx–1–2–3123456–1–2–3–4123456O(1)y =(x )2y x–1–2–3–41234–1–2–3–41234O(2)u =3v 3v u教师点拨:对于同一个自变量,对应的函数值相同,就是对应关系一致,这与用什么符号表示无关,再比如:y =x 2(x ∈R ),y =u 2(u ∈R )是同一个函数.设计意图:通过判断函数是否相同来认识函数的整体性,进一步加深对函数概念的理解.借助信息技术从图象角度体会函数的三要素,提高学生解析式与图象表示间的转化能力.三、归纳小结,布置作业问题3:请同学们回顾本节课的内容,回答下列问题: (1)区间是表示什么的符号?(2)在判断两个函数是否相同时,我们需要注意什么?师生活动:学生先独立思考,再由学生代表回答,其他学生依次补充,老师最后总结.预设的答案:(1)区间是用于表示连续数集的符号;(2)定义域相同是函数相等的先决条件,需要优先判断;对应关系相等与否不在于解析式用什么字母符号表示,而在于同一自变量对应的函数值是否相等.设计意图:引导学生对关键内容进行小结,进一步加深对函数概念的理解. 四、目标检测设计 1.求下列函数的定义域:(1)f (x )=14x +7; (2)f (x )=1-x +x +3-1.设计意图:考查函数定义域的求解. 2.已知函数f (x )=3x 3+2x ,(1)求f (2),f (-2),f (2)+f (-2)的值; (2)求f (a ),f (-a ),f (a )+f (-a )的值.yx–1–2–3123456–1–2–3–4–512345O(3)y =x 2 yx–1–2–3–41234–1–2–3–41234O(4)m =n 2nm n。