三角函数的有关计算(2015年初三数学2课时第一章 第三节 )(2)全面版
- 格式:ppt
- 大小:1.31 MB
- 文档页数:14
(完整版)初中三角函数公式表一、基本公式1. 正弦定理:在任意三角形ABC中,a/sinA = b/sinB = c/sinC,其中a、b、c分别为三角形ABC的边长,A、B、C分别为对应的角。
2. 余弦定理:在任意三角形ABC中,a² = b² + c² 2bccosA,b² = a² + c² 2accosB,c² = a² + b² 2abcosC。
3. 正切定理:在任意三角形ABC中,tanA = sinA/cosA,tanB = sinB/cosB,tanC = sinC/cosC。
4. 余切定理:在任意三角形ABC中,cotA = cosA/sinA,cotB = cosB/sinB,cotC = cosC/sinC。
5. 正割定理:在任意三角形ABC中,secA = 1/cosA,secB =1/cosB,secC = 1/cosC。
6. 余割定理:在任意三角形ABC中,cscA = 1/sinA,cscB =1/sinB,cscC = 1/sinC。
二、特殊角公式1. 30°、45°、60°的正弦、余弦、正切、余切、正割、余割值:sin30° = 1/2,cos30° = √3/2,tan30° = 1/√3,cot30° = √3,sec30° = 2/√3,csc30° = 2sin45° = cos45° = 1/√2,tan45° = 1,cot45° = 1,sec45° = √2,csc45° = √2sin60° = √3/2,cos60° = 1/2,tan60° = √3,cot60° = 1/√3,sec60° = 2,csc60° = 2/√32. 90°的正弦、余弦、正切、余切、正割、余割值:sin90° = 1,cos90° = 0,tan90° = 无穷大,cot90° = 0,sec90° = 无穷大,csc90° = 1三、三角函数的和差公式1. 正弦和差公式:sin(A±B) = sinAcosB ± cosAsinB2. 余弦和差公式:cos(A±B) = cosAcosB ∓ sinAsinB3. 正切和差公式:tan(A±B) = (tanA ± tanB) / (1 ∓tanAtanB)四、三角函数的倍角公式1. 正弦倍角公式:sin2A = 2sinAcosA2. 余弦倍角公式:cos2A = cos²A sin²A = 2cos²A 1 = 12sin²A3. 正切倍角公式:tan2A = 2tanA / (1 tan²A)五、三角函数的半角公式1. 正弦半角公式:sin(A/2) = ±√[(1 cosA)/2]2. 余弦半角公式:cos(A/2) = ±√[(1 + cosA)/2]3. 正切半角公式:tan(A/2) = ±√[(1 cosA)/(1 + cosA)] = ±(sinA)/(1 + cosA) = ±(1 cosA)/(sinA)六、三角函数的积化和差公式1. 正弦积化和差公式:sinAsinB = 1/2[cos(A B) cos(A + B)]2. 余弦积化和差公式:cosAcosB = 1/2[cos(A B) + cos(A +B)]3. 正切积化和差公式:tanAtanB = (sinAsinB) / (cosAcosB) = 1/2[sin(A + B) sin(A B)] / [cos(A + B) + cos(A B)]七、三角函数的和差化积公式1. 正弦和差化积公式:sinA + sinB = 2sin((A + B)/2)cos((AB)/2),sinA sinB = 2cos((A + B)/2)sin((A B)/2)2. 余弦和差化积公式:cosA + cosB = 2cos((A + B)/2)cos((AB)/2),cosA cosB = 2sin((A + B)/2)sin((A B)/2)3. 正切和差化积公式:tanA + tanB = (sin(A + B)) / (cosAcosB),tanA tanB = (sin(A B)) / (cosAcosB)八、三角函数的倒角公式1. 正弦倒角公式:sin(π/2 A) = cosA,sin(π/2 + A) = cosA2. 余弦倒角公式:cos(π/2 A) = sinA,cos(π/2 + A) =sinA3. 正切倒角公式:tan(π/2 A) = cotA,tan(π/2 + A) =cotA九、三角函数的周期公式1. 正弦周期公式:sin(π + A) = sinA,sin(2π + A) = sinA2. 余弦周期公式:cos(π + A) = cosA,cos(2π + A) = cosA3. 正切周期公式:tan(π + A) = tanA,tan(2π + A) = tanA十、三角函数的辅助角公式1. 正弦辅助角公式:sin(A + B) = sinAcosB + cosAsinB,sin(A B) = sinAcosB cosAsinB2. 余弦辅助角公式:cos(A + B) = cosAcosB sinAsinB,cos(AB) = cosAcosB + sinAsinB3. 正切辅助角公式:tan(A + B) = (tanA + tanB) / (1 tanAtanB),tan(A B) = (tanA tanB) / (1 + tanAtanB)十一、三角函数的恒等式1. 正弦平方加余弦平方等于1:sin²A + cos²A = 12. 正切平方加1等于正割平方:tan²A + 1 = sec²A3. 余切平方加1等于余割平方:cot²A + 1 = csc²A4. 正弦与余弦的乘积等于正弦与余弦的乘积:sinAcosA =1/2sin2A5. 正切与余切的乘积等于1:tanAcotA = 1十二、三角函数的积分公式1. 正弦积分公式:∫sinAdA = cosA + C2. 余弦积分公式:∫cosAdA = sinA + C3. 正切积分公式:∫tanAdA = ln|cosA| + C4. 余切积分公式:∫cotAdA = ln|sinA| + C5. 正割积分公式:∫secAdA = ln|secA + tanA| + C6. 余割积分公式:∫cscAdA = ln|cscA + cotA| + C(完整版)初中三角函数公式表一、基本公式1. 正弦定理:在任意三角形ABC中,a/sinA = b/sinB = c/sinC,其中a、b、c分别为三角形ABC的边长,A、B、C分别为对应的角。
第五课时§1.3.2 三角函数的有关计算(二)●教学目标1、经历用计算器由三角函数值求相应锐角的过程,进一步体会三角函数的意义。
2、能够利用计算器进行有关三角函数值的计算。
3、能够运用计算器辅助解决含三角函数值计算的实际问题。
●教学重点1、用计算器由已知三角函数值求锐角.2、能够用计算器辅助解决含三角函数值计算的实际问题.●教学难点用计算器辅助解决含三角函数值计算的实际问题.●教具方法探究——引导——发现.●教学过程Ⅰ.创设问题情境,引入新课[师]随着人民生活水平的提高,农用小轿车越来越多,为了交通安全,某市政府要修建10 m 高的天桥,为了方便行人推车过天桥,需在天桥两端修建40m 长的斜道.(如图所示,用多媒体演示)这条斜道的倾斜角是多少?在Rt △ABC 中,BC=10 m ,AC =40 m ,sinA =41 AB BC .可是我求不出∠A. 我们知道,给定一个锐角的度数,这个锐角的三角函数值都唯一确定.给定一个锐角的三角函数值,这个锐角的大小也唯一确定吗?为什么?Ⅱ、讲授新课1、用计算器由锐角三角函数值求相应锐角的大小.[师]已知三角函数求角度,要用到 、键的第二功能、、”和 键。
键的第二功能 “sin-1,cos-1,tan-1”和键 例如:已知sinA=0.9816,求锐角A ,已知cosA =0.8607,求锐角A ;已知tanA :0.1890,求锐角A ;已知tanA =56.78,求锐角A.按键顺序显示结果sinA=0.9816 sin-10.9816=78.99184039cos-10.8607=30.60473007 cosA=0.8607otanA=0.1890 tan-10.1890=10.70265749tinA=0.56.78 tan-156.78=88.99102049上表的显示结果是以“度”为单位的.再按键即可显示以“度、分、秒”为单位的结果.Ⅲ、随堂练习1.已知sinθ=0.82904.求∠θ的大小.2.一梯子斜靠在一面墙上.已知梯长4 m,梯子位于地面上的一端离墙壁2.5 m,求梯子与地面所成的锐角.Ⅳ、课时小结本节课我们学习了用计算器由三角函数值求相应的锐角的过程,进一步体会三角函数的意义.并且用计算器辅助解决含有三角函数值计算的实际问题.Ⅴ、课后作业习题1.5第1、2、3题。
最新整理初三数学教案1.3三角函数的有关计算1.3三角函数的有关计算(二)教学目标知识与能力目标能够用计算器进行有关三角函数值的计算.能够运用计算器辅助解决含三角函数值计算的实际问题.过程与方法目标经历用计算器由已知锐角求三角函数值的过程.进一步体会三角函数的意义;借助计算器,解决含三角函数的实际问题,提高用现代工具解决实际问题的能力,发现实际问题中的边角关系,提高学生有条理地思考和表达的能力.情感与价值观要求通过积极参与数学活动,体会解决问题后的快乐.感悟计算器的计算功能和三角函数的应用价值教学重点、难点用计算器由已知锐角求三角函数值及用计算器辅助解决含三角函数值计算的实际问题.教学过程创设问题情境,引入新课随着人民生活水平的提高,农用小轿车越来越多,为了交通安全,某市政府要修建10m高的天桥,为了方便行人推车过天桥,需在天桥两端修建40m长的斜道.这条斜道的倾斜角是多少?解:在Rt△ABC中,BC=10m,AC=40m,sinA=.可是我求不出∠A.问题:我们知道,给定一个锐角的度数,这个锐角的三角函数值都唯一确定.给定一个锐角的三角函数值,这个锐角的大小也唯一确定吗?为什么?根据HL定理可知这样的直角三角形形状和大小是唯一确定的,当然∠A的大小也是唯一确定的.我们知道了sinA=时,锐角A是唯一确定的.现在我要告诉大家的是要解决这个问题,我们可以借助于科学计算器来完成.这节课,我们就来学习如何用科学计算器由锐角三角函数值求相应锐角的大小.师生互动、学习新课1.用计算器由锐角三角函数值求相应锐角的大小.已知三角函数求角度,要用到、键的第二功能、、”和键.键的第二功能“sin-1,cos-1,tan-1”和键例如:已知sinA=0.9816,求锐角A,已知cosA=0.8607,求锐角A;已知tanA:0.1890,求锐角A;已知tanA=56.78,求锐角A.按键顺序如下表.(多媒体演示)按键顺序显示结果sinA=0.9816sin-10.9816=78.99184039cosA=0.8607ocos-10.8607=30.60473007tanA=0.1890tan-10.1890=10.70265749tinA=0.56.78tan-156.78=88.99102049上表的显示结果是以“度”为单位的.再按键即可显示以“度、分、秒”为单位的结果.解答:sinA==0.25.按键顺序为,显示结果为14.47751219°,再按键可显示14°28′39″.所以∠A=14°28′39″.课堂练习一1.根据下列条件求锐角θ的大小:(1)tanθ=2.9888;(2)sinθ=0.3957;(3)cosθ=0.7850;(4)tanθ=0.8972;(5)sinθ=;(6)cosθ=;(7)tanθ=22.3;(H)tanθ=;(9)sinθ=0.6;(10)cosθ=0.2.2.某段公路每前进100米,路面就升高4米,求这段公路的坡角.(请同学们完成后,在小组内讨论、交流.教师巡视,对有困难的学生予以及时指导)[生)1.解:(1)θ=71°30′2″;(2)θ=23°18′35″;(3)θ=38°16′46″;(4)θ=41°53′54″;(5)θ=60°;(6)θ=30°;(7)θ=87°25′56″;(8)θ=60°;(9)θ=36°52′12″;(10)θ=78°27′47″.2.解:设坡角为α,根据题意,sinα==0.04,α=2°17′33″.所以这段公路的坡角为2°17′33″.2.运用计算器辅助解决含三角函数值计算的实际问题.[例1]如图,工件上有-V形槽.测得它的上口宽加20mm深19.2mm。
三角函数知识点总结九年级三角函数是数学中的一个重要概念,在九年级的数学学习中也会涉及到。
通过学习三角函数,我们可以更好地理解和计算与三角形有关的各种问题。
本文将对九年级三角函数的知识点进行总结,以帮助同学们更好地掌握这一部分内容。
一、三角比的定义和性质1. 正弦函数(sin):在直角三角形中,对于一个角的正弦值等于该角的对边长度与斜边长度的比值。
正弦函数的定义域是整个实数集,值域是[-1, 1]。
2. 余弦函数(cos):在直角三角形中,对于一个角的余弦值等于该角的邻边长度与斜边长度的比值。
余弦函数的定义域是整个实数集,值域是[-1, 1]。
3. 正切函数(tan):在直角三角形中,对于一个角的正切值等于该角的对边长度与邻边长度的比值。
正切函数的定义域是实数集中所有不是直角的角的集合,值域是整个实数集。
二、基本三角函数的图像和性质1. 正弦函数的图像:正弦函数的图像是一条连续的曲线,它在原点处交替地取得极大值和极小值。
正弦函数的图像是周期性的,其周期为2π。
2. 余弦函数的图像:余弦函数的图像也是一条连续的曲线,它与正弦函数的图像相同,只是在横坐标上平移了π/2。
余弦函数的图像也是周期性的,其周期为2π。
3. 正切函数的图像:正切函数的图像在某些点上会无定义,即在那些使得分母为零的点上。
这些点称为正切函数的奇点。
正切函数的图像是周期性的,其周期为π。
三、三角函数的基本关系式1. 三角函数的和差公式:- sin(A ± B) = sinAcosB ± cosAsinB- cos(A ± B) = cosAcosB ∓ sinAsinB- tan(A ± B) = (tanA ± tanB) / (1 ∓ tanA tanB)2. 三角函数的倍角公式:- sin 2A = 2sinAcosA- cos 2A = cos²A - sin²A- tan 2A = 2tanA / (1 - tan²A)3. 三角函数的半角公式:- sin (A/2) = ±√[(1 - cosA)/2]- cos (A/2) = ±√[(1 + cosA)/2]- tan (A/2) = ±√[(1 - cosA)/(1 + cosA)]四、三角函数的应用1. 在解决直角三角形问题时,我们可以利用三角函数来求解未知边长或未知角度。