电磁学例题
- 格式:doc
- 大小:829.00 KB
- 文档页数:17
《电磁学》练习题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.EqLq P10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O 点的场强.ABRⅠⅡ Ⅲ dba 45︒cEσAσBA BOa θ0 q AR ∞∞O18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr =10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)-λ +λdd/2 d/226. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F 和da F的大小和方向.28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T 的均匀磁场中,B方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F 和da F的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.a b c dO RR x yI I 30° 45° I ∆l 1I ∆l 2a bc d O RR xyI I 30° 45° I ∆l 1 I ∆l 232. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BCR ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B 的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.39.地球半径为R =6.37×106 m .μ0 =4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出m p和L 方向间的关系.(电子电荷为e ,电子质量为m )1 m41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A)42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I 对电流元22d l I的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。
电磁学考试题库及答案高中电磁学是物理学中的一个重要分支,它研究的是电荷、电场、电流、磁场以及它们之间的相互作用。
以下是一份高中电磁学考试题库及答案,供同学们学习和练习。
一、选择题1. 电荷间的相互作用遵循以下哪条定律?A. 牛顿第一定律B. 牛顿第二定律C. 库仑定律D. 欧姆定律答案:C2. 以下哪个单位是用来测量电流的?A. 伏特(V)B. 安培(A)C. 欧姆(Ω)D. 法拉(F)答案:B3. 一个电路中,电阻为10Ω,通过它的电流为0.5A,根据欧姆定律,该电路两端的电压是多少伏特?A. 2VB. 5VC. 10VD. 20V答案:B4. 电磁波的传播速度在真空中是多少?A. 299,792,458 m/sB. 300,000 km/sC. 3×10^8 m/sD. 3×10^11 m/s答案:C5. 法拉第电磁感应定律表明什么?A. 电流的产生与磁场的变化有关B. 电流的产生与电场的变化有关C. 磁场的产生与电流的变化有关D. 电场的产生与磁场的变化有关答案:A二、填空题6. 电场强度的定义式是 \( E = \frac{F}{q} \),其中 \( E \) 表示电场强度,\( F \) 表示电荷所受的电场力,\( q \) 表示电荷量。
答案:电场强度7. 电流的国际单位是安培,用符号 \( A \) 表示。
答案:安培8. 一个闭合电路的总电阻为 \( R \),电源的电动势为 \( E \),电路中的电流 \( I \) 可以通过欧姆定律计算,即 \( I = \frac{E}{R} \)。
答案:欧姆定律9. 电磁波的三个主要特性包括:波长、频率和速度。
答案:波长、频率10. 法拉第电磁感应定律表明,当磁场变化时,会在导体中产生感应电动势。
答案:感应电动势三、简答题11. 简述电磁波的产生原理。
答案:电磁波是由变化的电场和磁场相互作用产生的,它们以波的形式向外传播,不需要介质,可以在真空中传播。
高考物理电磁学大题练习20题Word版含答案及解析方向与图示一致。
金属棒的质量为m,棒的左端与导轨相接,右端自由。
设金属棒在磁场中的电势能为0.1)当磁场的磁感应强度为B1时,金属棒在匀强磁场区域内做匀速直线运动,求金属棒的速度和通过电阻的电流强度。
2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,求金属棒的最大速度和通过电阻的最大电流强度。
答案】(1) v=B1d/2m。
I=B1d2rR/(rL+dR) (2) vmaxBmaxd/2m。
ImaxBmaxd2rR/(rL+dR)解析】详解】(1)由洛伦兹力可知,金属棒在匀强磁场区域内受到向左的洛伦兹力,大小为F=B1IL,方向向左,又因为金属棒在匀强磁场区域内做匀速直线运动,所以受到的阻力大小为F1Fr,方向向右,所以有:B1IL=Fr解得:v=B1d/2m通过电阻的电流强度为:I=B1d2rR/(rL+dR)2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,其大小为:e=BLv所以金属棒所受的合力为:F=BLv-Fr当合力最大时,金属棒的速度最大,即:BLvmaxFr=0解得:vmaxBmaxd/2m通过电阻的电流强度为:ImaxBmaxd2rR/(rL+dR)题目一:金属棒在电动机作用下的运动一根金属棒在电动机的水平恒定牵引力作用下,从静止开始向右运动,经过一段时间后以匀速向右运动。
金属棒始终与导轨相互垂直并接触良好。
问题如下:1) 在运动开始到匀速运动之间的时间内,电阻R产生的焦耳热;2) 在匀速运动时刻,流过电阻R的电流方向、大小和电动机的输出功率。
解析:1) 运动开始到匀速运动之间的时间内,金属棒受到电动机的牵引力向右运动,电阻R中会产生电流。
根据欧姆定律和焦耳定律,可以得到电阻R产生的焦耳热为:$Q=I^2Rt$,其中I为电流强度,t为时间。
因此,我们需要求出这段时间内的电流强度。
根据电动机的牵引力和电阻R的阻值,可以得到电路中的总电动势为$E=FL$,其中F为电动机的牵引力,L为金属棒的长度。
高中物理典型例题集锦(电磁学局部)25、如图22-1所示,A、B为平行金属板,两板相距为d,分别与电源两极相连,两板的中央各有小孔M、N。
今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N三点在同一竖直线上),空气阻力不计,到达N点时速度恰好为零,然后按原路径返回。
假设保持两板间的电压不变,则:A.假设把A板向上平移一小段距离,质点自P点下落仍能返回。
B.假设把B板向下平移一小段距离,质点自P点下落仍能返回。
图22-1C.假设把A板向上平移一小段距离,质点自P点下落后将穿过N孔继续下落。
D.假设把B板向下平移一小段距离,质点自P点下落后将穿过N孔继续下落。
分析与解:当开关S一直闭合时,A、B两板间的电压保持不变,当带电质点从M向N运动时,要克制电场力做功,W=qU AB,由题设条件知:带电质点由P到N的运动过程中,重力做的功与质点克制电场力做的功相等,即:mg2d=qU AB假设把A板向上平移一小段距离,因U AB保持不变,上述等式仍成立,故沿原路返回,应选A。
假设把B板下移一小段距离,因U AB保持不变,质点克制电场力做功不变,而重力做功增加,所以它将一直下落,应选D。
由上述分析可知:选项A和D是正确的。
想一想:在上题中假设断开开关S后,再移动金属板,则问题又如何?(选A、B)。
26、两平行金属板相距为d,加上如图23-1(b)所示的方波形电压,电压的最大值为U0,周期为T。
现有一离子束,其中每个离子的质量为m,电量为q,从与两板等距处沿着与板平行的方向连续地射入两板间的电场中。
设离子通过平行板所需的时间恰为T(与电压图23-1图23-1(b)变化周期一样),且所有离子都能通过两板间的空间打在右端的荧光屏上。
试求:离子击中荧光屏上的位置的围。
(也就是与O‘点的最大距离与最小距离)。
重力忽略不计。
分析与解:各个离子在电场中运动时,其水平分运动都是匀速直线运动,而经过电场所需时间都是T ,但不同的离子进入电场的时刻不同,由于两极间电压变化,因此它们的侧向位移也会不同。
电磁学考试题库及答案详解一、单项选择题1. 真空中两个点电荷之间的相互作用力遵循()。
A. 牛顿第三定律B. 库仑定律C. 高斯定律D. 欧姆定律答案:B解析:库仑定律描述了真空中两个点电荷之间的相互作用力,其公式为F=k*q1*q2/r^2,其中F是力,k是库仑常数,q1和q2是两个电荷的量值,r是它们之间的距离。
2. 电场强度的方向是()。
A. 从正电荷指向负电荷B. 从负电荷指向正电荷C. 垂直于电荷分布D. 与电荷分布无关解析:电场强度的方向是从正电荷指向负电荷,这是电场的基本性质之一。
3. 电势能与电势的关系是()。
A. 电势能等于电势的负值B. 电势能等于电势的正值C. 电势能等于电势的两倍D. 电势能与电势无关答案:A解析:电势能U与电势V的关系是U=-qV,其中q是电荷量,V是电势。
4. 电容器的电容C与板间距离d和板面积A的关系是()。
A. C与d成正比B. C与d成反比C. C与A成正比D. C与A和d都成反比解析:电容器的电容C与板间距离d成反比,与板面积A成正比,公式为C=εA/d,其中ε是介电常数。
5. 磁场对运动电荷的作用力遵循()。
A. 洛伦兹力定律B. 库仑定律C. 高斯定律D. 欧姆定律答案:A解析:磁场对运动电荷的作用力遵循洛伦兹力定律,其公式为F=qvBsinθ,其中F是力,q是电荷量,v是电荷的速度,B是磁场强度,θ是速度与磁场的夹角。
二、多项选择题1. 以下哪些是电磁波的特性?()A. 传播不需要介质B. 具有波粒二象性C. 传播速度等于光速D. 只能在真空中传播答案:ABC解析:电磁波的传播不需要介质,具有波粒二象性,传播速度等于光速,但它们也可以在其他介质中传播,只是速度会因为介质的折射率而改变。
2. 以下哪些是电场线的特点?()A. 电场线从正电荷出发,终止于负电荷B. 电场线不相交C. 电场线是闭合的D. 电场线的疏密表示电场强度的大小答案:ABD解析:电场线从正电荷出发,终止于负电荷,不相交,且电场线的疏密表示电场强度的大小。
电磁学期末考试题及答案一、选择题(每题2分,共20分)1. 以下哪项是电流的单位?A. 牛顿B. 库仑C. 安培D. 伏特答案:C2. 电磁波的传播速度在真空中是恒定的,其值是:A. 299,792,458 m/sB. 300,000,000 m/sC. 3.00 x 10^8 m/sD. 3.00 x 10^5 m/s答案:C3. 根据麦克斯韦方程组,以下哪项描述了电场与磁场之间的关系?A. 高斯定律B. 法拉第电磁感应定律C. 欧姆定律D. 安培环路定理答案:B4. 一个点电荷在电场中受到的力与以下哪个因素无关?A. 电荷量B. 电场强度C. 电荷的正负D. 电荷的质量答案:D5. 以下哪个选项是描述磁场的基本物理量?A. 电势B. 磁通C. 磁感应强度D. 电场强度答案:C6. 一个闭合电路中的感应电动势与以下哪个因素有关?A. 磁场强度B. 导线长度C. 导线运动速度D. 所有以上因素答案:D7. 根据洛伦兹力定律,一个带电粒子在磁场中运动时受到的力与以下哪个因素无关?A. 粒子的电荷量B. 粒子的速度C. 磁场的强度D. 粒子的质量答案:D8. 电磁波的波长与频率的关系是:A. 波长与频率成正比B. 波长与频率成反比C. 波长与频率无关D. 波长与频率的乘积是常数答案:B9. 以下哪种材料最适合用于制作超导磁体?A. 铁B. 铜C. 铝D. 铌钛合金答案:D10. 电磁感应现象是由以下哪位科学家发现的?A. 牛顿B. 法拉第C. 麦克斯韦D. 欧姆答案:B二、填空题(每题2分,共20分)1. 电磁波的传播不需要______。
答案:介质2. 电流通过导线时,导线周围会产生______。
答案:磁场3. 根据欧姆定律,电流I等于电压V除以电阻R,即I=______。
答案:V/R4. 电荷的定向移动形成了______。
答案:电流5. 电磁波的传播速度在真空中是______。
答案:3.00 x 10^8 m/s6. 电磁波的波长、频率和波速之间的关系是______。
大学物理学业竞赛讲座电磁学例题及解答例 1 一均匀带电线由一半圆和两段直线组成,各尺寸如图所示。
设带电直线单位长度所带的电量为λ,求圆心O 点的电场强度和电势。
解: (1)20044dq d dE R Rλθπεπε== 00cos sin ,44x y d d dE dE R Rλθθλθθπεπε==0000cos sin 0,442x y d d E E R R Rππλθθλθθλπεπεπε====⎰⎰(2)10000444dq d U Rπλθλπεπεε===⎰⎰2200022l n 2442R R d q d x U x x λλπεπεπε===⎰⎰1200ln 224U U U λλπεε=+=+ 例 2 如图一带电球面,电荷面密度分布为σ=σ0cos θ,式中σ0为常数,θ为任一半径与z 轴的夹角,求球心O 的电场强度和电势。
解: (1)223/204()dqxdE x r πε=+θcos R x =,θsin R r =,2022cos sin dq r Rd R d σπθπσθθθ=⋅⋅=20cos sin 2dE d σθθθε= 200000cos sin 23E d πσσθθθεε==⎰(2)001044dq U dq RRπεπε===⎰⎰REyEx例3 一带电球体,半径为R ,电荷体密度与球半径成反比,即ρ=K /r 。
K 为比例常数,求空间的电场和电势的分布。
解:(1)24SE dS r E π⋅=⎰r R >22int42RKqr dr KR r ππ''=⋅='∑⎰r R ≤22int 042rKq r dr Kr r ππ''=⋅='∑⎰22202()42()KR r R r E Kr r R πεππε⎧>⎪⎪=⎨⎪≤⎪⎩ 22()2()2KR r R r E K r R εε⎧>⎪⎪=⎨⎪≤⎪⎩ (2)r R >: 2220022rKR KR U dr r r εε∞'=='⎰r R ≤ 22000(2)222R rR K KR KU dr dr R r r εεε∞''=+=-'⎰⎰例4 两块大导体平板,面积为S ,分别带电q 1和 q 2,两板间距远小于板的线度。
高考物理电磁学专项历年真题2024高考对于学生来说是人生中的重要关卡,而物理作为高考科目之一,电磁学是其中的重要内容。
为了帮助同学们更好地备考电磁学,本文将为大家整理总结高考物理电磁学专项历年真题。
通过学习这些历年真题,同学们可以了解考试的命题特点,掌握解题技巧,提高应试能力。
1. 2019年高考物理电磁学选择题1) 电磁铁能够产生强大的磁场,这是由于电磁铁中的A. 磁感应强度B. 磁通量C. 磁场强度D. 磁介质的磁化强度解析:答案为C。
电磁铁是通过电流在导线中产生磁场,而磁场强度是衡量磁场强弱的物理量。
2) 如图所示,一电磁铁所产生的磁场垂直纸面向内,其状态变化如下:则一个小金属环穿过电磁铁的子午线方向下降。
解析:根据法拉第电磁感应定律,磁场磁通量改变时会在导体中产生感应电动势。
当金属环下降时,穿过导线的磁通量在减小,从而产生的感应电动势方向与电磁铁内部磁场相反,导致金属环向下受力。
3) 在相距很远的两个点A、B之间,由一根长直导线的电流产生的磁感应强度大小与出发点与点A的距离的关系是A. 成反比关系B. 成正比关系C. 正弦关系D. 无关。
解析:答案为A。
根据毕奥-萨伐尔定律,长直导线产生的磁场强度与距离的平方成反比。
2. 2020年高考物理电磁学解答题1) 一根长直导线中通有电流I,每单位长度的电流强度为i。
若将这根导线从绝缘材料中拉出,形成一个半径为R的圆环,其截面上的总电荷量Q为多少?解析:由电流强度i的定义可知,i = I/πR²,通过整个圆环的电荷量为Q = Q0 = idl = I/πR² × 2πR = 2IR。
2) 光与电磁波属于同一现象,但光在波动和光子两种观点下有不同的解释。
试从波动和光子观点解释光的偏振现象。
解析:从波动观点看,光是电磁波,偏振是光波在传播方向上的振动方向。
光的偏振现象可以通过介质的吸收或者使用偏振片等方式实现。
从光子观点看,光可以看作是由一束以光子为单位的粒子组成的。
《电磁学》练习题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.EqLq P10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O 点的场强.ABRⅠⅡ Ⅲ dba 45︒cEσAσBA BOa θ0 q AR ∞∞O18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr =10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)-λ +λdd/2 d/226. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F 和da F的大小和方向.28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T 的均匀磁场中,B方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F 和da F的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.a b c dO RR x yI I 30° 45° I ∆l 1I ∆l 2a bc d O RR xyI I 30° 45° I ∆l 1 I ∆l 232. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BCR ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B 的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.39.地球半径为R =6.37×106 m .μ0 =4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出m p和L 方向间的关系.(电子电荷为e ,电子质量为m )1 m41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A)42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I 对电流元22d l I的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。
房改房大锅饭大公国静电场中的导体:例题1如图,半径为的接地导体球附近有一个静止点电荷,它与球心相距为,求导体球表面上感应电荷。
解:点电荷在球心处的电势为设为球面上感应面电荷密度,在球面上各点不尽相同(注意:对一个孤立的带电球形导体而言,其电荷是均匀分布在球面上的,即面电荷密度处处相同。
而今,导体球处于点电荷的电场中,对球面上各点的感应电荷分布是不均匀的。
)为此,可先在球面上任取一面积元,其上的感应电荷为,它在球心点的电势为整个球面上的感应电荷在球心点的电势为显然,,上式成为而球心点的电势为与之代数和,且其和应等于零,即由此可得,导体球表面上的感应电荷q′为按题意,导体球接地,以地的电势为零,考虑到位于点电荷q的静电场中的导体是一个等势体,这样,球心的电势亦应为零;而球心的电势则等于点电荷q和球面上的感应电荷q′所激发的电场在点O的电势之代数和。
据此即可求出解。
2.如图,三块平行的金属板A、B和C,面积均为。
板A、B相距,板A、C相距,B、C 两板都接地。
如果使A板带正电,并略去边缘效应,问B板和C板的内、外表面上感应电荷各是多少? 以地的电势为零,问A板的电势为多大解: 按题意,可判断感应电荷的分布如图所示。
因为B、C两板接地,所以两板都带负电,且即(a)考虑到 , , , , 则(b)由式(a)、(b),可得或这里,, , 代入上式,便可算出两板内表面感应电荷分别为,由于 B、C 板接地,外表面感应电荷为零。
又由 , 且,带入上述数值可算得 A 板的电势为。
有介質的靜電場:例题1.在无限长电缆内,导体圆柱A和同轴导体圆柱壳B的半径分别为和(<),单位长度所带电荷分别为+λ和-λ,内、外导体之间充满电容率为的均匀电介质。
求电介质中任一点的场强及内、外导体间的电势差。
解:取高斯面,它是半径为(<<)、长度为的同轴圆柱形闭合面。
左、右两底面与电位移的方向平行,其外法线方向皆与成夹角θ=π/2,故电位移通量为0;柱侧面与的方向垂直,其外法线与同方向,θ=0°通过侧面的电位移通量为cos0°(2π)。
被闭合面包围的自由电荷为λ。
按有电介质时静电场的高斯定理[式(3b)],有,即并由于和的方向一致,故由,得所求场强的大小为内、外导体间的电势差为由于内、外导体面上的自由电荷和电介质与内外导体的交界面上的束缚电荷都是轴对称分布的,故介质中的电场也是轴对称的。
2.一半径为 R 的电介质实心球体(见图),均匀地带正电,单位体积所带电荷为ρ(称为体电荷密度),球体的电容率为ε 1 ,球体外充满电容率为ε 2 的无限大均匀电介质。
求球体内、外任一点的场强和电势。
(提示:所作的高斯面分别为虚线所示的过球内、外场点P1、P2 的同心闭合球面。
)解:(1)因场强为球对称,故要按有电介质时D的高斯定理求之。
在r1<R,经P1作一封闭的同心球面,在 r2 >R,经P2 作一封闭的同心球面,再由 D=εE,可得球内、外任一点的场强为:(2)球内任一点的电势为电容器的例题设有面积为的平板电容器,两极板间填充两层均匀电介质,电容率分别为和(如图),厚度分别为和。
求这电容器的电容。
解:设两极板分别带上电荷+、-,在两层介质中的场强分别为和。
根据有介质时静电场的高斯定理,由于电位移通量只与自由电荷有关,故可先求电场中的电位移。
为此,作高斯面,它是长方棱柱形的闭合面,其右侧表面在电容率的介质内,左侧表面在导体极板内(图中虚线所示),板内的场强为零;上、下、前、后面的外法线皆与D垂直,其夹角θ=π/2,故·d=0;右侧面的外法线与同方向,θ=0°,即·d = cos0°d=d。
则由有,即。
再由,并因与同方向,故分别得,两极板间的电势差为所求电容为可见电容和电介质填充的次序无关;而且上述结果可以推广到两极板间含有任意层数的电介质中去。
电场的能量的习题:1.设半径为=10cm的金属球,带有电荷,位于= 2的无限大均匀电介质中。
求这带电球体的电场能量。
解:根据有电介质时静电场的高斯定理,可求得在离开球心为(>) 处的场强为该处任一点的电场能量密度为如图所示,在该处取一个与金属球同心的球壳层,其厚度为,体积,拥有的能量为。
整个电场的能量可用积分计算代入已知数值,得:2在习题11-10中,当圆柱形电容器两极板分别带有电荷 +q、-q 时,求:(1) 在一层半径为 r(Ra< r < Rb)、厚度为 dr 的同轴薄圆筒状电介质内任一点的能量密度;(2) 这层薄圆筒状电介质中的电场能量;(3) 此电容器中储存的总能量;(4) 由算出的总能量能否求出此电容器的电容?解:(1) 因为在电介质内任一点的能量密度为(2)这层薄圆筒状电介质中的电场能量为(3)此电容器中储存的总能量为(4)可从总能量求出此电容器的电容值二.恒定电流:如图,若V,,;μF,μF,μF,求通过电池的电流和各电容器上的电荷。
解:磁通量:磁通量是代数值,有正负。
因此,在计算磁通量时,首先应该选择好曲面的任一面积元d S的法线的正方向;其次是先计算磁场穿过其上任一面积元的磁通量。
如图所示,磁场强度为的均匀磁场,长直导线AB载有电流I,求通过:(1)befc面的磁通量;(2)aefd面的磁通量;(3)整个闭合面的磁通量(这时,各面法线皆指向闭合面外侧)。
解(1)通过面的磁通量为(2)通过面的磁通量为上述结果中取""号,表示可以取两种值,这是因为题中未指出面的正法线指向,故可以有正,负两种指向。
(3)对整个闭合面而言,面上各点的正法线指向规定向外为正。
在本题中,磁感线从面穿入,则通过面的磁通量为负,即而通过面的磁通量是穿出的,磁通量为正,即通过其他三个面的磁通量均为零。
所以通过整个闭合面的磁通量为毕奥-萨伐尔定律的应用:应用毕奥-萨伐尔定律计算磁场中各点磁感强度的具体步骤为:1.首先,将载流导线划分为一段段电流元,任选一段电流元I d l,并标出I d l 到场点P的位矢r,确定两者的夹角(I d l,r );2.根据毕奥-萨伐尔定律的公式,求出电流元I d l在场点P所激发的磁感强度d B的大小,并由右手螺旋法则决定d B的方向;3.建立坐标系,将d B在坐标系中分解,并用磁场叠加原理做对称性分析,以简化计算步骤;4.最后,就整个载流导线对d B的各个分量分别积分,一般在直角坐标系中对积分结果进行矢量合成,求出磁感强度B;即1. 载流长直导线的磁场如右图,导线长 L,电流为 I,方向向上,P 点与L的垂直距离为 D,现计算导线电流在 P 激发的磁感应强度在导线上任取一段电流元 Idl,它到P的位矢为 r 则d l×r的方向垂直版面向内,且导线任意处的电流元激发的场均沿此方向对无穷长直导线:2. 载流园线圈轴线上的磁场圆形线圈半径为 R,电流为 I,P 为轴线上一点,求P的磁场选线圈中心 O 为原点,OP 为 x 轴正向,在线圈上任取一电流元 Idl,r 为位矢 d l×r的方向即 dB 的方向而d B=d B⊥+d B//由于对称性,d B⊥将被园直径另一端的反向电流元在P点激发的磁场抵消,称为磁矩,线圈面积S的法向,与 I 方向满足右手法则,磁矩 Pm 是与电矩 Pe 对应的量。
安培环路定律的应用1.长直圆柱形载流导线内外的磁场设电流均匀分布,当所考察点离导线的距离比此点离导线两端的距离小得多时,可把导线当作无限长,系统有轴对称,所以 B 的环流r<R(图中Q点),在圆柱形导线内部,B 正比于离开轴线的距离 r。
• r>R(图中P点),,在外部,与长直导线激发的磁场相同,反比于 r。
2. 载流长直螺线管内的磁场设螺线管上线圈均匀且紧密、通有电流I,管的口径远小于管长,从而对管内磁场,螺线管可视为无限长。
由对称性,管内磁感应线是一系列与轴线平行的直线,管外磁场可忽略。
P 为管内一点,过P作一矩形闭合回路 ABCD,规定绕行方向如箭头所示设螺线管长为 l,共N匝线圈,令 n=N/l,则回路A B C D所包电流总和为 A B n IB 是一个常数,所以无限长螺线管中磁场是一均匀磁场,方向平行于轴线3. 载流螺绕环内的磁场仍然设环上线圈绕得很紧密且均匀,则磁场几乎全集中在螺线管内。
由于对称性,环内磁感应线都是一些同心圆,且同一磁感应线上,各点B值相等,方向处处沿园的切线。
P 为管内任意一点,与环心距离 r选择过 P 的磁感应线 L(即半径为 r 的园)为积分回路,B 的环流:这里,N 为线圈的总匝数,I 为电流。
所以,P 点的磁感应强度为4.同轴的两个长直圆筒状导体,外筒与内筒通有大小相等、流向相反的电流I,设外圆筒的半径为,内圆筒的半径为。
求与轴相距为r处一点的磁感强度。
若:(1);(2);(3)。
解根据安培环路定理:,①分别取图示的同轴圆周环路,,,其半径分别为,,,环路绕向均为顺时针。
(1)B 沿圆周环路的切向,故B 与的夹角处处为,有,()又则把上两式代入式①,成为所以,在处得磁感应强度为(2)同理,沿环路,有所以,在处得磁感应强度为(3)同理,沿环路,有所以,在处的磁感应强度。
运动电荷的磁场:一半径为R的薄塑料圆盘,在盘面均匀分布着电荷q,若圆盘绕通过圆心、且与盘面垂直的轴以角速度作匀速转动时,求在盘心处产生的磁感强度B的大小。
分析:电流在空间可以产生磁场,运动的电荷同样可以在空间产生磁场。
因此,一个运动的带电体也在空间产生磁场。
要计算带电圆盘在圆心处产生的磁场时,可以借助于圆电流磁场的公式。
首先,将运动的带电圆盘分割成许多宽度为的带电圆环;其次,写出其中任意一个带电圆环转动时的等效电流;(注意:每个圆环的转速相同,但荷电量不同,因此等效电流不同。
)最后,将所有运动圆环在圆心处产生的磁场叠加起来。
(注意:每个圆环在圆心处产生的磁感强度的方向均沿轴线方向,是同向叠加。
)解将圆盘分割为一系列半径不同的同心圆环,其中如图所示的圆环在旋转时的等效电流为,所以已知一个载流圆环载圆心处产生的磁场是。
带电圆环在旋转时在圆心处产生的磁场为整个带电圆盘旋转时在圆心处产生的磁场为磁场对载流导线的作用1.如图所示,一段半圆形导线,通有电流 I,园的半径为R,放在均匀磁场 B 中,磁场与导线平面垂直,求磁场作用在半圆形导线上的力。
解:取坐标系 xOy 如图,各段电流元受到的安培力均为但方向沿法线向外,由于对称性,各电流元所受力在 x 方向的分量相互抵消,只有 y 方向的分量对合力才有贡献,故整段导线所受力 F 沿 y 方向,大小为2.在长方形线圈cdef中通有电流在长直导线ab内通有电流,电流流向如图所示;ab与cf及de互相平行,尺寸已在图上标明。