薄板弯曲问题
- 格式:pptx
- 大小:1.93 MB
- 文档页数:32
第五章薄板弯曲问题有限元法第一节薄板弯曲问题的有关概念一、基本概念1.薄板的定义:薄板是由上下两个平行的表面所构成的片状结构,其间距称为板厚。
同时,定义等分板厚的面为中面,当中面为平面时,称为平板,当中面为曲面时则称为壳体。
2.挠度; 板结构在承受横向载荷(弯矩、扭矩和横向剪力)作用下,发生弯扭而使薄板中面上各个点沿垂直中面方向发生的横向变形称为挠度,记为w。
3.薄板的两类问题:(1)平面应力板问题,载荷作用于板面内—(薄膜单元);在拉、压力和面内切力作用下,板内将产生薄膜内力,从而使板产生面内变形。
(2)薄板弯曲问题:其特点为:a) 几何尺寸:板的厚度远较长与宽的几何尺寸为小(一般厚度与板面最小尺寸之比小于1/5-1/10);(否则称为厚板)b) 载荷条件:结构仅承受垂直于板中面的横向载荷作用。
c) 小挠度条件;即挠度与板厚之比值较小,一般为w/t ≤1/5。
研究薄板弯曲问题时,通常以未变形的板的中面为xoy平面,厚度方向为z轴方向,3.板的一般问题:一般情况下,板既可承受横向载荷作用,也可同时承受平行于板中面的膜载荷作用。
(1) 薄板:在小挠度情况下,当两种载荷同时作用时,可认为两种变形互不影响,因此膜载荷的作用可按平面应力问题进行处理,而横向载荷的作用则按薄板弯曲问题来分析,两种问题引起的薄膜内力和弯曲内力的叠加便是一般载荷综合作用的结果。
(2)厚板:当1<w/t<5时为大挠度板,w/t≥5时为特大挠度板。
在大挠度情况下,薄板面内变形和弯扭变形之间将相互影响,即横向载荷也可能产生膜内力和面内变形,而膜载荷也可能产生弯曲内力和弯曲变形。
这时描述薄板变形的数学方程是非线性的,应采用更复杂的理论分析方法。
二.薄板弯曲问题求解的假设:(克希霍夫假设)1.法线假设垂直板中面的法线在板变形后仍垂直于弯曲的挠曲面,且法线线段没有伸缩,板的厚度无变化。
这样,垂直于中面的正应变便可忽略,即εz=0根据几何方程,可得因此挠度只是x,y的函数,表示为w=w(x,y),也即薄板中面上法线的各点都有相同位移。
第十四讲 薄板小挠度弯曲理论(一)概念和假定薄板:板的厚度远小于中面最小尺寸的板。
荷载纵向荷载:作用在板中面以内的荷载,可以认为沿板的厚度均布,按平面应力计算。
横向荷载:使薄板弯曲,按薄板弯曲问题计算。
中面弯曲所形成的曲面称为薄板的 弹性曲面,中面内各点的横向位移 称为挠度。
薄板弯曲的基本假设(基尔霍夫假设)(1)垂直于中面方向的正应变εz 可以不计,由∂w /∂z = 0得到 w = w (x , y )板厚度内各点具有相同的挠度。
放弃物理方程:)]([1y x z z Eσσμσε+-= 目地:允许σz -μ(σx +σy ) ≠ 0(2)应力分量τxz 、τyz 、σz 远小于其余三个应力分量,它们所引起的应变可以不计(它们本身是平衡所需,不能不计),即认为γxz = γyz = 0(一般,薄板弯曲问题中,τxz 、τyz 是次要应力,σz 则为更次要应力) 0=∂∂+∂∂x w z u ,xwz u ∂∂-=∂∂0=∂∂+∂∂y w z v ,yw z v ∂∂-=∂∂x放弃物理方程:xz xz E τμγ)1(2+=,yz yz Eτμγ)1(2+= 即:允许γxz 和γyz 等于零,但τxz 和τyz 不为零。
只有三个物理方程)(1y x x E μσσε-=)(1x y y Eμσσε-=xy xy Eτμγ)1(2+=与平面应力问题相同。
(3)薄板中各点都没有平行于中面的位移,(u )z = 0 = 0,(v )z = 0 = 0,因此,(εx )z = 0 = 0,(εy )z = 0 = 0,(γxy )z = 0 = 0 薄板弯曲后,在xy 平面的投影形状不变。
弹性曲面微分方程按位移求解,基本未知量为挠度w ,需将其它物理量用w 表示,由x w z u ∂∂-=∂∂,yw z v ∂∂-=∂∂ 积分得到:),(1y x f z x w u +∂∂-=,),(2y x f z ywv +∂∂-= 由:(u )z = 0 = 0,(v )z = 0 = 0得到:f 1(x , y ) = f 2(x , y ) = 0,因此 z x w u ∂∂-=,z yw v ∂∂-= 则: z x w x u x 22∂∂-=∂∂=ε,z y w y v y 22∂∂-=∂∂=ε,z yx wx v y u xy ∂∂∂-=∂∂+∂∂=22γ将应力分量σx 、σy 、τxy 用w 表示⎪⎪⎭⎫⎝⎛∂∂+∂∂--=+-=2222221)(1y w x w Ez E y x x μμμεεμσ⎪⎪⎭⎫⎝⎛∂∂+∂∂--=+-=2222221)(1x w y w Ez E x y y μμμεεμσ yx wEz E xy xy ∂∂∂+-=+=21)1(2μγμτ w 仅为x 、y 的函数,因此应力分量与z 成正比。
第五章薄板弯曲问题机场学院2011/11/21CAUCCAUC两个平行面和垂直于这两个平行面的柱面或棱柱面所围成的物体,称为平板,简称为板。
bhyxzCAUCCAUC垂直于板面——平板弯曲问题byxzCAUCCAUC1、小变形假设:虽然板很薄,但它的挠度远小于板的厚度。
byxz)(0==z u 0)(0==z v 因为:2、板中面各点都没有平行于中面的位移,只发生弯曲变形。
x u x ∂∂=εy v y ∂∂=εyu x v xy ∂∂+∂∂=γ所以:0)(0==z x ε0)(0==z y ε0)(0==z y x γCAUC CAUC3、沿板的厚度方向挤压变形忽略不计。
byxz=∂∂=zw z ε所以:),(y x w w =在薄板中面的任一根法线上,薄板全厚度内的所有各点都具有相同的挠度。
CAUCCAUC保持在挠曲面法线上。
byxz应力分量:zx τzy τzσ远小于其余三个应力分量,其引起的形变忽略不计。
0=zx γ0=zx γ0=∂∂+∂∂xw z u 0=∂∂+∂∂yw z v 即:等价于:这样=∂∂=z w z ε0=zx γ0=zx γ中面法线不伸缩,仍为变形后曲面的法线CAUC CAUCxyxy x y y y x x EEE τµγµσσεµσσε)1(2)(1)(1+=−=−=薄板弯曲与平面应力问题有相同的物理方程。
CAUCCAUC1、几何方程byxz0=∂∂+∂∂x w z u 0=∂∂+∂∂y w z v xw z u ∂∂−=∂∂y w z v ∂∂−=∂∂),(2y x f z yw v +∂∂−=),(1y x f z xwu +∂∂−=0)(0==z u 0)(0==z v 因为:),(),(21==y x f y x fCAUCCAUCzxu ∂−=zyv ∂−=zxwx u x 22∂∂−=∂∂=εzyw y v y 22∂∂−=∂∂=εz yx w y u x v xy∂∂∂−=∂∂+∂∂=22γ221xw x ∂∂−=ρ221ywy ∂∂−=ρyx wxy ∂∂∂−=221ρ令:xx zρε=yy z ρε=xyxyz ργ=得:CAUCCAUCw y x y x xy y x ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂−=⎪⎪⎪⎭⎪⎪⎪⎬⎪⎪⎪⎩⎪⎪⎪⎨=⎭⎬⎫⎩⎨⎧222221111ρρρρ{}w y x y x z xy y x ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂−=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=222222γεεε写成列阵形式:应变列阵:CAUCCAUCxyxy x y y y x x EEE τµγµσσεµσσε)1(2)(1)(1+=−=−=xyxy x y y y x x EEE γµτµεεµσµεεµσ)1(2)(1)(122+=+−=+−={}w y x y x z xy y x ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂−=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=222222γεεεyx w Ez x w y w Ez y wx w Ez xy y x ∂∂∂+−=∂∂+∂∂−−=∂∂+∂∂−−=222222222221)(1)(1µτµµσµµσCAUCCAUCyx w Ez xw y w Ez yx xyy x ∂∂∂+−=∂∂+∂∂−−=∂+∂−−=2222222221)(1)(1µτµµσµµσ其它几项应力:w yh z E w xh z E zy zx22222222)4()1(2)4()1(2∇∂∂−−=∇∂∂−−=µτµτw hz h z Eh z 4223)1()21()1(6∇+−−−=µσCAUCCAUC在薄板的上表面有:qh z z −==2)(σ得:q w Eh =∇−423)1(12µ令:)1(1223µ−=Eh D qw D =∇42、微分方程CAUCCAUC xyab边界条件:0)(,0)(0)(,0)(0)(,0)(0)(,0)(220220220220=∂∂==∂∂==∂∂==∂∂=========b y b y y y a x a x x x xww x ww x ww x w w qw D =∇4微分方程:四边简支矩形薄板的重三角级数解答——纳维叶解法CAUCCAUC设重三角级数解为:b yn a x m A w m n mn ππsinsin 11∑∑∞=∞==代入微分方程:qb yn a x m A b n am D m n mn =+∑∑∞=∞=πππsin sin )(1122224b yn a x m C q m n mn ππsinsin 11∑∑∞=∞==将),(y x q q =也展成重三角级数:CAUCCAUC222226)(16bn a m Dmn q A mn +=π(m=1,3,5, m=1,3,5, ………… n=1,3,5, n=1,3,5, …………)∑∑∞=∞=+=...5,3,1,...5,3,12222260)(sin sin 16m n bn a m mn b yn a x m D q w πππ得挠度的表达式:CAUC CAUC荷代替q ,得:dxdyP q =b n a m bn a m abD P dxdy b n a m dxdy P b n a m abD A mn ηπξππηπξππsin sin )(4sin sin )(4222224222224+=+=CAUC CAUC集中载荷作用下的简支矩形板挠度表达式:b y n a x m bn a m b m a m abD P w m n ππηπξππsin sin )(sin sin 411222224∑∑∞=∞=+=M x yxzM y{}[]zDxyyx⎭⎬⎫⎩⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=ρτσσσ1zdzMhhxx∫−=22σ1、弯曲应力zdzMhhyy∫−=22σzdzMhhxyxy∫−=22τCAUC CAUCCAUC CAUC{}zdzM M M M h xy y x ∫−=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=22}{σ完成积分:⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧=ρρ1][1][12}{3D D hM ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−=21000101)1(12][23µµµµEh DCAUCCAUC2b2ayxzlmn kw θ yθ x(1)节点位移单元任一节点有三个位移分量:{}⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧∂∂−∂∂=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=i i i yi xi i i x w y w w w )()(θθδ{}{}Tyk xk k ynxn n ymxm m yl xl li w w w w θθθθθθθθδ={}{}T T kT nT mTli δδδδδ=CAUCCAUC31231131029283726524321xya y x a y a xy a y x a xa y a xy a x a y a x a a w +++++++++++=写成矩阵形式:{}a xy yx yxyyx xy xy xy xw ]1[33322322=或:{}a y x M w )],([=CAUCCAUC{}a xy yx yxy yx xy xy xy xw ]1[33322322={}a xy xyxy xy x yw x ]332020100[2322=∂∂=θ{}a y y x y xy xy x xw y ]302302010[3222−=∂∂−=θCAUC CAUC⎪⎪⎪⎪⎭⎪⎪⎬⎪⎪⎪⎪⎩⎪⎪⎨⎥⎥⎥⎥⎥⎥⎦⎢⎢⎢⎢⎢⎢⎣=⎪⎪⎪⎪⎭⎪⎪⎬⎪⎪⎪⎪⎩⎪⎪⎨654310000110000001a a a a y x y x y x y x v u v u n nn n m m m m n n m m {}[]{}a A e=δ[]{}[][]{}a A A A e 11−−=δ{}[]{}eA a δ1−=[]{}[][]{}{}eey x N A y x M a y x M w δδ)],([),(),(1===−A[][]k nm lN N N N y x N =),(形函数CAUCCAUC⎥⎥⎦⎤⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+−⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−++⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+=111,111,21181][2222222222222222a x x b y y a x x x b y y b y y a x x y b y a x b y y a x x b y y a x x N i i i i i i i i ii i i i (i =l ,m ,n ,k )单元刚度阵:ee xy y x B N y x y x w y x y x }]{[}]{[2211112222222222δδρρρρ=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂−=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂−=⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧=⎭⎬⎫⎩⎨⎧CAUCCAUC][][k n m l B B B B B =单元内力:eB D M }]{][[}{δ=[][][][]dxdy B D B k Ts ee∫=单元刚度阵:[]{}{}Q K =δ整体方程:。
薄板弯曲问题的有限元法一、 薄板弯曲问题的基本方程什么是薄板?薄板就是指厚度t 远小于其长度、宽度的板。
1. 三个基本假设(克希霍夫假设): (1) 法线假设,εz =0,γyz =γzx =0 (2) 正应力假设,σz <<σx ,σy ,τxy (3) 小挠度假设,w<t/4根据假设,可以得到位移分量()()()()()(),,,,,,,,,,, x y z u x y z z x x y z v x y z z y x y z x y ωωωω∂⎧=-⎪∂⎪∂⎪=-⎨∂⎪⎪=⎪⎩式4-1图 1 薄板弯曲后某点B 的位移2. 应变分量{}222222x y z x z y x y ωεωεεεω⎧⎫∂-⎪⎪∂⎪⎪⎧⎫⎪⎪∂⎪⎪⎪⎪==-⎨⎬⎨⎬∂⎪⎪⎪⎪⎩⎭⎪⎪∂-⎪⎪∂∂⎪⎪⎩⎭式4-23. 曲率{}222222x y z x y x y ωχωχχχω⎧⎫∂-⎪⎪∂⎪⎪⎧⎫⎪⎪∂⎪⎪⎪⎪==-⎨⎬⎨⎬∂⎪⎪⎪⎪⎩⎭⎪⎪∂-⎪⎪∂∂⎪⎪⎩⎭式4-3 22=x x ωχ∂-∂——薄板弹性曲面在x 方向的曲率22=y yωχ∂-∂——薄板弹性曲面在y 方向的曲率2=z x yωχ∂-∂∂——薄板弹性曲面在x 方向和y 方向的扭率4. 应力分量与应变分量间的关系:{}[]{}2222222222221 11D Ez xy Ez x y Ez x y σεωωμμωωμμωμ=⎧⎫⎛⎫∂∂-+⎪⎪ ⎪-∂∂⎝⎭⎪⎪⎪⎪⎛⎫∂∂⎪⎪=-+⎨⎬ ⎪-∂∂⎝⎭⎪⎪⎪⎪∂⎪⎪--∂∂⎪⎪⎩⎭式4-4 5. 线力矩{}()2222222101012110022x y z x M Et M M y M x y ωμωμμμω⎧⎫∂-⎪⎪⎡⎤∂⎪⎪⎢⎥⎧⎫⎪⎪⎢⎥∂⎪⎪⎪⎪==-⎨⎬⎨⎬⎢⎥∂-⎪⎪⎪⎪⎢⎥-⎩⎭⎪⎪⎢⎥∂⎣⎦-⎪⎪∂∂⎪⎪⎩⎭式4-5a广义应力与广义应变之间的关系式{}[]{}D M χ= 式4-5b式中:[D]—薄板弯曲问题的弹性矩阵6. 薄板弯曲问题的基本方程(双调和方程)()32222222121Et p xx y y ωωωμ⎛⎫∂∂∂++= ⎪∂∂∂∂-⎝⎭ 式4-6()32121Et μ-——薄板弯曲刚度 二、 矩形薄板单元分析 1、矩形薄板单元图 2 矩形薄板单元2、位移函数22123456322333789101112 a a x a y a x a xy a y a x a x y a xy a y a x y a xy ω=+++++++++++ 式4-73、形状函数[]{}k i i xi xi yi yi j j xj xj yj yj k kxk xk yk y l l xl xl yl yl N N N N N N N N N N N N N q ωωθθωθθωθθωθθ=+++++++++++= 式4-8式中:i,j,k,l ——节点号N i ,N xi ,N yi ,……,N yl ——形状函数()()()()()()()()()()2211128N 111 ,,,8111 8y i i i i i xi i i iyi i i i b N i i j h l N a x a b ξξηηξξηηξηηξξηηηξξξηηξξη⎧⎫++++--⎪⎪⎧⎫⎪⎪⎪⎪⎪⎪=-++-=⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎪⎪++-⎪⎪⎩⎭==, 式4-94、单元刚阵[][][][]S K TB D B dxdy =⎰ 式4-10式中:[]22222222222222222222 2222yi yl i xiyi yl ixi yi yl i xi N N N N x x x x N N NN B y y y y N N N N x yx yx yx y ⎡⎤∂∂∂∂⎢⎥∂∂∂∂⎢⎥⎢⎥∂∂∂∂=⎢⎥∂∂∂∂⎢⎥⎢⎥∂∂∂∂⎢⎥⎢⎥∂∂∂∂∂∂∂∂⎣⎦式4-11 5、节点力与节点位移的关系式{}[]{}F K q = 式4-12三、 三角形薄板单元分析1、三角形薄板单元当薄板具有斜交边界或曲线边界时,可采用三角形单元较好地反映边界形状。
第五章薄板弯曲问题有限元讲义第五章薄板弯曲问题有限元法第⼀节薄板弯曲问题的有关概念⼀、基本概念1.薄板的定义:薄板是由上下两个平⾏的表⾯所构成的⽚状结构,其间距称为板厚。
同时,定义等分板厚的⾯为中⾯,当中⾯为平⾯时,称为平板,当中⾯为曲⾯时则称为壳体。
2.挠度; 板结构在承受横向载荷(弯矩、扭矩和横向剪⼒)作⽤下,发⽣弯扭⽽使薄板中⾯上各个点沿垂直中⾯⽅向发⽣的横向变形称为挠度,记为w。
3.薄板的两类问题:(1)平⾯应⼒板问题,载荷作⽤于板⾯内—(薄膜单元);在拉、压⼒和⾯内切⼒作⽤下,板内将产⽣薄膜内⼒,从⽽使板产⽣⾯内变形。
(2)薄板弯曲问题:其特点为:a) ⼏何尺⼨:板的厚度远较长与宽的⼏何尺⼨为⼩(⼀般厚度与板⾯最⼩尺⼨之⽐⼩于1/5-1/10);(否则称为厚板)b) 载荷条件:结构仅承受垂直于板中⾯的横向载荷作⽤。
c) ⼩挠度条件;即挠度与板厚之⽐值较⼩,⼀般为w/t ≤1/5。
研究薄板弯曲问题时,通常以未变形的板的中⾯为xoy平⾯,厚度⽅向为z轴⽅向,3.板的⼀般问题:⼀般情况下,板既可承受横向载荷作⽤,也可同时承受平⾏于板中⾯的膜载荷作⽤。
(1) 薄板:在⼩挠度情况下,当两种载荷同时作⽤时,可认为两种变形互不影响,因此膜载荷的作⽤可按平⾯应⼒问题进⾏处理,⽽横向载荷的作⽤则按薄板弯曲问题来分析,两种问题引起的薄膜内⼒和弯曲内⼒的叠加便是⼀般载荷综合作⽤的结果。
(2)厚板:当1⼆.薄板弯曲问题求解的假设:(克希霍夫假设)1.法线假设垂直板中⾯的法线在板变形后仍垂直于弯曲的挠曲⾯,且法线线段没有伸缩,板的厚度⽆变化。
这样,垂直于中⾯的正应变便可忽略,即εz=0根据⼏何⽅程,可得因此挠度只是x,y的函数,表⽰为w=w(x,y),也即薄板中⾯上法线的各点都有相同位移。
2.正应⼒假设在平⾏于中⾯的截⾯上,应⼒分量ζz、τzx及τyz远⼩于其他三个应⼒分量,可忽略不计。
3.⼩挠度假设板中⾯只发⽣弯曲变形⽽没有⾯内变形,即中⾯内各点没有平⾏于中⾯的位移,表⽰为:在这些假设前提下,薄板的位移、应变和应⼒都可⽤挠度w表⽰。