随机过程_汪荣鑫_第四章课后答案
- 格式:doc
- 大小:582.50 KB
- 文档页数:7
【第一章】 1.1 证明:∵1111,,,,,A F F F F ∈ΩΦ∈ΩΩ∈Φ∈Ω-Φ∈ΩΦ∈且∴1F 是事件域。
∵222,,,,c A A F F A F A A ∈Ω∈Ω∈-Φ∈=Ω-∴22222,,,,c c A F A F A F A F A F ∈-Φ∈-Φ∈Ω-∈Ω-∈ 且2,c c AA A A F ΦΩ=ΩΦΩ∈∴2F 是事件域。
且12F F ∈。
∵2ΩΩ∈∴3F Ω∈∴3F 是事件域。
且23F F ∈∴123,,F F F 皆为事件域且123F F F ∈∈。
1.2一次投掷三颗均匀骰子可能出现的点数ω为(),,,,,,,,16,6,6i j k i R j R k R j i k j i j k ∈∈∈≥≥≤≤≤≤∴样本空间()61=,,n i j i k ji j k ==≥≥Ω事件(){},,|,,i j k A i j k ωω==,,,,,,6,16,6i R j R k R j i k j i j k ∈∈∈≥≥≤≤≤≤ 事件域2F Ω= 概率测度()()(),,1P 677i j k A i j =--,,,,,,16,6,6i R j R k R j i k j i j k ∈∈∈≥≥≤≤≤≤则(),,F P Ω为所求的概率空间。
1.3 证明:(1)由公理可知()0P Φ=(2)有概率测度的可列可加性可得 ()11n nk k k k P A P A ==⎛⎫= ⎪⎝⎭∑∑(3)∵,,A B F A B ∈⊂ ∴B A F -∈,()A B A -=Φ由概率测度的可列可加性可得:()()()()P B P A B A P A P B A =+-=+- 即()()()P B A P B P A -=-有概率测度的非负性可得()()()0P B P A P B A -=-≥,即()()P B P A ≥ (4)若B =Ω,由(3)则有()()1P A P A =- (5)∵()()()()121212P A A P A P A P A A +=+- 假设()()()()()11211111m mm k k i j i j k m k i j m i j k m k P A P A P A A P A A A P A A A +=≤<≤≤<<≤=⎛⎫=-+-+- ⎪⎝⎭∑∑∑成立,则()()()()()()()()()11111111111111211111+1m m m m k k m m k m k k k k k mm k iji j k k i j mi j k mm m m m k k m k i j i k i j mP A P A A P A P A P A A P A P A P A A P A A A P A A A P A A P A P A A P A A ++++====+=≤<≤≤<<≤++=+=≤<≤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==+-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭+-+-⎛⎫⎛⎫+-- ⎪⎪⎝⎭⎝⎭=-+∑∑∑∑∑()()()()()()()()()()()()1121111121111212111111111n j k m i j k mm i j m i j k m m m i j m i j k m m m k i j i j k m k i j m i j k m A P A A A P A A A P A A A A P A A A A P A P A A P A A A P A A A +≤<<≤++++≤<≤≤<<≤+++=≤<≤+≤<<≤+-+-⎛⎫--+-+- ⎪⎝⎭=-+-+-∑∑∑∑∑∑也成立由数学归纳法可知()()()()()11211111n nn k k i j i j k n k i j n i j k n k P A P A P A A P A A A P A A A +=≤<≤≤<<≤=⎛⎫=-+-+- ⎪⎝⎭∑∑∑()()()()()()111122212123231231n nn n k k k k k k k k n n n k k k k k k nk k nk k P A P A A P A P A P A A P A P A P A P A A P A A P A P A P A P A =========⎛⎫⎛⎫⎛⎫⎛⎫=+=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫=++-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫≤++ ⎪⎝⎭≤≤∑1.4 (1)()()()()()()()()()()()()()()()()()()()()()21040114P AB P A P B P AB P AB P A P B P AB P A P B P A P AB P A P B P AB P A P A B P A P A P A ≤-≤-≤≤-≤-=-=+-⎡⎤⎡⎤⎣⎦⎣⎦≤-≤(2)()()()()()()()()()()()()()()()()()()()()()()()if =1else if =P AB P BC P AB P BC P AB P AC P A B C P ABC P AB P BC P AC P A B C P ABC P BC P A B C P AB P BC P AB P BC --+=++-+=++-≤+≤---可由这个式子的轮换对称性证明这种情况(3)()()()()()()()()()()11111111111nnk k k k n n n nk k k k k k k k nk k nk k A A A AP A P A P A P A n P A P A n P A P A P A n ========⊂∴⊃⎛⎫≤≤=-=- ⎪⎝⎭-≤-∴≥--∑∑∑∑∑1.5()!!kn k k A n P X k n n k >==,∴()()()!11!k n F X P X x P X x n k =≤=->=-1.6由全概率公式()()()()()()()()()()()()100112211110101=1424P Y X P Y P X P Y P X P Y P X P Y P Y P Y e -≥=≥=+≥=+≥==+-=+-=-=-1.7 证明: 显然()()()()111111122,,,,,,0n n n n n F x x F x x F y x P x X y x X x X ∆=-=≤≤≤≤≥假设()()121111222,,,,,,,0i n i i i i i n n F x x P x X y x X y x X y x X x X ∆∆∆=≤≤≤≤≤≤≤≤≥成立 从而()()()()12+11111222111112221111122211122,,,,,,,,,,,,,,,,,,,0i i n i i i i i n n i i i i i n n i i i i i n n F x x P x X y x X y x X y x X x X P x X y x X y x X y y X x X P x X y x X y x X y x X x X +++++++++∆∆∆∆=≤≤≤≤≤≤≤≤-≤≤≤≤≤≤≤≤=≤≤≤≤≤≤≤≤≥(分布函数对于每一变元单调不减)也成立由数学归纳法可知()()121111222,,,,0n n n n n F x x P x X y x X y x X y ∆∆∆=≤≤≤≤≤≤≥1.8()()()()()()()()()()()''''''',,0','x y x y x x y x y x y x y x y x x y y h x y eeh x y eeeee e e e x x y y -+-+-+-+-+-+----∆=-∆∆=---=--≥≤≤所以h 是二元单调不减函数。
随机过程第四版参考答案随机过程第四版参考答案随机过程是概率论中的一个重要概念,研究的是随机事件在时间上的演化过程。
它在现代科学和工程领域中有着广泛的应用,例如通信系统、金融市场和生物学等。
随机过程第四版是一本经典的教材,为学习者提供了理论和实践的结合,帮助读者更好地理解和应用随机过程。
在随机过程第四版中,作者首先介绍了随机过程的基本概念和性质。
随机过程可以分为离散时间和连续时间两种类型,而在每个时间点上的随机变量可以是离散型或连续型的。
通过对这些基本概念的介绍,读者可以建立起对随机过程的初步认识,并为后续的学习打下坚实的基础。
接下来,随机过程第四版详细讨论了不同类型的随机过程。
其中,最常见的两种类型是马尔可夫过程和泊松过程。
马尔可夫过程是一种具有马尔可夫性质的随机过程,即未来状态的概率只依赖于当前状态,而与过去的状态无关。
泊松过程则是一种连续时间的随机过程,其具有独立增量和平稳增量的特点。
通过对这些经典模型的介绍,读者可以更深入地了解随机过程的特性和应用。
随机过程第四版还涉及了随机过程的数学建模和分析方法。
在实际问题中,我们常常需要通过建立数学模型来描述随机过程的行为。
这些模型可以是基于统计数据的参数估计,也可以是基于物理规律的微分方程。
通过对这些数学方法的学习,读者可以了解如何将实际问题转化为数学模型,并通过数学分析来解决问题。
除了理论部分,随机过程第四版还包含了大量的例题和习题。
这些例题和习题涵盖了不同类型的随机过程和应用场景,帮助读者巩固所学知识,并提供了实践的机会。
通过解答这些例题和习题,读者可以更深入地理解随机过程的概念和性质,并培养解决实际问题的能力。
总的来说,随机过程第四版是一本权威且实用的教材,为学习者提供了理论和实践相结合的学习方式。
通过对随机过程的介绍、不同类型的讨论、数学建模和分析方法的学习,以及大量的例题和习题的解答,读者可以全面地了解和掌握随机过程的基本概念、性质和应用。
第一章习题解答随机过程习题解答1. 设随机变量X 服从几何分布,即:P(X =k) = pq,k =0,1,2,山。
求X 的特征函数, EX 及 DX 其中0 ::: p <1,q 亠p 是已知参数。
E(e jtx ) 八 e jtk pqk -0QO二 p 'k - 0二 p' (qek =0jtk又 T E(X)二kpqk =0D(X) (其中 则 0 S(t)dt 二jt )k1 - qe jtk= p' kqk ±0= E(X 2)-[E(X)]-qp 2CO CO '、' nx n 八(n 1)xn -0 n ~0S(x)八(n 1)x nn =0cd八x n )n -0o Ozk =0.(n 1)t n dt□0zn =0S (x)-JS(t)dtn =0同理&k 2k =0dx 0(1 - x)21 (1 - x)2 1 - x (1 - X)2QOQOkx k 八(k 1)x k -2二 kx k - ' xk =0k -0k =0od令 S(x)八(k 1)2x kk =0.S(t)dt 二' (k - 1)2t k dt 二' (k - 1)x k 1k =0k =0k =12、(1)求参数为(p,b)的丨分布的特征函数,其概率密度函数为pb p J ±xx e , x 0P(x)=】(p)b 0, p 0I 0,xW0(「( p)「e —x x p ・dx)(2) • E(X)」f x'(0)=吕jb2、 1 f - p(p 1)E(X ) 2 f x (0)厂JbPD(X)二 E(X)二 E(X)二茯b(4)若人[「0力)i=1,2 贝Sf x 仔2(。
5呱(帖(1-¥)曲b(2) 其期望和方差;(3)证明对具有相同的参数的b 的丨分布,关于参数p 具有可加性。
习题一1.设随机变量X 服从几何分布,即:(),0,1,2,...k P X k pq k ===。
求X 的特征函数、EX 及DX 。
其中01,1p q p <<=-是已知参数。
2.(1)求参数为(p,b )的Γ分布的特征函数,其概率密度函数为(2)求其期望和方差;(3)证明对具有相同的参数b 的Γ分布,关于参数p 具有可加性。
3.设X 是一随机变量,F (x )是其分布函数,且是严格单调的,求以下随机变量的特征函数。
(1)(),(0,)Y aF X b a b =+≠是常数; (2)Z=ln F()X ,并求()k E Z (k 为自然数)。
4.设12,,...,n X X X 相互独立,具有相同的几何分布,试求 的分布。
5.试证函数 为一特征函数,并求它所对应的随机变量的分布。
6.试证函数 为一特征函数,并求它所对应的随机变量的分布。
7.设12,,...,n X X X 相互独立同服从正态分布2(,)N a σ,试求n 维随机向量12,,...,n X X X 的分布,并求出其均值向量和协方差矩阵,再求 的概率密度函数。
8.设X 、Y 相互独立,且(1)分别具有参数为(m, p)及(n, p)的二项分布;(2)分别服从参数为12(,),(,)p b p b 的Γ分布。
求X+Y 的分布。
9.已知随机向量(X, Y )的概率密度函数为试求其特征函数。
10.已知四维随机向量X ,X ,X ,X 1234()服从正态分布,均值向量为0,协方差矩阵为B σ⨯kl 44=(),求(X ,X ,X ,X E 1234)。
11.设X 1,X 2 和X 3相互独立,且都服从(0,1)N ,试求随机变量112Y X X =+和213Y X X =+组成的随机向量(Y 1, Y 2)的特征函数。
12.设X 1,X 2 和X 3相互独立,且都服从2(0,)N σ,试求:1,0()0,0()p p bxb x e x p x p x --⎧>⎪Γ⎨⎪≤⎩=0,0b p >>1nkk X =∑(1)()(1)jt jnt jt e e f t n e -=-21()1f t t=+11ni i X X n ==∑221[1()],1,1(,)40,xy x y x y p x y ⎧+--<<⎪=⎨⎪⎩其他(1)随机向量(X 1, X 2, X 3)的特征函数;(2)设112123123,,S X S X X S X X X ==+=++,求随机向量(S 1, S 2, S 3)的特征函数;(3)121Y X X =-和232Y X X =-组成的随机向量(Y 1, Y 2)的特征函数。
随机过程习题解答第一章习题解答1.设随机变量X 服从几何分布,即:(),0,1,2,kP X k pqk ===。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是已知参数。
解()()jtxjtk k X k f t E ee pq ∞===∑ =()1jt k jtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑(其中 0(1)nnnn n n nx n x x ∞∞∞====+-∑∑∑)令 0()(1)nn S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰同理 2(1)2kkkk k k k k kx k x kx x ∞∞∞∞=====+--∑∑∑∑令2()(1)kk S x k x ∞==+∑ 则211()(1)(1)xkk kk k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为(2) 其期望和方差;(3)证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。
解 (1)设X 服从(,)p b Γ分布,则 (2)'1()(0)Xp E X fjb∴==(4)若(,)i i X p b Γ 1,2i = 则同理可得:()()i i P X b f t b jt∑=∑-3、设ln (),()(kZ F X E Zk =并求是常数)。
X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。
(1)(),(0,)Y aF X b a b =+≠是常数; (2)ln (),()(kZ F X E Z k =并求是常数)。
解(1)11{()}{()}[()]P F x y P x F y F F y y --<=<==(01y ≤≤) ∴00()0111y F y yy y <⎧⎪=≤≤⎨⎪>⎩∴()F x 在区间[0,1]上服从均匀分布()F x ∴的特征函数为11001()(1)jtx jtx jt X e f t e dx e jt jt ===-⎰ (2)ln ()()()[]jtz jt F x Z f t E e E e ===1ln 01jt ye dy ⋅⎰=111jty dy jt =+⎰4、设12n X X X ,,相互独立,且有相同的几何分布,试求1nkk X =∑的分布。