九年级数学 第2课时 锐角三角函数
- 格式:doc
- 大小:145.04 KB
- 文档页数:4
第二十八章锐角三角函数28.2.2应用举例第2课时一、教学目标1.能够把解直角三角形相关知识应用到实际问题中;2.能从实际问题中构造直角三角形,把实际问题转化为解直角三角形的问题,并能灵活选择三角函数解决问题;3.经历从实际问题到数学问题的思考,培养学生数学建模思想和分析问题、解决问题的能力;4.体会数学在解决实际问题中的应用,使学生感受数学在航海方面的应用,使学生感受到数学的广泛作用.二、教学重难点重点:能够把解直角三角形相关知识应用到实际问题中.难点:灵活选择三角函数解决问题.三、教学用具多媒体等.四、教学过程设计教学环节教师活动学生活动设计意图环节一创设情景【回顾】教师活动:教师带领学生回顾前面所学知识,为下面做基础.如图,在Rt△ABC中,共有六个元素(三条边,三个角),其中∠C=90°.(1) 三边之间的关系:a2+b2=__c2___;思考并配合老师回答问题通过前面所学知识的复习,为后面解题做基础.(2) 锐角之间的关系:∠A+∠B=__90°___;(3) 边角之间的关系:sin A=__ac___,cos A=_bc____,tan A=_ab____.解直角三角形的应用:(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);(2)根据条件的特点,适当选用锐角三角函数等知识去解直角三角形;(3)得到数学问题答案;(4)得到实际问题答案.环节二探究新知【探究】如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80 n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34 °方向上的B处.这时,B处距离灯塔P有多远(结果取整数) ?【归纳】方位角:指北或指南方向线与目标方向线所成的小于90°的角叫做方位角.在下图中依次画出表示东南方向、西北方向、北偏东65°、南偏东34°方向的射线.学生跟随教师写过程经历从实际问题到数学问题的思考,培养学生数学建模思想和分析问题、解决问题的能力.解:如图 ,在Rt △APC 中, PC =P A ·cos(90°-65°) =80×cos25° ≈72.505在Rt △BPC 中,∠B =34°,sin PCB PB=()72505130n mile sin sin34PC .PB B ∴==≈ 当海轮到达位于灯塔P 的南偏东34°方向时,它距离灯塔P 大约130海里. 环节三应用新知 【典型例题】例1:铁路的路基横断面为一个等腰梯形,若腰的坡度为i =3∶2,顶宽是3m ,路基高是1.5m ,求路基的下底宽是多少?【归纳】坡度(坡比):坡面的铅直高度h 和水平距离l 的比叫做坡度,用字母 i 表示,如图,坡度通常写成tan hi lα==的形式.坡度越大 坡角越大 坡面越陡解:如图,AD =3m ,作AE ⊥BC , DF ⊥BC .集体回答通过例题,规范学生对解题步骤的书写,让学生感受数学的严谨性.∵i=3∶2,AE=DF=1.5m.∴BE=CF=1m.∴BC=1+1+3=5m.环节四巩固新知【随堂练习】教师活动:通过Pk作答的形式,让学生独立思考,再由老师带领整理思路过程.练习1如图,水库的横断面是梯形ABCD,迎水坡AB的坡度i=1∶1,坝高BE=20m,迎水坡AB=_______m,坡角α=_______.答案:202;45°练习2如图,海中有一个小岛A,它的周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?答案:(方法1)解:如图,过A作AC⊥BD,交BD的延长线于点C,则AC的长是A到BD的最短距离,由题意,得∠CAD=30°,∠CAB=60°,∠ABD=90°-60°= 30°,又∵∠BAD=∠CAB-∠CAD=60° -30°=30°,∴∠ABD=∠BAD,分组讨论进一步巩固本节课的内容.了解学习效果,让学生经历运用知识解决问题的过程,给学生获得成功体验的空间.=⨯12∴渔船继续向正东方向行驶,没有触礁的危险.3=tan30360°= 30°=3x以思维导图的形式呈现本节课所讲解的内容.。
九年级数学下册《锐角三角函数》第2课时教学设计一、教材分析本节课是北师大版九年级下册第一章《直角三角形的边角关系》的第一节的内容, 共两课时。
本设计是第二课时。
本节课是在学生理解了正切的基础上, 进一步通过探究发现直角三角形中直角边与斜边之间存在的关系。
从教材中可以看到, 其中渗透着数学核心素养如数学抽象、数学建模等数学思想, 是本节课的数学本质。
二、学情分析学生的知识技能基础:通过前一节课学习的有关正切的知识, 学生已获得一定的探究方法, 积累了一定的经验, 这为本节课的开展提供了必要的铺垫。
本节课将在此基础上进行类比学习, 进一步探究直角三角形中的边角关系。
学生的活动经验基础:学生在上一节课的学习过程中已经历过从实际生活中抽象出数学概念, 形成数学知识, 并建立起数学建模解决实际生活问题的模式, 而且获得了探究数学问题过程中采用合适的数学方法解决问题的经验, 同时具有了一定的合作学习的能力, 交流的能力, 这些都为本节课的学习提供了必要的铺垫。
三、教学任务本节共分2个课时, 这是第2课时, 主要内容是进一步通过探究发现直角三角形中直角边与斜边之间存在的关系, 并利用这种关系解决一些简单问题。
本节课的具体教学目标为:知识与技能:1、探索并掌握锐角三角函数的概念——正弦、余弦, 理解锐角的正弦与余弦和梯子倾斜程度的关系。
2、能够用正弦、余弦进行简单的计算, 解决一些简单的实际问题。
过程与方法:1、经历类比、猜想等过程.发展合情推理能力, 能有条理地、清晰地阐述自己的观点。
2、在课堂上落实数学核心素养数学抽象、数学建模的思想, 体会解决问题的策略的多样性, 发展实践能力和创新精神。
情感态度价值观:积极参与数学活动, 提高学生对数学学科的好奇心和求知欲, 学有用的数学, 同时体会数学学科的一些核心素养, 如数学抽象、数学建模对研究问题时的引领作用。
教学重点:掌握正弦、余弦的定义, 感受数学与生活的联系。
28.1 锐角三角函数第2课时一、教学目标【知识与技能】1.通过类比正弦函数,理解余弦函数、正切函数的定义,进而得到锐角三角函数的概念;2.能灵活运用锐角三角函数进行相关运算.【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.【情感态度与价值观】经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力.二、课型新授课三、课时第2课时共4课时四、教学重难点【教学重点】理解余弦、正切概念,知道当直角三角形的锐角固定时,它的邻边与斜边的比值、直角边之比是固定值.【教学难点】熟练运用锐角三角函数的概念进行有关计算.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔.六、教学过程(一)导入新课(出示课件2)如图,在Rt△ABC中,∠C=90°.当∠A确定时,∠A的对边与斜边的比就确定,此时,其他边之间的比是否也确定呢?(二)探索新知知识点一余弦的定义如图,△ABC和△DEF都是直角三角形,其中∠A=∠D,∠C=∠F=90°,则AC DF=成立吗?为什么?(出示课件4)AB DE学生思考后,师生共同解答:(出示课件5)∵∠A=∠D,∠C=∠F=90°,∴∠B=∠E.从而sinB=sinE,因此AC DF=.AB DE教师归纳:(出示课件6)在有一个锐角相等的所有直角三角形中,这个锐角的邻边与斜边的比值是一个常数,与直角三角形的大小无关.如下图所示,在直角三角形中,我们把锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cosA=.A b c∠=的邻边斜边教师强调:从上述探究和证明过程,可以得到互余两角的三角函数之间的关系:对于任意锐角α,有cos α=sin(90°-α),或sin α=cos(90°-α).(出示课件7)出示课件8,教师对照正弦、余弦的定义,对两个概念注意事项加以强调:1.sinA 、cosA 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形).2.sinA 、cosA 是一个比值(数值).3.sinA 、cosA 的大小只与∠A 的大小有关,而与直角三角形的边长无关.出示课件9,学生独立思考后口答,教师订正.知识点二 正切的定义如图,△ABC 和△DEF 都是直角三角形,其中∠A=∠D ,∠C=∠F=90°,则BC EF AC DF=成立吗?为什么?(出示课件10)学生自主证明,一生板演,教师巡视,并用多媒体展示. 证明:∵∠C=∠F=90°,∠A=∠D ,∴Rt △ABC ∽Rt △DEF. ∴BC AC EF DF =, 即BC EF AC DF=. 教师问:当直角三角形的一个锐角的大小确定时,其对边与邻边比值也是唯一确定的吗?(出示课件11)学生独立思考后,师生共同总结:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A 的对边与邻边的比是一个固定值.(出示课件12)如图:在Rt △ABC 中,∠C =90°,我们把锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA.即tanA=a .A A b∠=∠的对边的邻边出示课件14,教师问:如果两个角互余,那么这两个角的正切值有什么关系?学生答:互为倒数.教师问:锐角A 的正切值可以等于1吗?为什么?可以大于1吗?学生答:锐角A 的正切值可以等于1;当a=b 时;可以大于1,当a >b 时.出示课件15,学生独立思考后口答,教师订正.知识点三 锐角三角函数的定义出示课件16:锐角A 的正弦、余弦、和正切统称∠A 的锐角三角函数.考点1 已知直角三角形两边求锐角三角函数的值.例 如图,△ABC 中,∠C=90°,AB=10,BC=6,求sinA ,cosA ,tanA 的值.(出示课件17)学生思考后,师生共同解答.解:由勾股定理,得2222=106AC AB BC --, 因此,63sin ==105BC A AB =, 84cos 105AC A AB ,===63tan ==.84BC A AC = 师生共同总结:已知直角三角形中的两条边求锐角三角函数值的一般思路是:当所涉及的边是已知时,直接利用定义求锐角三角函数值;当所涉及的边是未知时,可考虑运用勾股定理的知识求得边的长度,然后根据定义求锐角三角函数值.(出示课件18)出示课件19,学生独立思考后口答,教师订正.考点2 已知一边及一锐角三角函数值求函数值.例 如图,在Rt △ABC 中,∠C=90°,BC=6,3sin 5A =,求cosA,tanB 的值.学生独立思考后,师生共同解答.解:∵在Rt △ABC 中,sin BC A AB=, ∴5610sin 3BC AB A =⨯==. 又22221068AC AB BC =-=-=, ∴4cos 5AC A AB ==,4tan .3AC B BC == 教师强调:在直角三角形中,如果已知一边长及一个锐角的某个三角函数值,即可求出其它的所有锐角三角函数值.出示课件21,学生独立思考后一生板演,教师订正.(三) 课堂练习(出示课件22-28)练习课件22-28相应题目,约用时15分钟。
第2课时 锐角三角函数
1.掌握余弦、正切的定义.
2.了解锐角∠A 的三角函数的定义.
3.能运用锐角三角函数的定义求三角函数值.
阅读教材P64-65,自学“探究”与“例2”.
自学反馈 学生独立完成后集体订正
①在Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c;∠A 的邻边与斜边的比叫做∠A 的 ,即cosA= ;∠A 的对边与邻边的比叫做∠A 的 ,即tanA= .
②锐角A 的正弦、余弦、正切叫做∠A 的 .
③在Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若a=3、b=4,则cosB= ,tanB= .
④在Rt △ABC 中,∠C=90°,∠A=30°,则sinA= ()()= ,cosA=
()()= ,tanA=
()()= . ⑤在Rt △ABC 中,∠C=90°,∠A=60°,则sinA=
()()= ,cosA= ()()= ,tanA=
()()= . ⑥在Rt △ABC 中,∠C=90°,∠A=45°,则sinA=
()()= ,cosA= ()()= ,tanA=
()()= . 锐角三角函数是在直角三角形的前提下.
活动1 小组讨论
例1 分别求出下列直角三角形中两个锐角的正弦值、余弦值和正切值.
解:在Rt△ABC中,根据勾股定理得
∴sinA=cosB=BC
AB
=
5
13
,cosA=sinB=
AC
AB
=
12
13
,tanA=
BC
AC
=
5
12
,tanB=
AC
BC
=
12
5
.利用勾股定理求出第三边,再直接运用三角函数定义即可.
活动2 跟踪训练(独立完成后小组内展示学习成果)
1.在Rt△ABC中,∠C=90°,D是AB的中点,若CD=BC,则tanA= .
2.在Rt△ABC中,∠C=90°,c=13,a=12,那么sinA= ,cosA= ,tanA= .
3.在Rt△ABC中,∠C=90°,c=2,sinB=1
2
,则a= ,b= ,S△ABC= .
均可先求出直角三角形的边长,再用锐角三角函数的关系来做.
活动1 小组讨论
例2 如图,在Rt△ABC中,∠C=90°,AC=8,tanA=3
4
,求sinA和cosB的值.
解:∵tanA=BC AC
,
∴BC=AC×tanA=8×3
4
=6.
∵
∴sinA=BC
AB
=
6
10
=
3
5
,cosB=
BC
AB
=
6
10
=
3
5
.
先求Rt△ABC的边长,再求sinA、cosB的值.
例3 如图,在△ABC中,AB=15,AC=13,S△ABC=84,求sinA的值.
解:过点C 作CD ⊥AB 于点D.
∵S △ABC =
12
AB ·CD, ∴CD=2ABC S AB =28415 =565
. 在Rt △ACD 中,sinA=CD AC =56513=5665. 求sinA 的值,由正弦定义可知,必须在直角三角形中,图中没有直角三角形,应想办法构造,题中又提供了三角形的面积及边AB 的长,故可通过C 作高CD.
活动2 跟踪训练(独立完成后展示学习成果)
1.在△ABC 中,∠C=90°,且tanA=13
,则cosB 的值是 . 2.如图,在△ABC 中,∠ABC=60°,AB ∶BC=2∶5,S △ABC
,求tanC 的值.
活动3 课堂小结
1.本节学习的数学知识,锐角的余弦、正切及锐角三角函数的定义.
2.本节还学到了类比的思想.
教学至此,敬请使用学案当堂训练部分.
【预习导学】
自学反馈
①余弦b
c
正切
a
b
②锐角三角函数
③3
5
4
3
④⑤⑥略
【合作探究1】活动2 跟踪训练
1.
3
2.12
13
5
13
12
5
1
2
【合作探究2】活动2 跟踪训练。