【解析】射线 = − 3 < 0 经过第二象限,
在射线上的取点 −1, 3 ,
即角 的终边经过点 −1, 3 ,
则 =
−1
2
+
3
2
= 2,
利用三角函数定义可得
sin =
=
3
,cos
2
tan =
=
3
−1
3
2
所以sin =
=
=
−1
2
1
=− ,
2
= − 3;
1
, cos = − 2 , tan = − 3.
(3)在角− 的终边上取一点 , − ,即 = , = −, = ,
= − , −
(4)在角 的终边上取一点
则 −
则 =
,
=−
=
,
−
= −;
−, ,即 = −, = , = ,
当 = 或
时,点的坐标是(, )和(− , )
一般地,任意给定一个角,它的终边与单位圆交点的坐标能唯一确定吗?
∀ ∈ , 其终边与单位圆交点的横坐标, 纵坐标唯一确定.
新知1:三角函数的定义
(1)把点的纵坐标叫做的正弦函数,记作 ,
即 = .
π
转 3 弧度,滚珠 按顺时针方向每秒钟转 6 弧度,相遇后发生碰撞,各自按照原来的速度大小反向运动.
(1)求滚珠 , 第一次相遇时所用的时间及相遇点的坐标;