3机械外文文献
- 格式:pdf
- 大小:54.93 KB
- 文档页数:7
常用研磨机外文文献翻译、中英文翻译、外文翻译Grinding machine is a crucial n processing method that offers high machining accuracy and can process a wide range of materials。
It is suitable for almost all kinds of material processing。
and can achieve very high n and shape accuracy。
even reaching the limit。
The machining accuracy of grinding device is simple and does not require complex ___.2.Types of Grinding MachinesGrinding machines are mainly used for n grinding of workpiece planes。
cylindrical workpiece surfaces (both inside and outside)。
tapered faces inside。
spheres。
thread faces。
and other types of ___ grinding machines。
including disc-type grinding machines。
shaft-type grinding machines。
ic grinding machines。
and special grinding machines.3.Disc-type Grinding MachineThe disc-type grinding machine is a type of grinding machine that uses a grinding disc to grind the ___。
附录翻译部分Lathe and TurningThe Lathe and Its ConstructionA lathe is a machine tool used primarily for producing surfaces of revolution flat edges. Based on their purpose ,construction , number of tools that can simultaneously be mounted , and degree of automation ,lathes or, more accurately, lathe-type machine tools can be classified as follows:(1) Engine lathes(2) Toolroom lathes(3) Turret lathes(4) Vertical turning and boring mills(5) Automatic lathes(6) Special-purpose lathesIn spite of that diversity of lathe-type machine tools, they all have all have common features with respect to construction and principle of operation .These features can best be illustrated by considering the commonly used representative type, the engine lathe. Following is a description of each of the main elements of an engine lathe , which is shown in Fig.11.1.Lathe bed . The lathe bed is the main frame , involving a horizontal beam on two vertical supporis. It is usually made of grey or nodular cast iron to damp vibrations and is made by casting . It has guideways to allow the carriage to slide easily lengthwise. The height of the lathe bed should be appropriate to enable the technician to do his or her jib easily and comfortably.Headstock. The headstock is fixed at the left hand side of the lathe bed and includes the spindle whose axis is parallel to the guideways (the silde surface of the bed) . The spindle is driven through the gearbox , which is housed within the headstock. The function of the gearbox is to provide a number of different spindle speeds (usually 6 up to 18 speeds) . Some modern lathes have headstocks with infinitely variable spindle speeds, which employ frictional , electrical , or hydraulic drives.The spindle is always hollow , I .e ,it has a through hole extending lengthwise. Bar stocks can be fed througth that hole if continous production is adopted . A lso , that hole has a taperedsurface to allow mounting a plain lathe center . The outer surface of the spindle is threaded to allow mounting of a chuck , a face plate , or the like .Tailstock . The tailstock assembly consists basically of three parts , its lower base, an intermediate part, and the quill . The lower base is a casting that can slide on the lathe bed along the guidewayes , and it has a clamping device to enable locking the entire tailstock at any desired location , depending upon the length of the workpiece . The intermediate parte is a casting that can be moved transversely to enable alignment of the axis of the the tailstock with that of the headstock . The third part, the quill, is a hardened steel tube, which can be moved longitudinally in and out of the intermediate part as required . This is achieved through the use of a handwheel and a screw , around which a nut fixed to the quill is can be locked at any point along its travel path by means of a clamping device.The carriage. The main function of the carriage is mounting of the cutting tools and generating longitudinal and /or cross feeds. It is actually an H-shaped block that slides on the lathe bed between the headstock and tailstock while being guided by the V-shaped guideways of the bed . The carriage can be moved either manually or mechanically by means of the apron and either the feed rod or the lead screw.When cutting screw threads, power is provided to the gearbox of the apron by the lead screw. In all other turning operations, it is the feed rod that drives the carriage. The lead screw goes through a pair o half nuts , which are fixed to the rear of the apron . When actuating a certain lever, the half nuts are clamped together and engage with the rotating lead screw as a single nut, which is fed , together with carriage, along the bed . when the lever is disengaged , the half nuts are released and the carriage stops. On the other hand , when the feed rod is used, it supplies power to the apron through a wrom gear . The latter is keyed to feed rod and travels with the apron along the feed rod , which has a keyway extending to cover its whole length. A modern lathe usually has a quick-change gearbox located under the headstock and driven from the spindle through a train of gears. It is connected to both the feed rod and the lead screw and enables selecting a variety of feeds easily and rapidly by simply shifting the appropriate levers, the quick-change gearbox is employed in plain turning, facing and thread cutting operations. Since that gearbox is linked to spindle, the distance that the apron (and the cutting tool) travels for each revolution of the spindle can be controlled and is referred to as the feed.Lathe Cutting ToolsThe shape and geometry of the lathe tools depend upon the purpose for which they are employed. Turning tools can be classified into tow main groups,namely,external cutting tools andinternal cutting tools , Each of these groups include the following types of tools: Turning tools. Turing tools can be either finishing or rough turning tools . Rough turning tools have small nose radii and are used for obtaining the final required dimensions with good surface finish by marking slight depth of cut . Rough turning tools can be right –hand or left-hand types, depending upon the direction of feed. They can have straight, bent, or offset shanks.Facing tools . Facing tools are employed in facing operations for machining plane side or end surfaces. There are tools for machining left-hand-side surfaces and tools for right-hand-side surfaces. Those side surfaces are generated through the use of the cross feed, contrary to turning operations, where the usual longitudinal feed is used.Cutoff tools. Cutoff tools ,which are sometimes called parting tools, serve to separate the workpiece into parts and/or machine external annual grooves.Thread-cutting tools. Thread-cutting tools have either triangular, square, or tranpezoidal cutting edges, depending upon the cross section of the desired thread .Also , the plane angles of these tools must always be identical to those of the thread forms. Thread-cutting tools have straight shanks for external thread cutting and are of the bent-shank type when cutting internal threads .Form tools. Form tools have edges especially manufactured to take a certain form, which is opposite to the desired shape of the machined workpiece . An HSS tools is usually made in the form of a single piece ,contrary to cemented carbides or ceramic , which are made in the form of tipes. The latter are brazed or mechanically fastened to steel shanks. Fig.1indicates an arrangement of this latter type, which includes the carbide tip , the chip breaker ,the pad ,the clamping screw (with a washer and a nut ) , and the shank.. As the name suggests, the function of the chip breaker is to break long chips every now and then , thus preventing the formation of very long twisted ribbons that may cause problems during the machining operations . The carbide tips ( or ceramic tips ) can have different shapes, depending upon the machining operations for which they are to be employed . The tips can either be solid or with a central through hole ,depending on whether brazing or mechanical clamping is employed for mounting the tip on the shank.Fig.1Lathe OperationsIn the following section , we discuss the various machining operations that can be performed on a conventional engine lathe. It must be borne in mind , however , that modern computerized numerically controlled lathes have more capabiblities and do other operations ,such as contouring , for example . Following are conventional lathe operations.Cylindrical turning . Cylindrical turning is the the simplest and the most common of all lathe operations . A single full turn of the workpiece generate a circle whose center falls on the lathe axis; this motion is then reproduced numerous times as a result of the axial feed motion of the tool. The resulting machining marks are , therefore ,a helix having a very small pitch, which is equal to the feed . Consequently , the machined surface is always cylindrical.The axial feed is provided by the carriage or the compound rest , either manually or automatically, whereas the depths of cuts is controlled by the cross slide . In roughing cuts , it is recommended that large depths of cuts (up to 0.25 in. or 6 mm, depending upon the workpiece material) and smaller feeds would be used. On the other hand , very fine feeds, smaller depth of cut (less than 0.05in. , or 0.4 mm) , and high cutting speeds are preferred for finishing cuts.Facing . The result of a facing operation is a flat surface that is either the whole end surface of the workpiece or an annular intermediate surface like a shoulder . During a facing operation ,feed is provided by the cross slide, whereas the depth of cut is controlled by the carriage or compound rest . Facing can be carried out either from the periphery in ward or from the center of the workpiece outward . It is obvious that the machining marks in both cases tack the form of a spiral. Usually, it is preferred to clamp the carriage during a facing operation, since the cutting force tends to push the tool ( and , of course , the whole carriage ) away from the workpiece . In most facing operations , the workpiece is held in a chuck or on a face plate.Groove cutting. In cut-off and groove-cutting operations ,only cross feed of the tool isemployed. The cut-off and grooving tools , which were previously discussed, are employed.Boring and internal turning . Boring and internal are performed on the internal surfaces by a boring bar or suitable internal workpiece is solid, a drilling operation must be performed first . The drilling tool is held in the tailstock, and latter is then fed against the workpiece.Taper turning . Taper turning is achieved by driving the tool in a direction that is not paralled to the lathe axis but inclined to it with an angle that is equal to the desired angle of the taper . Following are the different methods used in taper-turning practice:(1)Rotating the disc of the compound rest with an angle to half the apex angle of the cone . Feed is manually provided by cranking the handle of the compound rest . This method is recommended for taper turning of external and internal surfaces when the taper angle is relatively large.(2)Employing special form tools for external , very short ,conical surfaces . The width of the workpiece must be slightly smaller than that of the tool ,and the workpiece is usually held in a chuck or clamped on a face plate . I n this case , only the cross feed is used during the machining process and the carriage is clamped to the machine bed .(3)Offsetting the tailstock center . This method is employed for esternal tamper turning of long workpiece that are required to have small tamper angles (less than 8 ) . The workpiece is mounted between the two centers ; then the tailstock center is shifted a distance S in the direction normal to the lathe axis.(4)Using the taper-turning attachment . This method is used for turning very long workpoece , when the length is larger than the whole stroke of the compound rest . The procedure followed in such cases involves complete disengagement of the cross slide from the carriage , which is then guided by the taper-turning attachment . During this process, the automatic axial feed can be used as usual . This method is recommend for very long workpiece with a small cone angle , i.e. , 8 through 10 .Thread cutting . When performing thread cutting , the axial feed must be kept at a constant rate , which is dependent upon the rotational speed (rpm) of the workpiece . The relationship between both is determined primarily by the desired pitch of the thread to be cut .As previously mentioned , the axial feed is automatically generated when cutting a thread by means of the lead screw , which drives the carriage . When the lead screw rotates a single revolution, the carriage travels a distance equal to the pitch of the lead screw rotates a single revolutional speed of the lead screw is equal to that of the spindle ( i. e . , that of the workpiece ),the pitch of the resulting cut thread is exactly to that of the lead screw . The pitch of the resulting thread being cut therefore always depends upon the ratio of the rotational speeds of the lead scew and the spindle :workpiece of pitch screw lead the of Pitch Desired = screwlead of workpiece the of rpm rpm = spindle-to-carriage gearing ratio This equation is usefully in determining the kinematic linkage between the lathe spindle and the lead screw and enables proper selection of the gear train between them .In thread cutting operations , the workpiece can either be held in the chuck or mounted between the two lathe centers for relatively long workpiece . The form of the tool used must exactly coincide with the profile the thread to be cut , I . e . , triangular tools must be used for triangular threads , and so on .Knurling . knurling is mainly a forming operation in which no chips are prodyced . Tt involves pressing two hardened rolls with rough filelike surfaces against the rotating workpiece to cause plastic deformation of the workpiece metal.Knurling is carried out to produce rough , cylindrical ( or concile )surfaces , which are usually used as handles . Sometimes , surfaces are knurled just for the sake of decoration ; there are different types of patterns of knurls from which to choose .Cutting Speeds and FeedsThe cutting speed , which is usually given in surface feet per minute (SFM), is the number of feet traveled in circumferential direction by a given point on the surface (being cut ) of the workpiece in one minute . The relationship between the surface speed and rpm can be given by the following equation :SMF=πDNWhereD= the diameter of the workpiece in feetN=the rpmThe surface cutting speed is dependent primarily upon the machined as well as the material of the cutting and can be obtained from handbooks , information provided by cutting tool manufacturera , and the like . generally , the SFM is taken as 100 when machining cold-rolled or mild steel ,as 50 when machining tougher metals , and as 200 when machining sofer materials . For aluminum ,the SFMis usually taken as 400 or above . There are also other variables that affect the optimal value of the surface cutting speed . These include the toolgeometry, the type of lubricant or coolant , the feed , and the depth of cut . As soon as the cutting sped is decided upon , the rotational speed (rpm) of the spindle can be obtained as follows :N = DSFW π The selection of a suitable feed depends upon many factors , such as the required surface finish , the depth of cut , and the geometry of the tool used . Finer feeds produce better surface finish ,whereas higher feeds reduce the machining time during which the tool is in direct contact with the workpiece . Therefore ,it is generally recommended to use high feeds for roughing operations and finer feeds for finishing operations. Again, recommend values for feeds , which can be taken as guidelines , are found in handbooks and information booklets provided by cutting tool manufacturers.Here I want to introduce the drilling:Drilling involves producing through or blind holes in a workpiece by forcing a tool , which rotates around its axis , against the workpiece .Consequently , the range of cutting from that axis of rotation is equal to the radius of the required hole .In practice , two symmetrical cutting edges that rotate about the same axis are employed .Drilling operations can be carried out by using either hand drills or drilling machines . The latter differ in size and construction . nevertheless , the tool always rotates around its axis while the workpiece is kept firmly fixed . this is contrary to drilling on a lathe .Cutting Tool for Drilling OperationsIn drilling operations , a cylindrical rotary-end cutting , called a drill , is employed . The drill can have either one or more cutting edges and corresponding flutes , which can be straight or helical . the function of the flutes is to provide outlet passages for the chips generated during the drilling operation and to allow lubricants and coolants to reach the cutting edges and the surface being machined . Following is a survey of the commonly used drills.Twist drill . The twist drill is the most common type of drill .It has two cutting edges and two helical flutes that continue over the length of the drill body , The drill also consist of a neck and a shake that can be either straight or tapered .In the latter case , the shank is fitted by the wedge action into the tapered socket of the spindle and has a tang , which goes into a slot in the spindle socket ,thus acting as a solid means for transmitting rotation . On the other hand , straight –shank drills are held in a drill chuck that is , in turn , fitted into the spindle socket in the same way as tapered shank drills.The two cutting edges are referred to as the lips , and are connected together by a wedge , which is a chisel-like edge . The twist drill also has two margins , which enable proper guidance and locating of the drill while it is in operation . The tool point angle (TPA) is formed by the lips and is chosen based on the properties of the material to be cut . The usual TAP for commercial drills is 118 , which is appropriate for drilling low-carbon steels and cast irons . For harder and tougher metals , such as hardened steel , brasss and bronze , larger TPAs (130 OR 140 ) give better performance . The helix angle of the flutes of the commonly used twist drills ranges between 24 and 30 . When drilling copper or soft plastics , higher values for the helix angle are recommended (between 35 and 45).Twist drills are usually made of high speed steel ,although carbide tipped drills are also available . The size of twist drills used in industrial range from 0.01 up to 3.25 in . (i.e.0.25 up to 80 mm ) .Core drills . A core drill consists of the chamfer , body , neck ,and shank . This type of drill may be have either three or four flutes and an equal number of margins , which ensure superior guidance , thus resulting in high machining accuracy . It can also be seen in Fig 12.2 that a core drill has flat end . The chamfer can have three or four cutting edges or lips , and the lip angle may vary between 90 and 120 . Core drills are employed for enlarging previously made holes and not for originating holes . This type of drill is characterized by greater productivity , high machining accuracy , and superior quality of the drilled surfaces .Gun drills . Gun drills are used for drilling deep holes . All gun drills are straight fluted , and each has a single cutting edge . A hole in the body acts as a conduit to transmit coolant under considerable pressure to the tip of the drill .There are two kinds of gun drills , namely , the center cut gun drill used for drilling blind holes and the trepanning drill . The latter has a cylindrical groove at its center , thus generating a solid core , which guides the tool as it proceeds during the drilling operation.Spade drills . Spade drills are used for drilling large holes of 3.5 in .(90 mm ) or more . Their design results in a marked saving in cost of the tool as well as a tangible reduction in its weight , which facilitates its handling . moreover , this type of drill is easy to be ground .[13]车床和车削车床及它的结构车床是一个主要用来生产旋转表面和端面的机床。
外文原文:Stainless SteelPetro-chemical industry with its own production of some of the features, such as its operating temperature range, low-temperature conditions up to -196 ℃, temperatures can reach more than 500 ℃; operating pressure there is external pressure, vacuum, atmospheric pressure, medium pressure, high pressure, ultra-high pressure (more than 100MPa); In addition, the operating environment in the medium complexity, such as the existence of corrosion, wear and tear, and flammable, explosive, toxic and other solid, gaseous, liquid and a variety of mixed media chloride, sulfide and other salt category. Therefore, the petrochemical industry in the use of stainless steel, the requirements of stainless steel has strong corrosion resistance, including anti-chloride, sulfide and other corrosive salts; resistant to high temperature and low temperature performance. Among them, the petrochemical plant at 500 ~ 600 ℃, the equipment and pipe materials in general to choose a variety of austenitic stainless steel-based, such as 304H, 316,321, such as austenitic stainless steel has been widely used; and for oil exploration, the development of the field of stainless steel with anti-called carbon dioxide, hydrogen sulfide corrosion properties. At present, China's crude oil exploration, development is mainly used in 3Cr, 9Cr, 13Cr, super 13Cr and containing more than Cr22 stainless steel thick-walled, non-magnetic drill collar and drill pipe.At present, China's petrochemical industry in the stainless steel variety of choice, in general to 304 mainly, steel plate thickness of 6 to 22 millimeters, the main polymer used in the construction of storage tanks, heat exchanger shell. In addition, some pieces of the use of reactor tower 316L, TP347, etc., the thickness of 2 ~ 6 mm. Glacial acetic acid and liquid delivery vehicles (train tanker) General use of 304 and 306 plate. In addition, production of the device because of the existence of urea carbamate amine condensate, a highly corrosive, generally stripper, separation, and the use of 316L stainless steel condenser. On the stainless steel clad plate, such plate mainly used in oil refining equipment reaction tower, commonly used for 20R +0 Cr13AL, 16MnR +0 Cr13AL, 20R +0 Cr13 such. Due to the substrate, rehabilitation materials and productionmethods, equipment limitations, domestic composite steel plate thickness, length far from being able to fully meet the demands of the petrochemical industry. In addition, the domestic stainless steel plate splicing, heat treatment, testing and other means yet to be improved.As a result of a wide range of stainless steel, petrochemical industry, currently used for the type of austenitic stainless steel, of which 304 brands of stainless steel plate, tube forgings largest amount, 316,304 L, 316L of the plate, tube, forging a larger amount, ASTM standard TP321, TP347, TP316 brands of boiler tubes, heat exchanger is also gradually increasing dosage. In addition, a special two-way stainless steel as a result of corrosion resistance, Chiang Kai-shek in the petrochemical industry has been rapid promotion and use, of which two-way gradually increasing the amount of stainless steel tubes. At present, China's petrochemical industry in the use of stainless steel is about 70,000 tons, of which stainless steel plate (8 mm or more) the amount of approximately 10,000 tons, stainless steel composite plate is about 15,000 tons, stainless steel seamless steel tube is about 40,000 tons , stainless steel pipe is about5000 tons.Domestic stainless steel in the petrochemical field of application of thereasons for not widespreadAt present, the domestic stainless steel in the petrochemical field of application is not extensive, mainly in the following reasons: First, do not support the issue of standards. China's petrochemical industry has been formed to meet the development needs of the standard system; at home and abroad for high-pressure, high-sulfur, carbon dioxide high "three high" natural gas production equipment, material smelting, manufacturing, testing, testing technology subsidiary norms and standards is still incomplete. Second, product problems. In this regard, mainly stainless steel plate, tube, forging, welding material is not matching. Third, the issue size. Domestic metallurgical industry needs of the petrochemical industry in the thick wide board, large-diameter, thick-walled steel pipe production capacity is very limited. Fourth, quality issues, product qualitystainless steel tube instability. Fifth, research and development problems. New varieties of the domestic stainless steel R & D and production is still unable to meet the petrochemical industry's development needs. Inaddition, the stainless steel research, production and exchange of information between users of the existence of the problem poor. As a result of these factors, the need for stainless steel and petrochemical industries there are many varieties of domestic enterprises can not provide, such as four meters wide of the heavy plate production in China is not yet, there are many forms of stainless steel equipment is imported. In addition, domestic enterprises in product development with foreign enterprises is still lagging behind compared to, for example, some steel companies in Europe every year to launch a dozen new varieties of stainless steel, and Chinese enterprises in this respect, the work is notenough.The five major trends in the petrochemical proposed new requirementsfor stainless steelThe future of China's petrochemical industry will move towards the top five trends in the development of stainless steel products and higherrequirements. First of all, the future of China's oil and gas field exploration and development efforts will further increase. Such as carbon dioxide will be injected back underground ways to reduce carbon dioxide emissions and improve the oil recovery rate. At the same time, China's natural gas exploration and development efforts will be greater than the crude oil exploration and development, and to the high sulfur content, carbon dioxide area development (16% hydrogen sulfide content, carbon dioxide content of about 8%), and will further deepen the depth of wells, land Sham Tseng will exceed the 8000 meters. Second, the petrochemical plant will be large scale. Ethylene production of single device will exceed one million tons; refining single factory refining capacity more than 15 million tons; of purified terephthalic acid (PTA) production capacity of a single plant more than 800,000 tons; stainless steel tanks to the large-scale development. The third is run petrochemical plant will be a long-term development, and gradually overhaul the current cycle of thetransition to 3 years. Fourth, the petrochemical production will diversify the source of materials development. With the improvement of the requirements of environmental protection and energy consumption structure, using natural gas as raw materials of chemical industry is developing rapidly. As a result of natural gas at minus 160 ℃ can be achieved under the conditions of liquefaction, so the need for stainless steel storage and transportation equipment. In addition, as China's LNG imports increase in coastal areas need to receive large-scale construction, working capital and storage facilities, can be expected in this regard will be very large stainless steel consumption.These petrochemical industry development trend of stainless steel products, specifications and varieties have put forward new demands. From anti-corrosion requirements, the petrochemical industry production device temperature, pressure, media are major changes have taken place, stainless steel used in a more harsh environment, anti-corrosion performance by a single change to the composite performance. In the processing performance, the requirements of stainless steel a higher intensity, better toughness, weldability and good processability. In geometry, the requirements of stainless steel products and high precision, width increased, large-diameter steel pipe, steel pipe wall thickness increased. In the standards, stainless steel production as soon as possible with international standards. In addition, the petrochemical industry as a result of each of wells, each set of conditions of service refining device there is a difference, related stainless steel production enterprises should be based on the actual situation in the provision of personalized services. In addition, with the increased usage of stainless steel, stainless steel used in economics is even more important. Therefore, the domestic iron and steel enterprises, especially the steel pipe industry should improve the technological content of products and value-added, high-end product market occupation. At present, many European steel is no longer the production of low value-added oil well pipes, and will focus entirely on high added-tube, the preparation for these high-end products occupied theChinese market. (FocusRecently, China Special Steel Enterprises stainless steel branch of Li Cheng, executive president of the stainless steel industry in talking about China's problems in the development pointed out that the stainless steel to replace imports from the side, although capacity has been able to achieve self-sufficiency, but in fact only part of to replace imports, it is necessary to fully or largely replaced by imports, but also depends on our variety and quality products can meet the various requirements. He also pointed out that the market of fake and shoddy products that seriously endangers the users of stainless steel, it is proposed to increase the relevantdepartments the crackdown.Said Li Cheng, China's stainless steel production capacity from the already self-sufficiency can be achieved, but only a partial substitute for imports. Common market of the four most common grades, namely, 316 and 304 Austenitic. Ferrite 409 and 430, including 304 in the world, accounting for 50 percent of consumption, the use of nearly a hundred years of history. But it is not a single species to the new production of the 304 as an example, in order to meet the varying demands of customers, they will have a brand dozens of varieties, the same as a result of the 304 different varieties in the market price per ton can also be a difference of several hundred dollars to a thousand dollars, we can see the value of a good product, there are markets. This value needs to be done can be. 430 the past two years has developed very rapidly, in fact, this is an in production is not easy to master the varieties, r value of the performance of stamping a crease resistance, it is difficult to achieve, and now the world's more advanced r ≥ 1.2, At a time when there was virtually no punching fold, China and some production plants in both there are still some problems; 409 brands, it seems easier to see the production of components, but it's forming, and welding of the automobile industry to meet the requirements of the development will not be easy.In recent years, the development of China's manufacturing of stainless steel materials for many new requirements, such as power generation, petrochemical, and automobile industries are faced with the newrequirements of the material. Power generation systems need a lot of supercritical required stainless steel pipe, China is now still can not produce, the number of heat exchanger tubes we find it difficult to adapt, petrochemical development needs of some special stainless steel We are also in the trial. Automobile manufacturing, a number of special varieties of high-quality stainless steel requirements, we simply have not yet produced. To meet the needs of users and the use of the industry is necessary to combine joint research, innovation through research in order to solve the problem. In short, we can not just the manufacturingenterprises in the advanced hardware, we are in process technology, smelting technology and the development of both species have a larger gap, attracted the greatest attention to and constantly strive to improve.China's stainless steel market is facing a prominent issue is that the market is flooded with fake and shoddy products. In this regard, Li Cheng pointed out that in recent years because of soaring nickel prices do not appear in accordance with international and domestic standards of the low production of low nickel chromium high manganese so-called "200"series of steel, poor corrosion resistance, in which steel Based on the more serious occurred, the evolution of the market is now known as the "double-free steel" of inferior goods. The so-called double-free is no nickel, non-magnetic, this so-called "double-free" Steel does not have the non-rust and corrosion-resistant properties, which cause great harm to the user at the same time, for the jerry-built illegal producers and sellers the opportunity to bring huge profits, a very serious problem. Another is the emergence of stainless steel decorative tube size and thickness specifications for the production of non-serious "shrink", does not have the necessary stiffness of stainless steel tubes, so all kinds of deception users, to the credibility of stainless steel brought the crisis.At present the country is building a number of major projects, such as the Beijing Olympics and Shanghai World Expo project works, if only to keep the prices down in the tender, it will naturally arise in a cheap fake and shoddy products. Therefore, he called on the community especially the construction of the developers, must be quality-oriented, to avoid allkinds of hidden dangers and accidents to avoid failure and lead to very serious consequences as a result of the material. We should be treated in good faith users of harm to reputation and the interests of consumers of stainless steel act. Suggested that the state departments intensify thecrackdown.Development history::The invention of stainless steel is the world's metallurgical history of a significant achievement. The early 20th century, khazrajiya (LBGuillet) in 1904 -1906 and Porter million (AMPortevin) in 1909-1911 in France; Giessen (W. Giesen) in the years 1907-1909, respectively, in the United Kingdom found Fe - Cr and Fe-Cr-Ni alloy resistance to corrosion.蒙纳尔茨(P. Monnartz) in 1908-1911 in Germany put forward a theory of stainless steel and passivation of the many viewpoints.The inventor of stainless steel for industrial use are: Brearley (H. Brearly) 1912-1913 was developed in the United Kingdom with Cr12% -13% of the martensitic stainless steel; Dan Qi Zeng (C. Dantsizen) 1911-1914 in The United States has developed with Cr14% -16%, C0.07% -0.15% of ferritic stainless steel; Maurer (E. Maurer) and Strauss (B. Strauss) 1912-1914 was developed in Germany with C <1%, Cr15% -40%, Ni <20% of austenitic stainless steel. In 1929, Strauss (B. Strauss) made of low carbon 18-8 (Cr-18%, Ni-8%) stainless steel patent.In order to solve 18-8 steel sensitized state Intergranular corrosion, in1931 Germany's Huo译文:不锈钢石油化工行业生产具有自身的一些特点,例如其操作温度范围宽,低温条件时可达-196℃,高温时可达500℃以上;操作压力有外压、真空、常压、中压、高压、超高压(大于100MPa);此外,操作环境中介质复杂,如存在腐蚀性、磨损性、易燃、易爆、有毒等固态、气态、液态以及各种混合介质氯化物、硫化物和其他盐类。
外文出处:《Manufacturing Engineering and Technology—Machining》附件1:外文原文ManipulatorRobot developed in recent decades as high-tech automated production equipment. I ndustrial robot is an important branch of industrial robots. It features can be program med to perform tasks in a variety of expectations, in both structure and performance a dvantages of their own people and machines, in particular, reflects the people's intellig ence and adaptability. The accuracy of robot operations and a variety of environments the ability to complete the work in the field of national economy and there are broad p rospects for development. With the development of industrial automation, there has be en CNC machining center, it is in reducing labor intensity, while greatly improved lab or productivity. However, the upper and lower common in CNC machining processes material, usually still use manual or traditional relay-controlled semi-automatic device . The former time-consuming and labor intensive, inefficient; the latter due to design c omplexity, require more relays, wiring complexity, vulnerability to body vibration inte rference, while the existence of poor reliability, fault more maintenance problems and other issues. Programmable Logic Controller PLC-controlled robot control system for materials up and down movement is simple, circuit design is reasonable, with a stron g anti-jamming capability, ensuring the system's reliability, reduced maintenance rate, and improve work efficiency. Robot technology related to mechanics, mechanics, elec trical hydraulic technology, automatic control technology, sensor technology and com puter technology and other fields of science, is a cross-disciplinary integrated technol ogy.First, an overview of industrial manipulatorRobot is a kind of positioning control can be automated and can be re-programmed to change in multi-functional machine, which has multiple degrees of freedom can be used to carry an object in order to complete the work in different environments. Low wages in China, plastic products industry, although still a labor-intensive, mechanical hand use has become increasingly popular. Electronics and automotive industries thatEurope and the United States multinational companies very early in their factories in China, the introduction of automated production. But now the changes are those found in industrial-intensive South China, East China's coastal areas, local plastic processin g plants have also emerged in mechanical watches began to become increasingly inter ested in, because they have to face a high turnover rate of workers, as well as for the workers to pay work-related injuries fee challenges.With the rapid development of China's industrial production, especially the reform and opening up after the rapid increase in the degree of automation to achieve the wor kpiece handling, steering, transmission or operation of brazing, spray gun, wrenches a nd other tools for processing and assembly operations since, which has more and mor e attracted our attention. Robot is to imitate the manual part of the action, according to a given program, track and requirements for automatic capture, handling or operation of the automatic mechanical devices.In real life, you will find this a problem. In the machine shop, the processing of part s loading time is not annoying, and labor productivity is not high, the cost of producti on major, and sometimes man-made incidents will occur, resulting in processing were injured. Think about what could replace it with the processing time of a tour as long a s there are a few people, and can operate 24 hours saturated human right? The answer is yes, but the robot can come to replace it.Production of mechanical hand can increase the automation level of production and labor productivity; can reduce labor intensity, ensuring product quality, to achieve saf e production; particularly in the high-temperature, high pressure, low temperature, lo w pressure, dust, explosive, toxic and radioactive gases such as poor environment can replace the normal working people. Here I would like to think of designing a robot to be used in actual production.Why would a robot designed to provide a pneumatic power: pneumatic robot refers to the compressed air as power source-driven robot. With pressure-driven and other en ergy-driven comparison have the following advantages: 1. Air inexhaustible, used late r discharged into the atmosphere, does not require recycling and disposal, do not pollu te the environment. (Concept of environmental protection) 2. Air stick is small, the pipeline pressure loss is small (typically less than asphalt gas path pressure drop of one-thousandth), to facilitate long-distance transport. 3. Compressed air of the working pre ssure is low (usually 4 to 8 kg / per square centimeter), and therefore moving the mate rial components and manufacturing accuracy requirements can be lowered. 4. With th e hydraulic transmission, compared to its faster action and reaction, which is one of th e advantages pneumatic outstanding. 5. The air cleaner media, it will not degenerate, n ot easy to plug the pipeline. But there are also places where it fly in the ointment: 1. A s the compressibility of air, resulting in poor aerodynamic stability of the work, resulti ng in the implementing agencies as the precision of the velocity and not easily control led. 2. As the use of low atmospheric pressure, the output power can not be too large; i n order to increase the output power is bound to the structure of the entire pneumatic s ystem size increased.With pneumatic drive and compare with other energy sources drive has the followin g advantages:Air inexhaustible, used later discharged into the atmosphere, without recycling and disposal, do not pollute the environment. Accidental or a small amount of leakage wo uld not be a serious impact on production. Viscosity of air is small, the pipeline pressu re loss also is very small, easy long-distance transport.The lower working pressure of compressed air, pneumatic components and therefor e the material and manufacturing accuracy requirements can be lowered. In general, re ciprocating thrust in 1 to 2 tons pneumatic economy is better.Compared with the hydraulic transmission, and its faster action and reaction, which is one of the outstanding merits of pneumatic.Clean air medium, it will not degenerate, not easy to plug the pipeline. It can be saf ely used in flammable, explosive and the dust big occasions. Also easy to realize auto matic overload protection.Second, the composition, mechanical handRobot in the form of a variety of forms, some relatively simple, some more complic ated, but the basic form is the same as the composition of the , Usually by the implem enting agencies, transmission systems, control systems and auxiliary devices composed.1.Implementing agenciesManipulator executing agency by the hands, wrists, arms, pillars. Hands are crawlin g institutions, is used to clamp and release the workpiece, and similar to human finger s, to complete the staffing of similar actions. Wrist and fingers and the arm connecting the components can be up and down, left, and rotary movement. A simple mechanical hand can not wrist. Pillars used to support the arm can also be made mobile as needed .2. TransmissionThe actuator to be achieved by the transmission system. Sub-transmission system c ommonly used manipulator mechanical transmission, hydraulic transmission, pneuma tic and electric power transmission and other drive several forms.3. Control SystemManipulator control system's main role is to control the robot according to certain p rocedures, direction, position, speed of action, a simple mechanical hand is generally not set up a dedicated control system, using only trip switches, relays, control valves a nd circuits can be achieved dynamic drive system control, so that implementing agenc ies according to the requirements of action. Action will have to use complex program mable robot controller, the micro-computer control.Three, mechanical hand classification and characteristicsRobots are generally divided into three categories: the first is the general machinery does not require manual hand. It is an independent not affiliated with a particular host device. It can be programmed according to the needs of the task to complete the oper ation of the provisions. It is characterized with ordinary mechanical performance, also has general machinery, memory, intelligence ternary machinery. The second category is the need to manually do it, called the operation of aircraft. It originated in the atom, military industry, first through the operation of machines to complete a particular job, and later developed to operate using radio signals to carry out detecting machines suc h as the Moon. Used in industrial manipulator also fall into this category. The third cat egory is dedicated manipulator, the main subsidiary of the automatic machines or automatic lines, to solve the machine up and down the workpiece material and delivery. T his mechanical hand in foreign countries known as the "Mechanical Hand", which is t he host of services, from the host-driven; exception of a few outside the working proc edures are generally fixed, and therefore special.Main features:First, mechanical hand (the upper and lower material robot, assembly robot, handlin g robot, stacking robot, help robot, vacuum handling machines, vacuum suction crane, labor-saving spreader, pneumatic balancer, etc.).Second, cantilever cranes (cantilever crane, electric chain hoist crane, air balance th e hanging, etc.)Third, rail-type transport system (hanging rail, light rail, single girder cranes, doubl e-beam crane)Four, industrial machinery, application of handManipulator in the mechanization and automation of the production process develo ped a new type of device. In recent years, as electronic technology, especially comput er extensive use of robot development and production of high-tech fields has become a rapidly developed a new technology, which further promoted the development of ro bot, allowing robot to better achieved with the combination of mechanization and auto mation.Although the robot is not as flexible as staff, but it has to the continuous duplication of work and labor, I do not know fatigue, not afraid of danger, the power snatch weig ht characteristics when compared with manual large, therefore, mechanical hand has b een of great importance to many sectors, and increasingly has been applied widely, for example:(1) Machining the workpiece loading and unloading, especially in the automatic lat he, combination machine tool use is more common.(2) In the assembly operations are widely used in the electronics industry, it can be used to assemble printed circuit boards, in the machinery industry It can be used to ass emble parts and components.(3) The working conditions may be poor, monotonous, repetitive easy to sub-fatigue working environment to replace human labor.(4) May be in dangerous situations, such as military goods handling, dangerous go ods and hazardous materials removal and so on..(5) Universe and ocean development.(6), military engineering and biomedical research and testing.Help mechanical hands: also known as the balancer, balance suspended, labor-saving spreader, manual Transfer machine is a kind of weightlessness of manual load system, a novel, time-saving technology for material handling operations booster equipment, belonging to kinds of non-standard design of series products. Customer application ne eds, creating customized cases. Manual operation of a simulation of the automatic ma chinery, it can be a fixed program draws ﹑ handling objects or perform household to ols to accomplish certain specific actions. Application of robot can replace the people engaged in monotonous ﹑ repetitive or heavy manual labor, the mechanization and a utomation of production, instead of people in hazardous environments manual operati on, improving working conditions and ensure personal safety. The late 20th century, 4 0, the United States atomic energy experiments, the first use of radioactive material ha ndling robot, human robot in a safe room to manipulate various operations and experi mentation. 50 years later, manipulator and gradually extended to industrial production sector, for the temperatures, polluted areas, and loading and unloading to take place t he work piece material, but also as an auxiliary device in automatic machine tools, ma chine tools, automatic production lines and processing center applications, the comple tion of the upper and lower material, or From the library take place knife knife and so on according to fixed procedures for the replacement operation. Robot body mainly b y the hand and sports institutions. Agencies with the use of hands and operation of obj ects of different occasions, often there are clamping ﹑ support and adsorption type of care. Movement organs are generally hydraulic pneumatic ﹑﹑ electrical device dri vers. Manipulator can be achieved independently retractable ﹑ rotation and lifting m ovements, generally 2 to 3 degrees of freedom. Robots are widely used in metallurgic al industry, machinery manufacture, light industry and atomic energy sectors.Can mimic some of the staff and arm motor function, a fixd procedure for the capture, handling objects or operating tools, automatic operation device. It can replace hum an labor in order to achieve the production of heavy mechanization and automation th at can operate in hazardous environments to protect the personal safety, which is wide ly used in machinery manufacturing, metallurgy, electronics, light industry and nuclea r power sectors. Mechanical hand tools or other equipment commonly used for additio nal devices, such as the automatic machines or automatic production line handling an d transmission of the workpiece, the replacement of cutting tools in machining centers , etc. generally do not have a separate control device. Some operating devices require direct manipulation by humans; such as the atomic energy sector performs household hazardous materials used in the master-slave manipulator is also often referred to as m echanical hand.Manipulator mainly by hand and sports institutions. Task of hand is holding the wor kpiece (or tool) components, according to grasping objects by shape, size, weight, mat erial and operational requirements of a variety of structural forms, such as clamp type, type and adsorption-based care such as holding. Sports organizations, so that the com pletion of a variety of hand rotation (swing), mobile or compound movements to achie ve the required action, to change the location of objects by grasping and posture. Robot is the automated production of a kind used in the process of crawling and mo ving piece features automatic device, which is mechanized and automated production process developed a new type of device. In recent years, as electronic technology, esp ecially computer extensive use of robot development and production of high-tech fiel ds has become a rapidly developed a new technology, which further promoted the dev elopment of robot, allowing robot to better achieved with the combination of mechani zation and automation. Robot can replace humans completed the risk of duplication of boring work, to reduce human labor intensity and improve labor productivity. Manipu lator has been applied more and more widely, in the machinery industry, it can be use d for parts assembly, work piece handling, loading and unloading, particularly in the a utomation of CNC machine tools, modular machine tools more commonly used. At pr esent, the robot has developed into a FMS flexible manufacturing systems and flexibl e manufacturing cell in an important component of the FMC. The machine tool equipment and machinery in hand together constitute a flexible manufacturing system or a f lexible manufacturing cell, it was adapted to small and medium volume production, y ou can save a huge amount of the work piece conveyor device, compact, and adaptabl e. When the work piece changes, flexible production system is very easy to change wi ll help enterprises to continuously update the marketable variety, improve product qua lity, and better adapt to market competition. At present, China's industrial robot techno logy and its engineering application level and comparable to foreign countries there is a certain distance, application and industrialization of the size of the low level of robo t research and development of a direct impact on raising the level of automation in Ch ina, from the economy, technical considerations are very necessary. Therefore, the stu dy of mechanical hand design is very meaningful.附件1:外文资料翻译译文机械手机械手是近几十年发展起来的一种高科技自动化生产设备。
附录附录A外文文献原文Tailgate lifting device structure and designLifting Gear steeplechase and design of the structure of the lifting mechanism is relatively traditional, the tail plate lifting mechanism using only a single fuel tank, so that the hydraulic system of the pipe is simple, convenient control and high reliability of the hydraulic system, and and ease of installation. The above analysis and calculation of the institutions such as the structure and properties of the mathematical relationship between parameters. To promote inter-related with the sleeve of the friction and wear, the sleeve guide groove angle and flip angle and a high degree of adaptability, such as lifting will be subject to further research and the analysis of the structure of hair.Lifting Gear steeplechase vehicle movements in foreign countries as the rear door (end plate), its installed in the car named after the tail. In this paper, according to national standards call a lifting gear steeplechase. Steeplechase a lifting device installed on the van in the carriage of goods, not only to demonstrate its proprietary water-resistant dust-proof function, but also in the loading and unloading of goods mechanization achieved.1 .steeplechase development Lifting GearLifting Gear steeplechase development, largely in foreign countries can be divided into four periods. The first generation of products in the 30's at the end of this century, characterized mainly lifting cylinder, and the steeplechase manually turned on, from or about the quality of 500kg, steeplechase (also known as loading platforms) touchdown angle 9 ° ~ 10 °. At present, this product in South-East Asia, Japan still in use, 90 years, is still the United States by the new development. Second-generation products in the early 50's the European market, in the first generation of products based on the increase of turnover to close the fuel tank. Lift and flip the fuel tank by two to achieve independence. The most common is a type 4 tank, but also of the double. Lifting the quality of more than 500 kg, platform loading touchdown angle 10 °, flip action control based on the experience of the operator. The products are mainly used in the Americas and Southeast Asia.Third-generation products in the 70's at the end of the European market is the second generation of products based on the increase in the fuel tank of the fifth. Only the fuel tank of the hydraulic system in the relative positions of the main effect of memory function, so that touchdown to loading platform, off the flip action is no longer controlled by the operator by the hydraulic control system itself, so that the process is relatively smooth take-off and landing and security. Touchdown angle is generally 8 ° ~ 10 °. If it doubles as a car door, and a result of increased platform size, angle may also be less than 8 °. At present these products to Europe and America in general. Fourth-generation products during the early 90s, and its hydraulic system and function of principles with the third-generation products, only an increase of the fuel tank the size of memory, so memory and increase the scope of action. It is different from the third generation of the product lies in the loading platform to increase its special structure, from one body to two activities connected to the platform after the touchdown, not only can automatically flip, but there is a sinking action to achieve the touchdown angle 6 °, even in 6 below. At present, the products in the Netherlands, Yugoslavia and China has applied for a utility model patent. The domestic market has been stereotyped. From the performance, security, reliability results, the fourth-generation products will be gradually replaced the second and third generation products. The first generation of products, because of its simple structure, light weight, although the technical content, but with the advantages of easy maintenance, etc., in developing countries will still have a certain market. Lifting Gear steeplechase development in China only a few things more than a decade. The former Ministry of Posts and Telecommunications in 1985 imported from Japan with a number of lifting devices steeplechase van. Since then, by the Special Purpose Vehicle Institute of Hanyang, Hubei auto parts plant and Communication Ministry of Posts and Telecommunications Machinery Factory Mingshui three cooperation made the research and development, which lasted more than two years, due to various reasons can not be put into use. In early 1988, Ministry of Posts and Telecommunications Communications Machinery Factory Mingshui technical staff, continue to develop. Post Office in Beijing to help the strong, thanks to the efforts of the past four years, increasing product quality stabilized. Early use of domestic products as a driving force for car engines. To achieve in 1992 a car battery as the driving force of the hydraulic pump station. After 1992, lifting gear steeplechase van due to the development of domestic and began to develop, the skill level is gradually close to theinternational. According to the current understanding of the situation, the domestic production steeplechase of the enterprises, including Lifting Gear Mingshui, such as posts and telecommunications equipment factory at least five, the product structure have a single-cylinder, four-cylinder, five-cylinder and the early 90's and the latest U.S. technology-based The five-cylinder technology. Although the product mix in the form, the international four-generation products are produced in China, but its development is still in its infancy. The expansion of the domestic market, but also the need for inter-and opportunities. Speaking time may not last long, from the varieties of speaking, a short period of time will still exist a variety of forms, but in the end may be the single-cylinder and five-cylinder products.2.steeplechase of the basic principles of lifting gearLifting Gear steeplechase varieties are numerous, but the basic fundamental tenets of the original but it is the same, that is, parallel four-bar linkage of the practical application of the principle of parallel move, it is two sets of parallel four-bar linkage, sub-put longeron on both sides of car, synchronous movements, while the DCE is the above mentioned loading platform (steeplechase). Design, the following three issues to be resolved: BC under the driving force for rotation; BC under the role of rotational dynamics and the role of the form of points; CD under the C-point after touchdown, there must be a rotation around the point D moves to E end of touchdown to facilitate loading and unloading of goods.3.Power SystemSteeplechase early in the development of lifting devices for the automotive engine through the oil pump driven from power-driven devices. Working hours as a result of the need to idle the engine running, is now seldom used. At present, the basic use of micro-driven hydraulic pump station, a car battery for power source. Micro-pump station has the basic components of DC motors (with the car battery voltage to match), control valves, gear pumps, combination valve (overflow, cutting one-way), and the fuel tank, electric start switch, control switch and so on. According to different vehicle battery voltage, DC motors are 12 V, 24 V are two different power according to the weight since there are 018 kW, 110 kW, 112 kW, 115 kW, 2 kW, 3 kW and so on. Gear pump according to the number of tanks (mainly hydraulic flow) and the hydraulic system pressure to choose, there is displacement 1 ml, 112 ml, 116 ml, 210 ml, 215 ml, 410 ml wide range of specifications, the maximumoutput pressure gear pump up to 25M Pa. Hydraulic Pump Station has been the international product quality is stable, less quality of domestic products, mainly the quality of the solenoid valve or volume too large, however.4.The form and the role of driving force transmission pointBoth rely on power through the pressure of hydraulic oil system from the fuel tank to the BC transmission poles. Fuel tanks and installation of the number of different positions, and to take the DC bar the difference in the rotation, the power transmission lines are also different. a1 cylinder on the front. Hinge for a long shaft B, the two parallel four-bar linkage mounted on the shaft at both ends, a shaft connected to the middle arm, then the fuel tank of the piston rod end of the fuel tank on the other side of the fixed bracket on the transmission of po wer as follows: oil tumbler cylinder → → BC rod shaft, the working process in Figure 2. b1 on the rear cylinder. The fuel tank 24 is located in the middle of linkage, the two four-bar linkage in the middle of the BC bar with fixed beams together, the middle beam connecting rod and the fuel tank, fuel tank connected to the other side with the stent. c1 four-cylinder and five-cylinder type. Five-cylinder structure of the memory of the fifth hydraulic cylinder is a cylinder in the hydraulic circuit, the loading platform to participate in only touchdown after the reversal platform action, without reference platform for take-off and landing, and its basic structure with the same four-cylinder. Four-cylinder under the structure of the fuel tank of BC, which is different from the distinction between single-cylinder.5. CD under the rotationCD of the rotation pole, four-cylinder with five-cylinder fuel tank of the type of contraction depend on the realization of single-cylinder rear-mounted on, CD can not be achieved under rotation (but can be reversed to achieve at the highest position, because the structure of more complex, and I shall not introduce) ; for the single-cylinder front-on, based on the structural changes under BC achievable. The actual design, AD is also required under certain technical processing to meet the requirements. In addition, note that, D CE articulated only in the D point, the other type for the D, C two hinged.6.steeplechase lifting device to determine the technical parametersLifting Gear steeplechase main technical parameters: Rated lifting the quality of travel movements, take-off and landing speed, shot size, platform size, operating voltage and power motor, gear pump row weight (rated output flow), control valves, the type andquantity of and the fuel tank of the bore and stroke, rated working pressure. Under normal circumstances, the beginning of the design parameters are known to width and height from the floor, battery voltage and capacity, beam spacing and beam auto height and size of rear overhang. Known parameters are the fundamental basis for design.附录B外文文献中文翻译栏板起重装置的结构与设计相对传统的举升机构,该尾板举升机构只采用了单油缸,使液压系统的管路简单,控制方便,液压系统的可靠性高,且安装方便。
第一章概述1. 1机械手的发展历史人类在改造自然的历史进程中,随着对材料、能源和信息这三者的认识和用,不断创造各种工具(机器),满足并推动生产力的发展。
工业社会向信息社会发展,生产的自动化,应变性要求越来越高,原有机器系统就显得庞杂而不灵活,这时人们就仿造自身的集体和功能,把控制机、动力机、传动机、工作机综合集中成一体,创造了“集成化”的机器系统——机器人。
从而引起了生产系统的巨大变革,成为“人——机器人——劳动对象”,或者“人——机器人——动力机——工作机——劳动对象”。
机器人技术从诞生到现在,虽然只有短短三十几年的历史,但是它却显示了旺盛的生命力。
近年来,世界上对于发展机器人的呼声更是有增无减,发达国家竞相争先,发展中国家急起直追。
许多先进技术国家已先后把发展机器人技术列入国家计划,进行大力研究。
我国的机器人学的研究也已经起步,并把“机器人开发研究”和柔性制造技术系统和设备开发研究等与机器人技术有关的研究课题列入国家“七五”、“八五”科技发展计划以及“八六三”高科技发展计划。
工业机械手是近代自动控制领域中出现的一项新技术,并已经成为现代机械制造生产系统中的一个重要组成部分。
这种新技术发展很快,逐渐形成一门新兴的学科——机械手工程。
1. 2机械手的发展意义机械手的迅速发展是由于它的积极作用正日益为人们所认识:其一、它能部分地代替人工操作;其二、它能按照生产工艺的要求,遵循一定的程序、时间和位置来完成工件的传送和装卸;其三、它能操作必要的机具进行焊接和装配。
从而大大地改善工人的劳动条件,显著地提高劳动生产率,加快实现工业生产机械化和自动化的步伐。
因而,受到各先进工业国家的重视,投入大量的人力物力加以研究和应用。
近年来随着工业自动化的发展机械手逐渐成为一门新兴的学科,并得到了较快的发展。
机械手广泛地应用于锻压、冲压、锻造、焊接、装配、机加、喷漆、热处理等各个行业。
特别是在笨重、高温、有毒、危险、放射性、多粉尘等恶劣的劳动环境中,机械手由于其显著的优点而受到特别重视。
附录A 外文文献Overview ofDevelopment on Vehicle EPS SystemAbstractThe currentdevelopment of an electric power steering(EPS) system in an automobile is explicated. The structure, types and characteristics of electric power steering system are introduced. The modeling technologies for electric power steering system and control strategies are analyzed and compared. The development trend of electric power steering system in an automobile is also discussed. It is pointed that the electric power steering technology is one orientation ofpower steering technologies in the future, and whichwill occupy a predominantposition in power steering field.Key words:Automobile; Electric power steering system; Development trend1EPS system types and characteristics1.1EPS system classificationThe early development of EPS system is low in steering type car。
3D打印机3D打印技术(英语:3Dprinting),即快速成形技术的一种,它是一种数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。
过去其常在模具制造、工业设计等领域被用于制造模型,现正逐渐用于一些产品的直接制造。
特别是一些高价值应用(比如髋关节或牙齿,或一些飞机零部件)已经有使用这种技术打印而成的零部件。
“3D打印技术”意味着这项技术的普及。
3D打印技术出现在上世纪90年代中期,实际上是利用光固化和纸层叠等技术的快速成型装置。
它与普通打印机工作原理基本相同,打印机内装有液体或粉末等“印材料”,与电脑连接后,通过电脑控制把“打印材料”一层层叠加起来,最终把计算机上的蓝图变成实物。
这一技术如今在多个领域得到应用,人们用它来制造服装、建筑模型、汽车、巧克力甜品等。
3D打印技术最突出的优点是无需机械加工或任何模具,就能直接从计算机图形数据中生成任何形状的零件,从而极大地缩短产品的研制周期,提高生产率和降低生产成本。
近年来,3D打印技术发展迅速,在各领域都取得了长足发展,已成为现代模型、模具和零部件制造的有效手段,在航空航天、汽车摩托车、家电、生物医学等领域得到了一定应用,在工程和教学研究等领域也占有独特地位。
具体应用领域包括:1、机械制造:3D打印技术制造飞机零件、自行车、步枪、赛车零件等。
2、医疗行业:在医学领域,借助3D打印制作假牙,股骨头、膝盖等骨关节技术应用也非常广,技术越来越成熟。
3、建筑行业:工程师和设计师们已经接受了用3D打印机打印的建筑模型,这种方法快速、成本低、环保,同时制作精美,完全合乎设计者的要求,同时又能节省大量材料。
4、汽车制造行业:用3D打印技术为汽车公司制造自动变速箱的壳体。
汽车公司会对变速箱进行各种极端状况下的测试,其中一些零件就是用3D打印方法做的。
定型了以后,再开模具,然后按照传统制造方法批量生产,这样成本就会大大降低。
5、教育:可应用于模型验证科学假设,用于不同学科实验、教学。
工业机器人外文参考文献工业机器人外文参考文献1. Gao, Y., & Chen, J. (2018). Review of industrial robots for advanced manufacturing systems. Journal of Manufacturing Systems, 48, 144-156.2. Karaman, M., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. The International Journal of Robotics Research, 30(7), 846-894.3. Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research, 5(1), 90-98.4. Lee, J. H., & Kim, E. B. (2019). Energy-efficient path planning for industrial robots considering joint dynamics. Journal of Mechanical Science and Technology, 33(3),1343-1351.5. Li, D., Li, Y., Wang, X., & Li, H. (2019). Design and implementation of a humanoid robot with flexible manipulators. Robotica, 37(12), 2008-2025.6. Liu, Y., Ren, X., & Wang, T. (2019). A novel adaptive fuzzy sliding mode control for a nonholonomic mobile robot. Soft Computing, 23(3), 1197-1209.7. Loh, A. P., & Tan, K. K. (2014). Vision-based controlof industrial robots using an adaptive neural network. Robotics and Computer-Integrated Manufacturing, 30(2), 177-184.8. Niemeyer, G., & Slotine, J. J. (1990). Stable adaptive teleoperation. The International Journal of Robotics Research, 9(1), 85-98.9. Park, J. Y., & Cho, C. H. (2018). Optimal path planning for industrial robots using a hybrid genetic algorithm. International Journal of Precision Engineering and Manufacturing, 19(5), 755-761.10. Wang, Z., Wang, X., & Liu, Y. (2019). Design and analysis of a novel humanoid robot with intelligent control. International Journal of Advanced Manufacturing Technology, 102(5-8), 1391-1403.。
Fundamentals of Mechanical Design Mechanical design means the design of things and systems of a mechanical nature—machines, products, structures, devices, and instruments. For the most part mechanical design utilizes mathematics, the materials sciences, and the engineering-mechanics sciences. The total design process is of interest to us. How does it begin? Does the engineer simply sit down at his desk with a blank sheet of paper? And, as he jots down some ideas, what happens next? What factors influence or control the decisions which have to be made? Finally, then, how does this design process end? Sometimes, but not always, design begins when an engineer recognizes a need and decides to do something about it. Recognition of the need and phrasing it in so many words often constitute a highly creative act because the need may be only a vague discontent, a feeling of uneasiness, or a sensing that something is not right. The need is usually not evident at all. For example, the need to do something about a food-packaging machine may be indicated by the noise level, by the variation in package weight, and by slight but perceptible variations in the quality of the packaging or wrap. There is a distinct difference between the statement of the need and the identification of the problem which follows this statement. The problem is more specific. If the end is for cleaner air, the problem might be that of reducing the dust discharge from power-plant stacks, or reducing the quantity of irritants from automotive exhausts. Definition of the problem must include all the specifications for the thing that is to be designed. The specifications are the input and output quantities, the characteristics and dimensions of the space the thing must occupy and all the limitations on these quantities. In this case we must specify the inputs and outputs of the box together with their characteristics and limitations. The specifications define the cost, the number to be manufactured, the expected life, the range, the operating temperature, and t he reliability. There are many implied specifications which result either from the designer’s particular environment or from the nature of the problem itself. The manufacturing processes which are available, together with the facilities of a certain plant, constitute restrictions on a designer’s freedom, and hence are a part of the implied specifications. A small plant, for instance, may not own cold-working machinery. Knowing this, the designer selects other metal-processing methods which can be performed in the plant. The labor skills available and the competitive situation also constitute implied specifications. After the problem has been defined and a set of written and implied specifications has been obtained, the next step in design is the synthesis of an optimum solution. Now synthesis cannot take place without both analysis and optimization because the system under design must be analyzed to determine whether the performance complies with the specifications. The design is an iterative process in which we proceed through several steps, evaluate the results, and then return to an earlier phase of the procedure. Thus we may synthesize several components of a system, analyze and optimize them, and return to synthesis to see what effect this has on the remaining parts of the system. Both analysis and optimization require that we construct or devise abstract of the system which will admit some form of mathematical analysis. We call these models mathematical models. In creating them it is our hope that we can find one which will simulate the physical system very well. Evaluation is a significant phase of the total design process. Evaluation is the final proof of a successful design, which usually involves the testing of a prototype in the laboratory. Here we wish to discover if the design really satisfies the need or needs. Is it reliable? Will it compete successfully with similar products? Is it economical to manufacture and to use? Is it easily maintained and abjusted? Can a profit be made from its sale or use? Communicating the design to others if the final, vital step in the design process. Undoubtedly many great designs, inventions, and creative works have been lost to mankind simply because the originators were unable or unwilling to explain their accomplishments to others. Presentation is a selling job. The engineer, when presenting a new solution to administrative, management, or supervisory persons, is attempting to sell or to prove to them that this solution is a better one. Unless this can be done successfully, the time and effort spent on obtaining the solution have been largely wasted. Basically, there are only t here means of communication available to us. These are the written, the oral, and the graphical forms. Therefore the successful engineer will be technically competent and versatile in all three forms of communication. A technically competent person who lacks ability in any one of these forms is severely handicapped. If ability in all three