第五章 平面连杆机构的运动分析和设计2
- 格式:ppt
- 大小:1.70 MB
- 文档页数:65
第一章绪论(1)1-2 现代机械系统由哪些子系统组成, 各子系统具有什么功能?(2)答: 组成子系统及其功能如下:(3)驱动系统其功能是向机械提供运动和动力。
(4)传动系统其功能是将驱动系统的动力变换并传递给执行机构系统。
第二章执行系统其功能是利用机械能来改变左右对象的性质、状态、形状或位置, 或对作业对象进行检测、度量等, 按预定规律运动, 进行生产或达到其他预定要求。
第三章控制和信息处理系统其功能是控制驱动系统、传动系统、执行系统各部分协调有序地工作, 并准确可靠地完成整个机械系统功能。
第四章机械设计基础知识2-2 什么是机械零件的失效?它主要表现在哪些方面?答:(1)断裂失效主要表现在零件在受拉、压、弯、剪、扭等外载荷作用时, 由于某一危险截面的应力超过零件的强度极限发生的断裂, 如螺栓的断裂、齿轮轮齿根部的折断等。
(2)变形失效主要表现在作用在零件上的应力超过了材料的屈服极限, 零件产生塑性变形。
(3)表面损伤失效主要表现在零件表面的腐蚀、磨损和接触疲劳。
2-4 解释名词: 静载荷、变载荷、名义载荷、计算载荷、静应力、变应力、接触应力。
答: 静载荷大小、位置、方向都不变或变化缓慢的载荷。
变载荷大小、位置、方向随时间变化的载荷。
名义载荷在理想的平稳工作条件下作用在零件上的载荷。
计算载荷计算载荷就是载荷系数K和名义载荷的乘积。
静应力不随时间变化或随时间变化很小的应力。
变应力随时间变化的应力, 可以由变载荷产生, 也可由静载荷产生。
(1)2-6 机械设计中常用材料选择的基本原则是什么?(2)答:机械中材料的选择是一个比较复杂的决策问题, 其基本原则如下:①材料的使用性能应满足工作要求。
使用性能包含以下几个方面:②力学性能③物理性能④化学性能①材料的工艺性能应满足加工要求。
具体考虑以下几点:②铸造性③可锻性④焊接性⑤热处理性⑥切削加工性①力求零件生产的总成本最低。
主要考虑以下因素:②材料的相对价格③国家的资源状况④零件的总成本2-8 润滑油和润滑脂的主要质量指标有哪几项?答: 衡量润滑油的主要指标有: 粘度(动力粘度和运动粘度)、粘度指数、闪点和倾点等。
第五章 平面连杆机构及其设计 §5-1平面连杆机构的应用及传动特点§5-2平面四杆机构的类型和应用§5-3平面四杆机构的一些共性问题§5-4 平面四杆机构的设计1)低副便于加工、润滑;构件间压强小、磨损小、承载能力大、寿长;2)连杆机构型式多样,可实现转动、移动、摆动、平面复合运动等运动形式间的转换。
如:锻压机肘杆机构,单侧曲线槽导杆机构,汽车空气泵,可变行程滑块机构,等。
一、平面连杆机构的优点和应用平面连杆机构:各构件全部用低副联接而成的平面机构(低副机构).例如:四足机器人(图片、动画)、内燃机中的曲柄滑块机构、汽车刮水器、缝纫机踏板机构、仪表指示机构等。
曲柄滑块机构摆动导杆机构常见平面连杆机构:铰链四杆机构(雷达天线,飞剪,搅拌机)锻压机肘杆机构可变行程滑块机构3)可用于远距离操纵、重载机构,如:自行车手闸机构,挖掘机等。
4)连杆曲线丰富,可实现特定的轨迹要求,如:搅拌机构,鹤式起重机等。
挖掘机搅拌机构鹤式起重机二、平面连杆机构的缺点1)运动副中的间隙会造成较大累积误差,运动精度较低。
2)多杆机构设计复杂,效率低。
3)多数构件作变速运动,其惯性力难以平衡,不适用于高速。
多杆机构大都是四杆机构组合或扩展的结果。
本章介绍四杆机构的分析和设计。
六杆机构及六杆机构的实际应用一、 铰链四杆机构的基本型式和应用铰链四杆机构:全部用回转副联接而成的四杆机构。
连架杆——与机架相联的构件;周转副——组成转动副的两个构件作整周相对转动的转动副;曲柄1——作整周定轴回转的构件;摇杆3——作定轴摆动的构件;转动副摆转副(C、D)周转副(A、B)铰链四杆机构分为:曲柄摇杆机构、双曲柄机构和双摇杆机构。
1.曲柄摇杆机构铰链四杆机构中,若两连架杆中有一个为曲柄,另一个为摇杆,则称为曲柄摇杆机构。
实现转动和摆动的转换。
雷达天线俯仰机构缝纫机踏板机构应用(动画演示):雷达天线俯仰角调整机构,飞剪机构,搅拌机构,摄影机抓片机构、缝纫机踏板机构等。
机械原理平面连杆机构及设计平面连杆机构是一种最为基本的机械结构,由于其结构简单、运动可靠等特点,被广泛应用于各种机械设备中。
本文将对平面连杆机构进行介绍,并探讨其设计原理。
平面连杆机构是由至少一个定点和至少三个连杆组成的机构。
定点为固定参考点,连杆是由铰链连接的刚性杆件。
连杆可以分为连杆和曲柄,连杆连接在定点上,曲柄则旋转。
平面连杆机构的运动由这些连杆的位置和相互连接方式决定。
平面连杆机构的设计原理基于以下几个方面:1.运动分析:在设计平面连杆机构之前,首先需要进行运动分析,确定所需的运动类型。
运动类型可以是旋转、平移、摆动、滑动等。
通过运动分析,可以确定连杆的长度和相互连接的方式。
2.运动性能:平面连杆机构的优点是运动可靠,但运动性能也是需要考虑的重要因素。
例如,设计中需要考虑速度、加速度、力和力矩等参数,以满足机构的运动要求。
3.静力学分析:平面连杆机构在工作过程中可能会受到外力的作用,因此需要进行静力学分析。
静力学分析可以确定机构的力矩和应力,从而确定设计的合理性。
4.运动合成:在进行平面连杆机构的设计过程中,需要进行连杆的运动合成。
运动合成是指通过选择适当的连杆长度和连接方式,实现所需的运动类型。
5.运动分解:运动分解是指将合成的运动分解为各个连杆的运动。
通过运动分解,可以确定每个连杆的运动规律,从而进行设计。
当以上原理得到了充分的了解和运用后,可以进行平面连杆机构的具体设计。
具体的设计包括以下几个步骤:1.确定所需的运动类型:根据机械设备的需求,确定所需的运动类型,例如旋转、平移、摆动等。
2.运动分析:对机构进行运动分析,确定连杆的位置和连接方式。
根据机构的运动要求和外力作用,确定连杆的长度。
3.动力学分析:进行动力学分析,确定机构运动时的力学参数,如速度、加速度、力和力矩等。
4.运动合成与分解:根据所需的运动类型,进行运动合成和分解,确定连杆的运动规律。
5.结构设计:根据上述分析和计算结果,进行结构设计。
机械原理课程教案一平面连杆机构及其分析与设计一、教学目标及基本要求1掌握平面连杆机构的基本类型,掌握其演化方法。
2,掌握平面连杆机构的运动特性,包括具有整转副和存在曲柄的条件、急回运动、机构的行程、极限位置、运动的连续性等;3.掌握平面连杆机构运动分析的方法,学会将复杂的平面连杆机构的运动分析问题转换为可用计算机解决的问题。
4.掌握连杆机构的传力特性,包括压力角和传动角、死点位置、机械增益等;正确理解自锁的概念,掌握确定自锁条件的方法。
5,了解平面连杆机构设计的基本问题,掌握根据具体设计条件及实际需要,选择合适的机构型式;学会按2~3个刚体位置设计刚体导引机构、按2~3个连架杆对应位置设计函数生成机构及按K值设计四杆机构;对机构分析与设计的现代解析法有清楚的了解。
二、教学内容及学时分配第一节概述(2学时)第二节平面连杆机构的基本特性及运动分析(4.5学时)第三节平面连杆机构的运动学尺寸设计(3.5学时)三、教学内容的重点和难点重点:1.平面四杆机构的基本型式及其演化方法。
2.平面连杆机构的运动特性,包括存在整转副的条件、从动件的急回运动及运动的连续性;平面连杆机构的传力特性,包括压力角、传动角、死点位置、机械增益。
3.平面连杆机构运动分析的瞬心法、相对运动图解法和杆组法。
4.按给定2~3个位置设计刚体导引机构,按给定的2~3个对应位置设计函数生成机构,按K值设计四杆机构。
难点:1.平面连杆机构运动分析的相对运动图解法求机构的加速度。
2.按给定连架杆的2~3个对应位置设计函数生成机构。
四、教学内容的深化与拓宽平面连杆机构的优化设计。
五、教学方式与手段及教学过程中应注意的问题充分利用多媒体教学手段,围绕教学基本要求进行教学。
在教学中应注意要求学生对基本概念的掌握,如整转副、摆转副、连杆、连架杆、曲柄、摇杆、滑块、低副运动的可逆性、压力角、传动角、极位夹角、行程速度变化系数、死点、自锁、速度影像、加速度影像、装配模式等;基本理论和方法的应用,如影像法在机构的速度分析和加速度分析中的应用、连杆机构设计的刚化一反转法等。
机械原理作业集(第2版)参考答案(注:由于作图误差,图解法的答案仅供参考)第一章绪论1-1~1-2略第二章平面机构的结构分析2-12-22-3 F=1 2-4 F=1 2-5 F=1 2-6 F=12-7 F=0机构不能运动。
2-8 F=1 2-9 F=1 2-10 F=1 2-11 F=22-12 F=12-13 F=1 2为原动件,为II级机构。
8为原动件,为III级机构。
2-14 F=1,III级机构。
2-15 F=1,II级机构。
2-16 F=1,II级机构。
F=1,II级机构。
第三章平面机构的运动分析3-13-2(1)转动中心、垂直导路方向的无穷远处、通过接触点的公法线上(2)P ad(3)铰链,矢量方程可解;作组成组成移动副的两活动构件上重合点的运动分析时,如果铰链点不在导路上(4) 、 (5)相等(6) 同一构件上任意三点构成的图形与速度图(或加速度图)中代表该三点绝对速度(或加速度)的矢量端点构成的图形, 一致 ;已知某构件上两点的速度,可方便求出第三点的速度。
(7)由于牵连构件的运动为转动,使得相对速度的方向不断变化。
3-31613361331P P P P=ωω 3-4 略3-5(1)040m /s C v .=(2)0.36m /s E v = (3) ϕ=26°、227° 3-6~3-9 略3-10(a )、(b )存在, (c )、(d )不存在。
3-11~3-16 略 3-17第四章 平面机构的力分析、摩擦及机械的效率4-14-24-3 )sin )((211212l l ll l l f f V +++=θ4-4 F =1430N 4-5~4-9略232/95.110s m v -==ωB v JI v4-10 )2()2(ρρη+-=b a a b4-11 5667.0 31.110==≤ηϕα 4-12 8462.0=η 4-13 605.0=η4-14 2185.0=η N Q 3.10297= 4-15 7848.0113.637==ηN F4-16 KW P 026.88224.0==η 4-17 KW P 53.96296.0==η4-18 ϕα2≤ 4-19 F =140N4-20 ϕαϕ-<<O 90第五章 平面连杆机构及其设计5-15-2(1) 摇杆(尺寸),曲柄(曲柄与连杆组成的转动副尺寸),机架(连杆作为机架) (2) 有,AB ,曲柄摇杆机构 ;AB ;CD 为机架(3) 曲柄 与 机架 (4) 曲柄摇杆机构、曲柄滑块机构、摆动导杆机构 (5) 曲柄摇杆机构、摆动导杆机构;曲柄滑块机构 (6) 等速,为主动件 (7) 7 (8) 往复 ,且 连杆与从动件 (9) 选取新机架、刚化搬移、作垂直平分线;包含待求铰链 且 位置已知 (10) 9 ; 5 5-3 70 < l AD <670 5-4~5-18 略5-19 l AC =150mm l CD =3000mm h =279.9 mm5-20 a =63.923mm b =101.197mm c =101.094mm d =80mm第六章 凸轮机构及其设计6-16-26-3(1)等加速等减速、余弦加速度(2)刚性、柔性(3)理论廓线(4)互为法向等距曲线(5)增大基圆半径、采用正偏置 (6)增大基圆半径、减小滚子半径(7)提高凸轮机构运动的轻巧性和效率、避免加速度过大造成冲击 6-4略 6-56-6 ~ 6-13略 6-146-15 6-16略第七章 齿轮机构及其设计7-1︒==6858.70822rad πδ︒='=︒≡====1803064.3432.1700min max 0δδαααmmh mm r 6332.343776.51240-='='-=δy x6395.185947.4060='-='=δy x7-27-3(1) (2)7-4 z = 41.45 7-5略7-6 (1) (2) 7-7 7-8略 7-9 7-10 7-11略7-12 (1) (2) (3) 7-13(1) (2) (3) 7-14略7-15 7-16略7-17 共有7种方案 7-18~7-19 略 7-20302021==z z mmr mms mm s a b a 0923.1052816.178173.6===634.1=εαmmj mmc mma t 77.269.494.15523.23='='='=α'smm v mm L /490==刀294-==x z 8.04.88==x z 0399.02='x 9899.482234117229.1142444153.44='''=='==K K Kρθα mmr K K 3433.702444='= α8879.22α='mm r mm r 2.618.4021='='mmd z mmm 120304===5.0-=x mms 827.4=058.1-=x7-21 7-22 略7-23正传动, 7-24~7-25 略 7-26(1)正传动(2) 7-27 略 7-287-29 略第八章 齿轮系及其设计8—18—28—3(1)从动轮齿数的连乘积除以主动轮齿数的连乘积、数外啮合次数或用画箭头的 (2)用画箭头的(3)有无使行星轮产生复合运动的转臂(系杆) (4)相对运动原理(5)一个或几个中心轮、一个转臂(系杆)、一个或几个行星轮(6)转化轮系中A 轮到B 轮的传动比、周转轮系中A 轮到B 轮的传动比、AB i 可以通过H ABi 求解(7)找出周转轮系中的行星轮、转臂及其中心轮 (8)传动比条件、同心条件、均布装配条件、邻接条件(9)传动比很大结构紧凑效率较低、要求传动比大的传递运动的场合、传动比较小效率较高、传递动力和要求效率较高的场合mm a 5892.90='mm r a 93.581=13.7291β=116.36v z = 2.6934γε=2222(1)175(2)185163(3) 5.7106(4)112.5a f d mm d mm d mma mmβ=====(10)差动轮系 8-4 8-58-6 8-7 8-8 8-98-10 8-11 8-12(a ) (b ) 8-13(1) (2) 8-14 z 2≈68 8-15 8-168-17 (1) (2) 8-188-198-20 m in /28.154r n B -=8-21只行星轮满足邻接条件件,只行星轮不满足邻接条34144803mml z H ==8-22 162/108/5463/42/2136/24/12321===z z z第九章 其他常用机构9-1 9-2 9-3 9-4mms 075.0=232==n k mml B 3=8.658=ϕm in/84r n =mm R 975.23=32143211''-=z z z z z z i H m in/3r n H =NF 64.308=5.141-=i 072.016-=i m in /600r n H -=m in/385.15r n H =31=H i 8.11=H i 0=H n min /667.653197min /2min /340042r n r n r n A ≈===m in /47.26r n c =m in/1350r n c -=min /6349.063407r n ≈=4286.0731-≈-=H i .1533.433=i第十章 机械的运转及其速度波动的调节10-110-210-3 2 05.050kgm J Nm M e er =-=10-4222212334111()()e e z z J J J J m m e M M Qe z z =++++=- 10-520.14.20J kg m M Nm ==-10-6 2334.()cos cos ABr G l h J M F G gφφ==- 10-7332.18221857e e J kgm MNm ==10-811100/50/rad s rad s αω==10-9maxmax minmin 30.048140.962/2 39.038/0,2rad s rad s δωφπωφπ=====10-102280.4730.388F FJ kgm J kgm '== 10-1102max max 623.1/min104.1654 2.11329F n r J kgm φ===10-12max max minmin 0.06381031.916/min 968.08/mine bn r nr δφφφφ===== 10-1326maxmin 302F eb f Nm J kgm ωφωφ==→→第十一章 机械的平衡11-111-211-3 2.109252.66o b b r cm θ==11-412.31068.5273bA bB m kg m kg==11-511-611-711-8)(2)(2 , )b )( )( , )a ⅡⅡ ⅠⅠ ⅡⅡ ⅠⅠ 上下动不平衡静平衡上下动不平衡静平衡mrr m mr r m mr r m mr r m b b b b b b b b ====oⅡb Ⅱo b Ⅰgm W W W 90 84.08419 gm 0628.1Ⅱb 3Ⅰb ==='==θθ0B 0A 120 285.0 8584.260 285.0 8584.2======bA bB bA bA kg m kgmm W kg m kgmm W θθ0Ⅱb 0Ⅰb 147 725.0 290316 65.1 660======b Ⅱb Ⅱb Ⅰb Ⅰkg m kgmm W kg m kgmm W θθ。