辽宁省沈阳市二十一中高一数学《对数函数和简单对数方程的复习》课件
- 格式:ppt
- 大小:655.00 KB
- 文档页数:20
课题:§2.2.1对数教学目的:(1)理解对数的概念;(2)能够说明对数与指数的关系;(3)掌握对数式与指数式的相互转化.教学重点:对数的概念,对数式与指数式的相互转化教学难点:对数概念的理解.教学过程:一、引入课题1. (对数的起源)价绍对数产生的历史背景与概念的形成过程,体会引入对数的必要性; 设计意图:激发学生学习对数的兴趣,培养对数学习的科学研究精神.2. 尝试解决本小节开始提出的问题.二、新课教学1.对数的概念一般地,如果N a x=)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数(Logarithm ),记作: N x a log =a — 底数,N — 真数,N a log — 对数式 说明:○1 注意底数的限制0>a ,且1≠a ; ○2 x N N a a x =⇔=log○3 注意对数的书写格式. 思考: ○1 1≠a ; ○2 是否是所有的实数都有对数呢? 设计意图:正确理解对数定义中底数的限制,为以后对数型函数定义域的确定作准备. 两个重要对数:○1 常用对数(common logarithm ):以10为底的对数N lg ; ○2 自然对数(natural logarithm ):以无理数 71828.2=e 为底的对数的对数N ln . 2. 对数式与指数式的互化 x N a =log ⇔ N a x =对数式 ⇔ 指数式对数底数 ← a → 幂底数对数 ← x → 指数真数 ← N → 幂例1.(教材P 73例1)巩固练习:(教材P 74练习1、2)设计意图:熟练对数式与指数式的相互转化,加深理解对数概念.说明:本例题和练习均让学生独立阅读思考完成,并指出对数式与指数式的互化中应注意哪些问题.3. 对数的性质(学生活动)○1 阅读教材P 73例2,指出其中求x 的依据; ○2 独立思考完成教材P 74练习3、4,指出其中蕴含的结论 对数的性质(1)负数和零没有对数;(2)1的对数是零:01log =a ;(3)底数的对数是1:1log =a a ;(4)对数恒等式:N a N a =log ;(5)n a n a =log . 三、归纳小结,强化思想○1 引入对数的必要性; ○2 指数与对数的关系; ○3 对数的基本性质.四、作业布置教材P 86习题2.2(A 组) 第1、2题,(B 组) 第1题.。