九年级数学 第2课时 锐角三角函数
- 格式:doc
- 大小:145.04 KB
- 文档页数:4
第二十八章锐角三角函数28.2.2应用举例第2课时一、教学目标1.能够把解直角三角形相关知识应用到实际问题中;2.能从实际问题中构造直角三角形,把实际问题转化为解直角三角形的问题,并能灵活选择三角函数解决问题;3.经历从实际问题到数学问题的思考,培养学生数学建模思想和分析问题、解决问题的能力;4.体会数学在解决实际问题中的应用,使学生感受数学在航海方面的应用,使学生感受到数学的广泛作用.二、教学重难点重点:能够把解直角三角形相关知识应用到实际问题中.难点:灵活选择三角函数解决问题.三、教学用具多媒体等.四、教学过程设计教学环节教师活动学生活动设计意图环节一创设情景【回顾】教师活动:教师带领学生回顾前面所学知识,为下面做基础.如图,在Rt△ABC中,共有六个元素(三条边,三个角),其中∠C=90°.(1) 三边之间的关系:a2+b2=__c2___;思考并配合老师回答问题通过前面所学知识的复习,为后面解题做基础.(2) 锐角之间的关系:∠A+∠B=__90°___;(3) 边角之间的关系:sin A=__ac___,cos A=_bc____,tan A=_ab____.解直角三角形的应用:(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);(2)根据条件的特点,适当选用锐角三角函数等知识去解直角三角形;(3)得到数学问题答案;(4)得到实际问题答案.环节二探究新知【探究】如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80 n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34 °方向上的B处.这时,B处距离灯塔P有多远(结果取整数) ?【归纳】方位角:指北或指南方向线与目标方向线所成的小于90°的角叫做方位角.在下图中依次画出表示东南方向、西北方向、北偏东65°、南偏东34°方向的射线.学生跟随教师写过程经历从实际问题到数学问题的思考,培养学生数学建模思想和分析问题、解决问题的能力.解:如图 ,在Rt △APC 中, PC =P A ·cos(90°-65°) =80×cos25° ≈72.505在Rt △BPC 中,∠B =34°,sin PCB PB=()72505130n mile sin sin34PC .PB B ∴==≈ 当海轮到达位于灯塔P 的南偏东34°方向时,它距离灯塔P 大约130海里. 环节三应用新知 【典型例题】例1:铁路的路基横断面为一个等腰梯形,若腰的坡度为i =3∶2,顶宽是3m ,路基高是1.5m ,求路基的下底宽是多少?【归纳】坡度(坡比):坡面的铅直高度h 和水平距离l 的比叫做坡度,用字母 i 表示,如图,坡度通常写成tan hi lα==的形式.坡度越大 坡角越大 坡面越陡解:如图,AD =3m ,作AE ⊥BC , DF ⊥BC .集体回答通过例题,规范学生对解题步骤的书写,让学生感受数学的严谨性.∵i=3∶2,AE=DF=1.5m.∴BE=CF=1m.∴BC=1+1+3=5m.环节四巩固新知【随堂练习】教师活动:通过Pk作答的形式,让学生独立思考,再由老师带领整理思路过程.练习1如图,水库的横断面是梯形ABCD,迎水坡AB的坡度i=1∶1,坝高BE=20m,迎水坡AB=_______m,坡角α=_______.答案:202;45°练习2如图,海中有一个小岛A,它的周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?答案:(方法1)解:如图,过A作AC⊥BD,交BD的延长线于点C,则AC的长是A到BD的最短距离,由题意,得∠CAD=30°,∠CAB=60°,∠ABD=90°-60°= 30°,又∵∠BAD=∠CAB-∠CAD=60° -30°=30°,∴∠ABD=∠BAD,分组讨论进一步巩固本节课的内容.了解学习效果,让学生经历运用知识解决问题的过程,给学生获得成功体验的空间.=⨯12∴渔船继续向正东方向行驶,没有触礁的危险.3=tan30360°= 30°=3x以思维导图的形式呈现本节课所讲解的内容.。
九年级数学下册《锐角三角函数》第2课时教学设计一、教材分析本节课是北师大版九年级下册第一章《直角三角形的边角关系》的第一节的内容, 共两课时。
本设计是第二课时。
本节课是在学生理解了正切的基础上, 进一步通过探究发现直角三角形中直角边与斜边之间存在的关系。
从教材中可以看到, 其中渗透着数学核心素养如数学抽象、数学建模等数学思想, 是本节课的数学本质。
二、学情分析学生的知识技能基础:通过前一节课学习的有关正切的知识, 学生已获得一定的探究方法, 积累了一定的经验, 这为本节课的开展提供了必要的铺垫。
本节课将在此基础上进行类比学习, 进一步探究直角三角形中的边角关系。
学生的活动经验基础:学生在上一节课的学习过程中已经历过从实际生活中抽象出数学概念, 形成数学知识, 并建立起数学建模解决实际生活问题的模式, 而且获得了探究数学问题过程中采用合适的数学方法解决问题的经验, 同时具有了一定的合作学习的能力, 交流的能力, 这些都为本节课的学习提供了必要的铺垫。
三、教学任务本节共分2个课时, 这是第2课时, 主要内容是进一步通过探究发现直角三角形中直角边与斜边之间存在的关系, 并利用这种关系解决一些简单问题。
本节课的具体教学目标为:知识与技能:1、探索并掌握锐角三角函数的概念——正弦、余弦, 理解锐角的正弦与余弦和梯子倾斜程度的关系。
2、能够用正弦、余弦进行简单的计算, 解决一些简单的实际问题。
过程与方法:1、经历类比、猜想等过程.发展合情推理能力, 能有条理地、清晰地阐述自己的观点。
2、在课堂上落实数学核心素养数学抽象、数学建模的思想, 体会解决问题的策略的多样性, 发展实践能力和创新精神。
情感态度价值观:积极参与数学活动, 提高学生对数学学科的好奇心和求知欲, 学有用的数学, 同时体会数学学科的一些核心素养, 如数学抽象、数学建模对研究问题时的引领作用。
教学重点:掌握正弦、余弦的定义, 感受数学与生活的联系。
28.1 锐角三角函数第2课时一、教学目标【知识与技能】1.通过类比正弦函数,理解余弦函数、正切函数的定义,进而得到锐角三角函数的概念;2.能灵活运用锐角三角函数进行相关运算.【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.【情感态度与价值观】经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力.二、课型新授课三、课时第2课时共4课时四、教学重难点【教学重点】理解余弦、正切概念,知道当直角三角形的锐角固定时,它的邻边与斜边的比值、直角边之比是固定值.【教学难点】熟练运用锐角三角函数的概念进行有关计算.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔.六、教学过程(一)导入新课(出示课件2)如图,在Rt△ABC中,∠C=90°.当∠A确定时,∠A的对边与斜边的比就确定,此时,其他边之间的比是否也确定呢?(二)探索新知知识点一余弦的定义如图,△ABC和△DEF都是直角三角形,其中∠A=∠D,∠C=∠F=90°,则AC DF=成立吗?为什么?(出示课件4)AB DE学生思考后,师生共同解答:(出示课件5)∵∠A=∠D,∠C=∠F=90°,∴∠B=∠E.从而sinB=sinE,因此AC DF=.AB DE教师归纳:(出示课件6)在有一个锐角相等的所有直角三角形中,这个锐角的邻边与斜边的比值是一个常数,与直角三角形的大小无关.如下图所示,在直角三角形中,我们把锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cosA=.A b c∠=的邻边斜边教师强调:从上述探究和证明过程,可以得到互余两角的三角函数之间的关系:对于任意锐角α,有cos α=sin(90°-α),或sin α=cos(90°-α).(出示课件7)出示课件8,教师对照正弦、余弦的定义,对两个概念注意事项加以强调:1.sinA 、cosA 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形).2.sinA 、cosA 是一个比值(数值).3.sinA 、cosA 的大小只与∠A 的大小有关,而与直角三角形的边长无关.出示课件9,学生独立思考后口答,教师订正.知识点二 正切的定义如图,△ABC 和△DEF 都是直角三角形,其中∠A=∠D ,∠C=∠F=90°,则BC EF AC DF=成立吗?为什么?(出示课件10)学生自主证明,一生板演,教师巡视,并用多媒体展示. 证明:∵∠C=∠F=90°,∠A=∠D ,∴Rt △ABC ∽Rt △DEF. ∴BC AC EF DF =, 即BC EF AC DF=. 教师问:当直角三角形的一个锐角的大小确定时,其对边与邻边比值也是唯一确定的吗?(出示课件11)学生独立思考后,师生共同总结:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A 的对边与邻边的比是一个固定值.(出示课件12)如图:在Rt △ABC 中,∠C =90°,我们把锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA.即tanA=a .A A b∠=∠的对边的邻边出示课件14,教师问:如果两个角互余,那么这两个角的正切值有什么关系?学生答:互为倒数.教师问:锐角A 的正切值可以等于1吗?为什么?可以大于1吗?学生答:锐角A 的正切值可以等于1;当a=b 时;可以大于1,当a >b 时.出示课件15,学生独立思考后口答,教师订正.知识点三 锐角三角函数的定义出示课件16:锐角A 的正弦、余弦、和正切统称∠A 的锐角三角函数.考点1 已知直角三角形两边求锐角三角函数的值.例 如图,△ABC 中,∠C=90°,AB=10,BC=6,求sinA ,cosA ,tanA 的值.(出示课件17)学生思考后,师生共同解答.解:由勾股定理,得2222=106AC AB BC --, 因此,63sin ==105BC A AB =, 84cos 105AC A AB ,===63tan ==.84BC A AC = 师生共同总结:已知直角三角形中的两条边求锐角三角函数值的一般思路是:当所涉及的边是已知时,直接利用定义求锐角三角函数值;当所涉及的边是未知时,可考虑运用勾股定理的知识求得边的长度,然后根据定义求锐角三角函数值.(出示课件18)出示课件19,学生独立思考后口答,教师订正.考点2 已知一边及一锐角三角函数值求函数值.例 如图,在Rt △ABC 中,∠C=90°,BC=6,3sin 5A =,求cosA,tanB 的值.学生独立思考后,师生共同解答.解:∵在Rt △ABC 中,sin BC A AB=, ∴5610sin 3BC AB A =⨯==. 又22221068AC AB BC =-=-=, ∴4cos 5AC A AB ==,4tan .3AC B BC == 教师强调:在直角三角形中,如果已知一边长及一个锐角的某个三角函数值,即可求出其它的所有锐角三角函数值.出示课件21,学生独立思考后一生板演,教师订正.(三) 课堂练习(出示课件22-28)练习课件22-28相应题目,约用时15分钟。
24.3 锐角三角函数1.锐角三角函数第1课时锐角三角函数的定义※教学目标※【知识与技能】了解锐角三角函数的概念,能够正确应用sinA、cosA、tanA表示直角三角形中两边的比.【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,体会数学在解决实际问题中的作用.【情感态度】1.通过学习培养学生的合作意识.2.通过探究提高学生学习数学的兴趣.【教学重点】锐角三角函数的概念.【教学难点】锐角三角函数的概念的理解.※教学过程※一、情境导入如图(1),图(2)都可以用来测量物体的高度.这两个问题的解决,将涉及直角三角形中的边角关系.直角三角形中,它的边与角有什么关系?通过本节的学习,你就会明白其中的道理,并能应用所学知识解决相关的问题.二、探索新知1.某个角的对边、邻边的概念.在Rt△ABC中,直角∠C所对的边AB称为斜边,用c表示,另两边直角边为∠A的对边与邻边,分别用a、b表示(如图).2.做一做.(1)画一个Rt△ABC,使∠C=90°,∠A=30°,那么∠A的对边与斜边的比值是多少?量一量、算一算.(2)你画的三角形与你同伴画的三角形全等吗?不全等时,比值有什么关系?和你的同伴交流一下.(3)若∠A=45°、60°时,则∠A对边与斜边之比是多少?结论:在Rt△ABC中,只要一个锐角的大小不变(如∠A=30°),那么不管这个直角三角形大小如何,该锐角的对边与邻边的比值是一个固定的值.经过验证,在Rt△ABC中,当锐角A取其他固定值时,∠A的对边与邻边的比值还是一个固定值,与Rt△ABC的大小无关.说明:观察图中的Rt△AB 1C1、Rt△AB2C2和Rt△AB3C3,易知Rt△AB1C1Rt△AB2C2∽Rt△AB3C3.∴==可见,在Rt△ABC中,对于锐角A的每一个确定的值,其对边与邻边的比值是唯一确定的.同样,其对边与斜边,邻边与斜边的比值也是唯一确定的.3.锐角三角形函数的定义∠A的正弦:sinA=∠A的余弦:cosA=∠A的正切:tanA=∠A的正弦、余弦、正切统称为锐角∠A的三角函数.4.知识拓展(1)正弦与余弦三角函数值的取值范围.∵直角三角形中,斜边大于直角边.∴0<sinA<1,0<cosA<1.(2)同角三角函数关系sin2α+cos2α=1;tanα=.(3)互余两角的三角函数值若α、β都是锐角,且α+β=90°,那么:sinα=cosβ,cosα=sinβ.三、巩固练习【例1】如图,在Rt△ABC中,∠C=90°,AC=15,BC=8.试求出∠A的三个三角函数值.解:AB==17,sinA=,cosA=,tanA=.【练习】1.如图,在Rt△MNP中,∠N=90°,则:∠P的对边是,∠P的邻边是;∠M的对边是,∠M的邻边是.第1题图第2题图2.如图,在Rt△DEC中,∠E=90°,CD=10,DE=6.试求出∠D的三个三角函数值.3.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.根据下列所给条件,分别求出∠B的三个三角函数值:(1)a=3,b=4;(2)a=5,c=13.答案:1.MN PN PN MN2.由勾股定理,得CE=8,所以sinD=,cosD=,tanD=.3.(1)sinB=,cosB=,tanB=.(2)sinB=,cosB=,tanB=.四、应用拓展【例2】已知:Rt△ABC中,∠C=90°,sinA=,BC=3,求AB、AC的值.解:∵sinA=,∴AB=,∴AC=.【例3】如图,已知α为锐角,sinα=,求cosα、tanα的值.解:方法一:用定义法求解∵sinα=,∴设BC=3x,则AB=5x.由勾股定理,得AC=4x.∴cosα=,tanα=.方法二:用公式求解∵α为锐角,∴cosα==,tanα=.五、归纳小结1.正弦、余弦、正切的定义是在直角三角形中相对其锐角而定义的,其本质是两条线段长度之比,理解好这三个概念是学好本章的关键;2.正弦、余弦、正切实际上都是比值,没有单位,它们只与锐角α的大小有关,与三角形的边长无关;3.对于每一个锐角α的确定的值,它的正弦、余弦和正切都有唯一确定的值与之对应;反之,对于每一个确定的正弦、余弦和正切值,都有唯一的锐角与之对应.※课后作业※1.教材第111页习题24.3第1、2题.2.如图,在Rt△ABC中,∠CAB=90°,AD是∠CAB的平分线,tanB=,求的值.第2课时特殊角的三角函数值※教学目标※【知识与技能】1.熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应的锐角度数.2.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【过程与方法】培养学生观察、比较、分析、概括的思维能力.【情感态度】经历观察、操作、归纳等学习数学过程,感受数学思考过程的合理性,感受数学说理的必要性,说理过程的严谨性,养成科学的、严谨的学习态度.【教学重点】特殊角的三角函数值.【教学难点】与特殊角的三角函数值有关的计算.※教学过程※一、复习引入在Rt△ABC中,∠C=90°,AC=1,AB=2,求∠A、∠B的三个三角函数值.回顾锐角三角函数的定义;直角三角形的性质.二、探索新知在Rt△ABC中,∠A=30°,∠C=90°,如图,试求两个锐角的三个三角函数值.解:在直角三角形中,30°角所对的直角边是斜边的一半.所以,若设30°角所对的直角边为1,即BC=1,则AB=2,由勾股定理得:AC=.由三角函数定义,得sin30°=.cos30°=.tan30°=.同理可得sin60°=,cos60°=,tan60°=.2.在Rt△ABC中,∠C=90°,∠A=∠B=45°,如图,试求45°角的三角函数值.若设AC=BC=1.则AB=.易得sin45°=,cos45°=,tan45°=1.【例1】求值:sin30°·tan30°+cos60°·tan60°.解:原式=.【例2】在Rt△ABC中,若sinA=,则cos的值是多少?解:由sinA=知A=60°.∴cos=cos30°=.三、巩固练习1.在△ABC中,若cosA=,tanB=,则此三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2.用特殊角的三角函数填空:= = ;= = ;1= ;= .3.化简= .4.点M(-sin60°,cos60°)关于x轴对称的点的坐标是.5.求下列各式的值:(1)sin260°+cos260°;(2)2cos60°+2sin30°+4tan45°;(3).6.如图,在Rt△ABC中,∠C=90°,AB=,BC=.求∠A的大小.答案:1.A 2.sin60° cos30° sin45° cos45°tan45° tan60° 3. 4.5.(1)1 (2)6 (3)6.∠A=45°四、应用拓展1.你能求出tan15°的值吗?如图,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至D,使BD=AB,则∠D=15°.设AC=k,则AB=2k,BC=k,所以CD=BC+BD=BC+AB=(2+)k,所以tan15°===2-.2.仿上面的解题方法,易求tan22.5°=-1.※课后作业※1.教材第111页习题24.3的第3题.2.若∠A、∠B是△ABC的两个内角且满足关系式=0,求∠C的度数.3.若α为锐角,且tan2α-(1+)tanα+1=0.求α的度数.2.用计算器求锐角三角函数值※教学目标※【知识与技能】1.会使用计算器求锐角三角函数的值.2.会使用计算器根据锐角三角函数的值求对应的锐角.【过程与方法】在做题、计算的过程中,逐步熟练计算器的使用.【情感态度】经历计算器的使用过程,熟悉其按键顺序.【教学重点】利用计算器求锐角三角函数的值.【教学难点】计算器的按键顺序. ※教学过程※一、复习引入填表:由上表我们可以直接写出30°,45°,60°角的三角函数值及由特殊值写出相应的锐角.对一些非特殊的角,怎样求它的三个三角函数值呢?二、探索新知1.求锐角三角函数值【例1】求sin63°52′41″的值(精确到0.0001).解:如下方法将角度单位状态设定为“度”:再按下列顺序依次按键:显示结果为0.897859012.∴sin63°52′41″≈0.8979.【例2】求tan19°15′的值(精确到0.0001).解:在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:显示结果为0.3492156334.∴tan19°15′≈0.3492.2.由锐角三角函数值求锐角.【例3】若tanx=0.7410,求锐角x.(精确到1′)解:在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:显示结果为36.53844577.再按键,显示结果为36°32′18.4″.所以x≈36°32′.三、巩固练习1.利用计算器求下列三角函数值:(精确到0.0001)(1)sin24°;(2)cos51°42′20″;(3)tan70°21′.2.已知下列锐角α的各三角函数值,利用计算器求锐角α:(精确到1′)(1)sinα=0.2476;(2)cosα=0.4174;(3)tanα=0.1890.答案:1.(1)0.4067 (2)0.6197 (3)2.8006 2.(1)14°20′(2)65°20′(3)10°42′※课后作业※1.教材第111页习题24.3的第4、5题.2.比较大小.cos25° cos32°,tan29° tan39°.3.在Rt△ABC中,∠C=90°,AB=29,AC=25,求∠A的度数.。
锐角三角函数教案设计锐角三角函数教案设计作为一位杰出的老师,就有可能用到教案,教案有利于教学水平的提高,有助于教研活动的开展。
那么写教案需要注意哪些问题呢?下面是店铺整理的锐角三角函数教案设计,欢迎大家借鉴与参考,希望对大家有所帮助。
锐角三角函数教案设计篇1知识目标:1.理解锐角的正弦函数、余弦函数、正切函数、余切函数的意义。
2.会由直角三角形的边长求锐角的正、余弦,正、余切函数值。
能力、情感目标:1.经历由情境引出问题,探索掌握数学知识,再运用于实践过程,培养学生学数学、用数学的意识与能力。
2.体会数形结合的数学思想方法。
3.培养学生自主探索的精神,提高合作交流能力。
重点、难点:1.直角三角形锐角三角函数的意义。
2.由直角三角形的边长求锐角三角函数值。
教学过程:一、创设情境前面我们利用相似和勾股定理解决一些实际问题中求一些线段的长度问题。
但有些问题单靠相似与勾股定理是无法解决的。
同学们放过风筝吗?你能测出风筝离地面的高度吗?学生讨论、回答各种方法。
教师加以评论。
总结:前面我们学习了勾股定理,对于以上的问题中,我们求的是BC的长,而的AB的长是可知的,只要知道AC的长就可要求BC 了,但实际上要测量AC是很难的。
因此,我们换个角度,如果可测量出风筝的线与地面的夹角,能不能解决这个问题呢?学了今天这节课的内容,我们就可以很好地解决这个问题了。
(由一个学生比较熟悉的事例入手,引起学生的学习兴趣,调动起学生的学习热情。
由此导入新课)二、新课讲述在Rt△ABC中与Rt△A1B1C1中∠C=90°, C1=90°∠A=∠A1,∠A 的对边、斜边分别是BC、AB,∠A1的对边、斜边分别是B1C1、A1B2 (学生探索,引导学生积极思考,利用相似发现比值相等)()若在Rt△A2B2C2中,∠A2=∠A,那么问题1:从以上的探索问题的过程,你发现了什么?(学生讨论)结论:这说明在直角三角形中,只要一个锐角的大小不变,那么无论这个直角三角形的大小如何,该锐角的对边与斜边的比值是一个固定值。
鲁教版数学九年级上册2.1《锐角三角函数》(第2课时)教学设计一. 教材分析鲁教版数学九年级上册2.1《锐角三角函数》(第2课时)的内容主要包括正弦、余弦和正切函数的定义,以及它们的性质。
这一部分内容是整个初中数学的重要部分,也是学生对高中数学学习的重要基础。
通过本节课的学习,学生应该能够理解锐角三角函数的概念,掌握它们的定义和性质,并能够运用它们解决实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对锐角三角函数的概念和性质可能已经有所了解。
但是,他们对这些知识的深入理解和灵活运用能力还不够强。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出锐角三角函数的概念,并通过大量的练习来巩固和提高他们的运用能力。
三. 教学目标1.理解锐角三角函数的概念,掌握正弦、余弦和正切函数的定义和性质。
2.能够运用锐角三角函数解决实际问题。
3.培养学生的抽象思维能力和逻辑推理能力。
四. 教学重难点1.重点:锐角三角函数的概念和性质。
2.难点:锐角三角函数的灵活运用。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出锐角三角函数的概念。
2.通过大量的练习,巩固和提高学生对锐角三角函数的理解和运用能力。
3.采用小组合作的学习方式,培养学生的团队合作意识和交流能力。
六. 教学准备1.教学课件和教案。
2.练习题和学习资料。
3.计算器和三角板。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入锐角三角函数的概念。
例如,一个建筑物的的高度是30米,建筑物与观测点的距离是40米,求观测点与地面之间的角度。
2.呈现(15分钟)讲解锐角三角函数的定义和性质,通过示例来说明它们的运用。
正弦函数、余弦函数和正切函数的定义和性质。
3.操练(10分钟)让学生进行一些相关的练习题,巩固对锐角三角函数的理解。
例如,计算一个锐角的正弦值、余弦值和正切值,并解释其含义。
4.巩固(10分钟)让学生进行一些综合性的练习题,提高他们对锐角三角函数的运用能力。
第2课时 特殊角的三角函数值1.熟记30°,45°,60°角的三角函数值.2.让学生经历30°,45°,60°角的三角函数值推导过程,从而掌握特殊角的三角函数的运用方法.重点熟记30°,45°,60°角的三角函数值. 难点根据函数值说出对应的锐角度数.一、情境引入教师利用课件展示例题,复习上节内容. 上节课我们学习了锐角三角函数的定义.复习 如图,在Rt △DEC 中,∠E =90°,DE =6,CD =10,求∠D 的三个三角函数值.(sin D =45,cos D =35,tan D =43) 二、探究新知你能否根据锐角三角函数的定义求出30°角的三个三角函数值? 1.探究如图,在Rt △ABC 中,∠C =90°,∠A =30°.思考:(1)BC =__12__AB ;(2)由勾股定理可得 AC 2=__AB 2__-__BC 2__, AC =AB 2-BC 2=__32sin 30°=BC AB =12AB AB =12,cos 30°=AC AB =32ABAB=32,tan 30°=BC AC=12AB 32AB =33. 问:如何求60°角的三角函数值?sin 60°=AC AB =__32__,cos 60°=BC AB =__12__, tan 60°=AC BC=__3__.2.做一做在Rt △ABC 中,∠C =90°,∠A =45°,根据锐角三角函数的定义求出∠A 的三角函数值. 思考:(1)AC =BC ; (2)由勾股定理可知 AB =AC 2+BC 2=__2__AC. 归纳:sin 45°=__22__,cos 45°=__22__, tan 45°=__1__.3.填表α sin αcos αtan α30° 12 45° 1 60°12思考:(1)sin α随着α的增大而__增大__; (2)cos α随着α的增大而__减小__; (3)tan α随着α的增大而__增大__.例 求值:sin 30°·tan 30°+cos 60°·tan 60°. 解:原式=12×33+12×3=233.三、练习巩固教师利用课件展示练习,可由学生独立完成,教师点名展示,教师点评:第1题的计算,注意理清运算顺序;第2题可构造直角三角形,再运用锐角三角函数的知识解决,注意两种情况;第3题可先求出α的三角函数值,再根据其值求角的度数.1.计算:(1)|3-12|+(62+2)0+cos 230°-4sin 60°;(2)2(2cos45°-sin60°)+24 4;(3)(sin30°)-1-20200+|-43|-tan60°.2.直线y=kx-4与y轴相交所成的锐角的正切值为12,则k的值为________.3.求下列锐角α的大小:(1)4cos2α-32sin45°=0;(2)tan2α-(3+1)tanα+3=0.4.如图,在△ABC中,∠B=45°,∠C=60°,AB=6,求BC的长.(结果保留根号)四、小结与作业小结本节课你学到了哪些知识?有哪些收获?布置作业从教材相应练习和“习题24.3”中选取.本节从复习锐角三角函数的定义入手,提出求解30°角的三角函数值,让学生动手探究45°,60°角的三角函数值,加以归纳总结,并学会应用.在教学上充分体现以学生为主体的思想,在教学中以调动学生的思维为主,充分培养学生的自主性和创造性.。
第2课时 锐角三角函数
1.掌握余弦、正切的定义.
2.了解锐角∠A 的三角函数的定义.
3.能运用锐角三角函数的定义求三角函数值.
阅读教材P64-65,自学“探究”与“例2”.
自学反馈 学生独立完成后集体订正
①在Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c;∠A 的邻边与斜边的比叫做∠A 的 ,即cosA= ;∠A 的对边与邻边的比叫做∠A 的 ,即tanA= .
②锐角A 的正弦、余弦、正切叫做∠A 的 .
③在Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若a=3、b=4,则cosB= ,tanB= .
④在Rt △ABC 中,∠C=90°,∠A=30°,则sinA= ()()= ,cosA=
()()= ,tanA=
()()= . ⑤在Rt △ABC 中,∠C=90°,∠A=60°,则sinA=
()()= ,cosA= ()()= ,tanA=
()()= . ⑥在Rt △ABC 中,∠C=90°,∠A=45°,则sinA=
()()= ,cosA= ()()= ,tanA=
()()= . 锐角三角函数是在直角三角形的前提下.
活动1 小组讨论
例1 分别求出下列直角三角形中两个锐角的正弦值、余弦值和正切值.
解:在Rt△ABC中,根据勾股定理得
∴sinA=cosB=BC
AB
=
5
13
,cosA=sinB=
AC
AB
=
12
13
,tanA=
BC
AC
=
5
12
,tanB=
AC
BC
=
12
5
.利用勾股定理求出第三边,再直接运用三角函数定义即可.
活动2 跟踪训练(独立完成后小组内展示学习成果)
1.在Rt△ABC中,∠C=90°,D是AB的中点,若CD=BC,则tanA= .
2.在Rt△ABC中,∠C=90°,c=13,a=12,那么sinA= ,cosA= ,tanA= .
3.在Rt△ABC中,∠C=90°,c=2,sinB=1
2
,则a= ,b= ,S△ABC= .
均可先求出直角三角形的边长,再用锐角三角函数的关系来做.
活动1 小组讨论
例2 如图,在Rt△ABC中,∠C=90°,AC=8,tanA=3
4
,求sinA和cosB的值.
解:∵tanA=BC AC
,
∴BC=AC×tanA=8×3
4
=6.
∵
∴sinA=BC
AB
=
6
10
=
3
5
,cosB=
BC
AB
=
6
10
=
3
5
.
先求Rt△ABC的边长,再求sinA、cosB的值.
例3 如图,在△ABC中,AB=15,AC=13,S△ABC=84,求sinA的值.
解:过点C 作CD ⊥AB 于点D.
∵S △ABC =
12
AB ·CD, ∴CD=2ABC S AB =28415 =565
. 在Rt △ACD 中,sinA=CD AC =56513=5665. 求sinA 的值,由正弦定义可知,必须在直角三角形中,图中没有直角三角形,应想办法构造,题中又提供了三角形的面积及边AB 的长,故可通过C 作高CD.
活动2 跟踪训练(独立完成后展示学习成果)
1.在△ABC 中,∠C=90°,且tanA=13
,则cosB 的值是 . 2.如图,在△ABC 中,∠ABC=60°,AB ∶BC=2∶5,S △ABC
,求tanC 的值.
活动3 课堂小结
1.本节学习的数学知识,锐角的余弦、正切及锐角三角函数的定义.
2.本节还学到了类比的思想.
教学至此,敬请使用学案当堂训练部分.
【预习导学】
自学反馈
①余弦b
c
正切
a
b
②锐角三角函数
③3
5
4
3
④⑤⑥略
【合作探究1】活动2 跟踪训练
1.
3
2.12
13
5
13
12
5
1
2
【合作探究2】活动2 跟踪训练。