探究一
探究二
探究三
思维辨析
随堂演练
答案:C
探究一
探究二
探究三
思维辨析
随堂演练
2.如图是一向右传播的绳波在某一时刻绳子各点的位置图,经过 周期后,乙的位置将移至( )A.x轴上 B.最低点 C.最高点 D.不确定解析:相邻的最大值与最小值之间间隔半个周期,故乙移至最高点.答案:C
探究一
探究二
探究一
探究二
探究三
思维辨析
随堂演练
延伸探究 本例(2)中,按照规定,该海滨浴场在每天上午对冲浪爱好者开放之前,须首先对海滨浴场的各种设施进行全面详细的安全检查,且检查工作必须在海浪高度低于 米时进行,试问:海滨浴场工作人员须在上午的哪个时段对设施进行安全检查?
探究一
探究二
探究三
探究一
探究二
探究三
思维辨析
随堂演练
解:(1)由表中数据描出各点,并把这些点用平滑的曲线连接起来(如图),由图知,可设f(t)=Acos ωt+b,并且周期T=12辨析
随堂演练
(2)由题知,当y>1时才可对冲浪爱好者开放,即12k-3<t<12k+3(k∈Z).①∵0≤t≤24,故可令①中k分别为0,1,2,得0≤t<3或9<t<15或21<t≤24.∴在规定时间上午8:00至晚上20:00之间,有6个小时的时间可供冲浪爱好者运动,即上午9:00至下午15:00.
随堂演练
数据拟合三角函数模型问题例3已知某海滨浴场海浪的高度y(单位:米)是时间t(0≤t≤24,单位:时)的函数,记作y=f(t).下表是某日各时的浪高数据.(1)根据以上数据,求函数y=f(t)的函数解析式;(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内上午8:00时至晚上20:00时之间,有多少时间可供冲浪爱好者进行运动?分析:作出散点图→判断形状构建模型→求参数