matlab矩形薄板小挠度弯曲
- 格式:docx
- 大小:36.19 KB
- 文档页数:1
第6章 弹性薄板小挠度弯曲问题的基础变分原理平分板厚度的平面称为板的中面,一般地,当板的厚度t 不大于板中面最小尺寸的5/1时的板称为薄板,薄板的中面是一个平面。
薄板在垂直于中面的载荷作用下发生弯曲时,中面变形所形成的曲面称为弹性曲面或挠度面,中面内各点在未变形中面垂直方向的位移称为板的挠度。
薄板弯曲的精确理论应是满足弹性力学的全部基本方程,但这在数学上将会遇到很大的困难。
1850年,G.R.基尔霍夫(Kirchhoff Gustav Robert ,基尔霍夫 古斯塔夫·罗伯特,德国物理学家,1824-1887年)除采用弹性力学的基本假设外,还提出了一些补充的假设,从而建立起了薄板小挠度弯曲的近似理论。
这些假设是:第一,变形前垂直于板中面的直线,在板变形后仍为直线,并垂直于变形后的中面,而且不经受伸缩;第二,与中面平行的各面上的正应力z σ与应力x σ,y σ和xy τ相比属于小量;第三,在横向载荷作用下板发生弯曲时,板的中面并不伸长,这也就是说,薄板中面内各点都没有平行于中面的位移分量。
用变分法可以导出薄板弯曲问题的平衡微分方程和边界条件。
当板的形状和边界条件较复杂时,直接求解偏微分方程时比较困难的,以变分法为基础的各种近似解是求解这类问题的一个重要途径。
本章讨论了用于薄板小挠度弯曲问题的一些基础变分原理,这包括虚功原理、最小位能原理、最小余能原理、两类自变量广义变分原理并推广到三类自变量广义变分原理。
§6.1 基本方程与边界条件回顾取坐标平面oxy 与中面重合,z 轴垂直于中面,x ,y 和z 轴构成一个右手直角笛卡儿坐标系。
变形后的板内各点沿x ,y 和z 轴方向的位移分别用u ,v 和w 表示。
由Kirchhoff 假设,可以得到xwzz y x u ∂∂-=),,(,y w z z y x v ∂∂-=),,(,),(),,(y x w z y x w = (6-1)并利用弹性力学中位移与应变之间的关系式,可以得到薄板中任意点的应变分量为22x w z x ∂∂-=ε,22ywz y ∂∂-=ε,y x w z xy ∂∂∂-=γ22 (6-2)其余3个应变分量z ε,xz γ和yz γ根据假设都等于零,即0=εz ,0=γxz ,0=γyz (6-3)由薄板的平衡关系,可以确定板的横向分布载荷),(y x q 与剪力x Q ,y Q 以及弯矩x M ,y M 和扭矩xy M (x M ,y M ,xy M 统称为内力矩)与x Q ,y Q 之间的关系式。
双向板挠度计算公式一、矩形板双向弯曲的挠度计算公式:矩形板双向弯曲的挠度可以通过以下公式进行计算:δ=(qL^4)/(8D)其中,δ为挠度,q为均布载荷,L为板的跨度,D为板的弹性模量。
这个公式适用于矩形板的计算,即板的宽度远远大于板的厚度。
如果板的宽度与厚度接近,需要采用修正系数进行修正。
二、矩形板大变形的挠度计算公式:对于大变形的矩形板,挠度计算公式可以通过以下公式进行修正:δ=(qL^4)/(8D)*(1+ν*δ/h)其中,ν为板的泊松比,h为板的厚度。
这个公式考虑了纵向法向应力增量的影响,更为准确地描述了大变形情况下的挠度。
三、其他形状板挠度计算公式:对于其他形状的板,如圆形板、椭圆形板、三角形板等,挠度计算公式可以根据板的具体形状进行修正。
圆形板的挠度可以通过公式进行计算:δ=(qR^4)/(64D)其中,δ为挠度,q为均布载荷,R为板的半径,D为板的弹性模量。
椭圆形板和三角形板的挠度计算相对较为复杂,需要采用数值方法进行求解。
四、叠层板挠度计算公式:对于叠层板,挠度计算需要考虑各层板的叠加效应。
叠层板的挠度可以通过以下公式进行计算:δ = (qL^4) / (8D) * [1 / (∑(hi / Di))] * (∑(hi^3 / Di))其中,δ为挠度,q为均布载荷,L为板的跨度,D为板的弹性模量,hi为第i层板的厚度,Di为第i层板的弹性模量。
这个公式将各层板的挠度进行叠加计算,考虑了各层板的相互影响。
总结:双向板挠度的计算可以通过上述公式进行求解。
对于不同形状、不同受力方式的板材,需要选择相应的挠度计算公式,并进行适当的修正。
此外,在实际应用中还需要考虑到边界条件、支撑方式等因素对挠度的影响。
在设计中,需要根据具体情况选择合适的方法进行挠度计算,并进行相关的工程优化。
矩形薄板简支弯曲经验公式摘要:1.矩形薄板简支弯曲的基本概念2.矩形薄板简支弯曲的经验公式3.经验公式的应用和实用性4.公式中的参数解释5.总结与展望正文:矩形薄板简支弯曲经验公式在工程领域具有广泛的应用,尤其在结构分析和设计中。
本文将详细介绍矩形薄板简支弯曲的基本概念、经验公式及其应用,以期为相关领域的研究和工程实践提供参考。
一、矩形薄板简支弯曲的基本概念矩形薄板是指四边形截面的薄板,其边界条件为两对边固定(简支),另外两对边自由。
简支弯曲是指在横向力作用下,板的两个简支边产生位移,而另外两个自由边保持固定。
矩形薄板简支弯曲问题的求解,通常采用经验公式或数值方法。
二、矩形薄板简支弯曲的经验公式针对矩形薄板简支弯曲问题,研究者们通过实验和理论分析,总结出了一系列经验公式。
其中,较为著名的是施密特(Schmidt)公式和修正的施密特(Modified Schmidt)公式。
1.施密特公式:施密特公式为:M = E*I/r,其中M为弯矩,E为材料弹性模量,I为矩形薄板的惯性矩,r为距离板中心轴线的半径。
2.修正的施密特公式:针对施密特公式在某些情况下的误差,研究者们提出了修正的施密特公式。
修正的施密特公式为:M = E*I/(r+0.5*h),其中M、E、I的含义与施密特公式相同,h为矩形薄板的高度。
三、经验公式的应用和实用性矩形薄板简支弯曲经验公式在实际工程中具有很高的实用性。
通过应用经验公式,工程师可以快速、准确地估算矩形薄板在简支弯曲条件下的弯矩、挠度等参数,为结构设计和分析提供依据。
同时,经验公式也可用于验证和改进数值方法的准确性,为更深入的研究提供参考。
四、公式中的参数解释1.E:材料弹性模量,反映材料的弹性特性;2.I:矩形薄板的惯性矩,与板的长宽比有关;3.r:距离板中心轴线的半径;4.h:矩形薄板的高度。
五、总结与展望矩形薄板简支弯曲经验公式在工程领域具有重要应用价值。
通过对经验公式的学习和掌握,工程师可以更好地进行结构设计和分析。
第五章薄板弯曲问题机场学院2011/11/21CAUCCAUC两个平行面和垂直于这两个平行面的柱面或棱柱面所围成的物体,称为平板,简称为板。
bhyxzCAUCCAUC垂直于板面——平板弯曲问题byxzCAUCCAUC1、小变形假设:虽然板很薄,但它的挠度远小于板的厚度。
byxz)(0==z u 0)(0==z v 因为:2、板中面各点都没有平行于中面的位移,只发生弯曲变形。
x u x ∂∂=εy v y ∂∂=εyu x v xy ∂∂+∂∂=γ所以:0)(0==z x ε0)(0==z y ε0)(0==z y x γCAUC CAUC3、沿板的厚度方向挤压变形忽略不计。
byxz=∂∂=zw z ε所以:),(y x w w =在薄板中面的任一根法线上,薄板全厚度内的所有各点都具有相同的挠度。
CAUCCAUC保持在挠曲面法线上。
byxz应力分量:zx τzy τzσ远小于其余三个应力分量,其引起的形变忽略不计。
0=zx γ0=zx γ0=∂∂+∂∂xw z u 0=∂∂+∂∂yw z v 即:等价于:这样=∂∂=z w z ε0=zx γ0=zx γ中面法线不伸缩,仍为变形后曲面的法线CAUC CAUCxyxy x y y y x x EEE τµγµσσεµσσε)1(2)(1)(1+=−=−=薄板弯曲与平面应力问题有相同的物理方程。
CAUCCAUC1、几何方程byxz0=∂∂+∂∂x w z u 0=∂∂+∂∂y w z v xw z u ∂∂−=∂∂y w z v ∂∂−=∂∂),(2y x f z yw v +∂∂−=),(1y x f z xwu +∂∂−=0)(0==z u 0)(0==z v 因为:),(),(21==y x f y x fCAUCCAUCzxu ∂−=zyv ∂−=zxwx u x 22∂∂−=∂∂=εzyw y v y 22∂∂−=∂∂=εz yx w y u x v xy∂∂∂−=∂∂+∂∂=22γ221xw x ∂∂−=ρ221ywy ∂∂−=ρyx wxy ∂∂∂−=221ρ令:xx zρε=yy z ρε=xyxyz ργ=得:CAUCCAUCw y x y x xy y x ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂−=⎪⎪⎪⎭⎪⎪⎪⎬⎪⎪⎪⎩⎪⎪⎪⎨=⎭⎬⎫⎩⎨⎧222221111ρρρρ{}w y x y x z xy y x ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂−=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=222222γεεε写成列阵形式:应变列阵:CAUCCAUCxyxy x y y y x x EEE τµγµσσεµσσε)1(2)(1)(1+=−=−=xyxy x y y y x x EEE γµτµεεµσµεεµσ)1(2)(1)(122+=+−=+−={}w y x y x z xy y x ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂−=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=222222γεεεyx w Ez x w y w Ez y wx w Ez xy y x ∂∂∂+−=∂∂+∂∂−−=∂∂+∂∂−−=222222222221)(1)(1µτµµσµµσCAUCCAUCyx w Ez xw y w Ez yx xyy x ∂∂∂+−=∂∂+∂∂−−=∂+∂−−=2222222221)(1)(1µτµµσµµσ其它几项应力:w yh z E w xh z E zy zx22222222)4()1(2)4()1(2∇∂∂−−=∇∂∂−−=µτµτw hz h z Eh z 4223)1()21()1(6∇+−−−=µσCAUCCAUC在薄板的上表面有:qh z z −==2)(σ得:q w Eh =∇−423)1(12µ令:)1(1223µ−=Eh D qw D =∇42、微分方程CAUCCAUC xyab边界条件:0)(,0)(0)(,0)(0)(,0)(0)(,0)(220220220220=∂∂==∂∂==∂∂==∂∂=========b y b y y y a x a x x x xww x ww x ww x w w qw D =∇4微分方程:四边简支矩形薄板的重三角级数解答——纳维叶解法CAUCCAUC设重三角级数解为:b yn a x m A w m n mn ππsinsin 11∑∑∞=∞==代入微分方程:qb yn a x m A b n am D m n mn =+∑∑∞=∞=πππsin sin )(1122224b yn a x m C q m n mn ππsinsin 11∑∑∞=∞==将),(y x q q =也展成重三角级数:CAUCCAUC222226)(16bn a m Dmn q A mn +=π(m=1,3,5, m=1,3,5, ………… n=1,3,5, n=1,3,5, …………)∑∑∞=∞=+=...5,3,1,...5,3,12222260)(sin sin 16m n bn a m mn b yn a x m D q w πππ得挠度的表达式:CAUC CAUC荷代替q ,得:dxdyP q =b n a m bn a m abD P dxdy b n a m dxdy P b n a m abD A mn ηπξππηπξππsin sin )(4sin sin )(4222224222224+=+=CAUC CAUC集中载荷作用下的简支矩形板挠度表达式:b y n a x m bn a m b m a m abD P w m n ππηπξππsin sin )(sin sin 411222224∑∑∞=∞=+=M x yxzM y{}[]zDxyyx⎭⎬⎫⎩⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=ρτσσσ1zdzMhhxx∫−=22σ1、弯曲应力zdzMhhyy∫−=22σzdzMhhxyxy∫−=22τCAUC CAUCCAUC CAUC{}zdzM M M M h xy y x ∫−=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=22}{σ完成积分:⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧=ρρ1][1][12}{3D D hM ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−=21000101)1(12][23µµµµEh DCAUCCAUC2b2ayxzlmn kw θ yθ x(1)节点位移单元任一节点有三个位移分量:{}⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧∂∂−∂∂=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=i i i yi xi i i x w y w w w )()(θθδ{}{}Tyk xk k ynxn n ymxm m yl xl li w w w w θθθθθθθθδ={}{}T T kT nT mTli δδδδδ=CAUCCAUC31231131029283726524321xya y x a y a xy a y x a xa y a xy a x a y a x a a w +++++++++++=写成矩阵形式:{}a xy yx yxyyx xy xy xy xw ]1[33322322=或:{}a y x M w )],([=CAUCCAUC{}a xy yx yxy yx xy xy xy xw ]1[33322322={}a xy xyxy xy x yw x ]332020100[2322=∂∂=θ{}a y y x y xy xy x xw y ]302302010[3222−=∂∂−=θCAUC CAUC⎪⎪⎪⎪⎭⎪⎪⎬⎪⎪⎪⎪⎩⎪⎪⎨⎥⎥⎥⎥⎥⎥⎦⎢⎢⎢⎢⎢⎢⎣=⎪⎪⎪⎪⎭⎪⎪⎬⎪⎪⎪⎪⎩⎪⎪⎨654310000110000001a a a a y x y x y x y x v u v u n nn n m m m m n n m m {}[]{}a A e=δ[]{}[][]{}a A A A e 11−−=δ{}[]{}eA a δ1−=[]{}[][]{}{}eey x N A y x M a y x M w δδ)],([),(),(1===−A[][]k nm lN N N N y x N =),(形函数CAUCCAUC⎥⎥⎦⎤⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+−⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−++⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+=111,111,21181][2222222222222222a x x b y y a x x x b y y b y y a x x y b y a x b y y a x x b y y a x x N i i i i i i i i ii i i i (i =l ,m ,n ,k )单元刚度阵:ee xy y x B N y x y x w y x y x }]{[}]{[2211112222222222δδρρρρ=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂−=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂−=⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧=⎭⎬⎫⎩⎨⎧CAUCCAUC][][k n m l B B B B B =单元内力:eB D M }]{][[}{δ=[][][][]dxdy B D B k Ts ee∫=单元刚度阵:[]{}{}Q K =δ整体方程:。
薄板弯曲挠度计算公式全文共四篇示例,供读者参考第一篇示例:薄板弯曲挠度计算公式是工程力学课程中的重要内容,也是工程设计和结构分析中不可或缺的一部分。
薄板在受力作用下会发生弯曲变形,挠度是描述薄板弯曲程度的重要参数。
通过合理的挠度计算公式,我们可以准确地评估薄板的变形情况,为工程设计提供可靠的依据。
薄板弯曲挠度计算公式的推导过程比较复杂,需要借助数学和力学知识。
一般而言,薄板的挠度计算公式可分为静力法、弹性力学法和有限元法等多种方法。
静力法是最为常用的一种计算薄板挠度的方法,下面我们将对其进行详细介绍。
我们需要了解一些基本概念。
在工程力学中,对于一根长为L、宽为b、厚度为h的矩形薄板,在受到外力作用后呈弯曲状态,其挠度δ可以通过以下公式计算:\[ \delta = \frac{PL^3}{3EI} \]P为受力大小,E为杨氏模量,I为横截面惯性矩。
这是薄板挠度计算公式的一般形式,具体的计算过程需要根据实际情况进行适当的调整和修正。
静力法是一种比较简单但实用的计算挠度的方法。
该方法主要基于等效荷载原理,即将复杂的荷载系统转化为简化的等效荷载,将薄板弯曲问题转化为梁的弯曲问题。
下面我们以一种常见的简支边界条件情况为例,介绍具体的计算步骤。
假设我们有一根长为L、宽为b、厚度为h的矩形薄板,受到长度方向均布载荷q的作用,两端为简支边界。
我们需要计算该薄板的等效弯矩M,其计算公式如下:根据薄板挠度计算公式,我们可以得到该薄板的挠度表达式为:通过这个计算公式,我们可以快速准确地计算出简支边界条件下薄板的挠度。
如果有其他不同的受力情况或边界条件,需要进行相应调整。
除了静力法,弹性力学法和有限元法也是常用的计算薄板挠度的方法。
弹性力学法是以弹性理论为基础,考虑了薄板材料的应力应变关系,可以更精确地描述薄板的弯曲情况。
有限元法则是一种数字计算方法,通过将薄板离散成有限个单元,利用计算机进行大规模计算,可以处理更加复杂的挠度计算问题。