当前位置:文档之家› 储层增注高效活性水

储层增注高效活性水

储层增注高效活性水
储层增注高效活性水

高效表活剂评价及活性水注入研究

针对储层孔喉细小、毛管阻力大,注水压力高的问题,优选高效的表面活性剂,并配套活性水注入工艺,降低注入压力。与传统表面活性剂不同,双子表面活性剂中含有至少两个亲水基团(离子头基)和两个疏水基团(碳氢链、碳硅链或碳氟链),并在亲水基团处或靠近亲水基团的疏水基团处由连接基团以化学键相连接。其结构示意图如下:

双子高效表面活性剂具有改善油、水渗流特性,减小渗流阻力,同时配套算化工艺措施,可以实现降压增注的目的。

图10 技术原理

1、高效表面活性剂的优选

为了优选高效表面活性剂,对国内几种常用的双子表面活性剂的表面张力、分散配伍性进行了实验。

实验方法:

将活性剂按不同浓度配制,根据检测标准测定其表界面张力。

实验仪器:K11表界面张力仪

表9 助排剂评选结果表

由表中结果可知,在同等浓度条件下SZ2的表界面张力明显小于SZ1的表界面张力,因此选用SZ2高效表面活性剂。

2、高效表面活性剂的性能评价

通过测试不同温度下和不同矿化度时SZ2表面活性剂的表面张力进行性能评价。 实验方法:

将活性剂按不同浓度配制,根据检测标准测定其界面张力。 实验仪器:K11表界面张力仪

图11 温度对界面张力影响

图12 矿化度对界面张力影响

由图11和图12的结果可知温度和矿化度对于SZ2的界面张力都影响较小,根据测试结果和成本考虑采用0.2%SZ2作为活性剂。

3、活性水注入研究

通过活性水岩心流动模拟实验,确定高效表面活性剂的使用浓度。

活性水配方:0.2%SZ2+1%FPJ

实验步骤:

①取抽空饱和地层水后的岩芯,放入岩芯夹持器;

②开泵将岩芯夹持器进液一端管线中气体排出,使管线全部被液体充满;

③用地层水驱岩芯,待流动状态趋于稳定后,以一固定流量通地层水,测基础渗透

率和压力P

④以相同流量通180PV的活性水,测压力P

1

计算出岩心压力降低率:(P

0- P

1

)/P

·100%

图13岩心流动实验结果

图14岩心流动实验结果

注入活性水后某区岩心驱替压力降低了15%,某区岩心驱替压力降低了13% ,建议酸化施工后采用活性水注入。

某盆地储层敏感性特征研究

哈尔滨工程大学 硕士学位论文 某盆地储层敏感性特征研究 姓名:彭柏群 申请学位级别:硕士 专业:应用化学 指导教师:张密林 20030301

摘要 本文根据某盆地大量现场施工资料,选取20口井的岩心,进行了其粘十矿物组成分析、岩心薄片形貌及结构分析,以及敏感性特征分析。 通过对储层岩矿特征、孔隙结构特征和物性特征分析,证明盆地的多数井段储集层含油、气性较差,仅少数井段较好。 根据粘十矿物的基本结构,结合粘土的水化膨胀、絮凝、分散情况,从理论上分析了粘士矿物对油层潜在的损害方式。通过大量的粘土矿物分析数据,表明盆地粘十矿物在纵向上由浅到深的变化规律是:蒙皂石一高岭石组合(以蒙皂石为主)、高岭石一蒙皂石组合(以高岭石为主)、高岭石一伊利石组合(以高岭石为主)、伊利石一高岭石组合(以伊利石为主)、伊利石一绿泥石组合。根据这些结果得出粘土矿物在盆地的浅层主要以膨胀的形式损害储层:在中层,主要以微粒运移的形式损害储层;在深层,主要以微粒运移和酸敏的形式损害储层。 储层敏感性实验研究证明,盆地的速敏性为弱到中速敏,水敏性第。和第三凹陷较强,而第二凹陷的水敏性相对较弱;酸化研究表明,现场目前使用的几种酸型配比不适合对该盆地进行酸化改造,必须探索新的酸化途径和配方。 由敏感性实验证明,整个盆地的敏感性主要以水敏和速敏为主,因此

本文的储层敏感性研究为油层保护提出如下解决方案:第一凹陷水敏性较强,要特别注意防止粘上矿物的水化膨胀:第二凹陷速敏性较强,要注意防止微粒迁移:第三凹陷渗透性较差,应以压裂改造为主。 关键词:粘土矿物储层敏感性油层保护速敏水敏

ABSTRACT Thispaperisbasedonagreatdealofon-the—spotdatainsomebasins.Logcoresfromtwentywellsareselectedtoperformclaymineralcompositionanalysis,shapeandstructureofslicecoreanalysis,andsensitivityanalysis. ThroeIghanalyzingrockfeature,porestructurefeatureandphysicalfeatureofreservoiLitturnsoutthattheoilandgaspotentialinmostwellintervalsisbadandonlyafewwellintervalsaregood. Basedonbasicstructure,connectedwithhydrousexpansion,flocculateanddisintegration,thepotentialmethodbywhichclaymineraldoesdamagetoreservoirisanalyzedtheoretically.Throughmuchclaymineralanalysis,itschangingregularityisshownfromshallowtodeepverticallNi.e.:smectite--kaolinitecombination(mainlysmectite),kaolinite--smectitecombination(mainlykaolinite),kaolinite—illitecombination(mainlykaolinite),illite—kaolinitecombination(mainlyillite),itlite—chloritecombination.Soitisconcludedthatintheshallowlayer,claymineraldoesdamagetoreservoirbymeansofexpansion,inthemiddlelayerbymeansofparticulatetransmit,inthedeeplayerbymeansofparticulatetransmitandacidsensitivitN Thereservoirsensitivitytestturnsoutthatthevelocitysensitivityofthebasinisweaktomedium,watersensitivityisstronginfirstsagandthirdsagandweakinthesecondsag.Acidtreatmentindicatesthatseveraltypesofacidonthespotareunfitforacidstimulationinthebasinanditisnecessarytodiscovernewacidtreatmentmethodandprescription. Thereservoirsensitivitytestturnsoutthatthewholebasinismainlywater

地层水配伍性研究

注入水与地层水及储层配伍性研究 在注入开发油田中,当注入水和不配伍的地层水相遇时,使原有的地层水和储层矿石之间的离子化学平衡被破坏,岩石和混合水之间,注入水和地层水之间随注入水不断介入将逐渐建立一个新的化学平衡。在打破旧的平衡建立新的平衡过程中,只要流体中遇到两种以上不配伍的水存在或在流动过程中随压力和温度或流体的化学组分不平衡,都存在结垢的可能,不可避免的造成对储层的一定损害。在导致严重水敏的同时,在注水速度过快时,还将产生严重的速敏伤害,低渗、特低渗的水敏更为严重。本文下面主要从两方面进行配伍性实验研究:注入水与地层水的配伍性以及注入水与储层的配伍性。 【吉林油田低渗透油藏注入水水质实验研究】 1 注入水与地层水的配伍性 【油田注入水源与储层的化学配伍性研究】 油气田进入中后期开发后,普遍采用注水采油、排水采气、排水找气等新工艺,由于压力、温度等条件的变化以及水的热力学不稳定性和化学不相容性,往往造成注水地层、油套管、井下、地面设备以及集输管线出现结垢,造成油气田产量下降,注水压力上升,井下以及地面设备甚至油气井停产。 1.1油田水质分析 对该油田地层水及注入水的离子浓度进行分析,统计得到下表:(下表)

1.2注入水的自身稳定性 常温及地层温度下注入水的自身稳定性反映了注入水在注水管柱、采油管柱及储层中结垢状况。在常温(20℃)和地层温度(70℃)的条件下,通过测定在密闭容器里分别放置不同时间的水中主要成垢离子Ca2+、Ba2+、Mg2+等的浓度变化研究水源水自身的稳定性以及结垢趋势。在常温和地层温度下分别检测放置20天、30天时水源水中成垢离子浓度。统计数据如下表所示:【商河油田注水配伍性及增注措施实验研究】 1.3 配伍性研究方法 1.3.1静态配伍性实验研究 【大港北部油田回注污水结垢性与配伍性研究】 注入水与地层流体不配伍主要表现在两者按不同比例混合后是否产生沉淀。将地层水与注入水过滤后分别按不同体积比例混合(1: 9、2: 8、3: 7、4: 6、5:5、6:4、7:3、8:2、及9:1),并在85C下密闭加热恒温不同时间,测其浊度。实验结果见图2。 浊度的测量方法:本方法参照采用国家标准ISO 7027—1984《水质—浊度的测定》主要方法有两种:分光光度法和目视比色法。

表面活性剂在色谱分析中的应用

表面活性剂在色谱分析中的应用 摘要:本文综述了表面活性剂在色谱分析中的应用,具体介绍了在毛细管电动色谱(MECC)、胶束电动毛细管色谱中(MEKC)、胶束液相色谱(MLC)中的应用,并对表面活性剂的应用前景进行了展望。 关键词:表面活性剂;毛细管电动色谱;胶束电动毛细管色谱;胶束液相色谱 Abstract:This review surveys the application of surfactants in the chromatographic analysis,which are detail introduced in the capillary electrokinetic chromatography (MECC), micellar electrokinetic chromatography (MEKC), micellar liquid chromatography (MLC). The prospect of the applications of surfactants are discussed. Key words:surfactant;MECC;MEKC;MLC 表面活性剂(SA)中有一类同时具有亲水基和亲油基,其结构中的一部分具有亲水性质,另一部分具有亲油性质(疏水性质),这种特殊结构决定了它与众不同的特性。表面活性剂包括阳、阴、非离子型及两性型四种基本类型以及混合与聚合型等表面活性剂(分别记为CAS、ASA、NSA、ZSA及MSA、PSA),它们在分析化学中已获得广泛应用。SA在色谱中的应用也取得显著成效,其中胶束色谱(MC)的诞生,标志着这一领域的日益成熟,并为众多的研究者们所重视,本文对这些成果予以系统总结,以期深入广泛地开展有关研究。 1.胶束色谱机理与表面活性剂的作用 自70年代末期Armstrong等[1]将SA胶束溶液作为流动相引入薄层色谱(TLC)和高效液相色谱(HPLC)以来,开辟了胶束色谱新的领域。许多分析家相继将SA或引入色谱流动相(作洗脱剂,萃取剂或离子对试剂),或用作显色剂及检测信号增敏剂,或用于浸溃及涂敷固定相等。在无机、有机、药物和生化样品等的分离与分析中获得广泛的应用。 SA的共同特性是当SA浓度大于临界胶束浓度(cmc)时,形成有序排列,即胶束状分子聚集体,在极性溶剂(如水)中形成极性端基向外而碳链在内的正相胶束(normal micelle,简称胶束);而在非极性溶剂(如环已烷)中形成极性端基在内而碳链伸展在外的逆(反)胶束,前者为水包油型(O/W),后者为油包水型(W/O)。胶束中的SA与本体溶液中游离的SA处于动态平衡中。在cmc以上,增加SA总浓度只能增加溶液中胶束浓度而游离SA 浓度几乎保持不变。 MC较常规色谱有着独特的优越性及某些不足处:即①专属性或选择性好,一般只需调节流动相中所用SA浓度便能改变流动相的表观极性以改善分离效果;②应用范围广,MC 既可分离亲水性物质,又可分离亲脂性物质或两亲性物质,还能同时分离亲水、亲脂性物质。特别是逆胶束色谱更扩大了应用对象,且分离效果好,在反相(RP)色谱中尤显示其优越性;③所用SA的价廉,且一般无毒,不挥发不燃烧,使用安全;④适用于各种形式的色谱,如纸色谱(PC)、TLC、HPLC、气相色谱(GC),毛细管区域电泳(CPZ,相应称胶束电泳毛细管色谱MECC)及凝胶过滤色谱等;⑤检测灵敏度高,胶束流动相及固定相可增加检

表面活性剂在低渗透油藏降压增注机理

表面活性剂在低渗透油藏降压增注机理 表面活性剂溶液对低渗透油藏的降压增注效果也非常突出。表面活性剂对超低渗透降压增注的机理并不只是大幅降低油/水界面张力。表面活性剂具有较好地改变岩石表面润湿性的作用。因此,本文将继降压增注实验之后开展降压增注机理分析。 标签:表面活性剂;低渗透油藏;降压增注 1引言 表面活性剂具有降低表面张力、起泡、乳化、分散、润湿、增溶、渗透和抗静电等性能,在油田上最早用于提高采收率,目前广泛应用在油气井增产和水井增注,通过吸附在岩石矿物表面,改变岩石润湿性,从而降低毛管力、减弱储层损害表面活性剂驱油机理,可概括为降低界面张力、降低注入压力、聚并形成油带、形成分子膜、降低边界层厚度、改变岩石润湿性、改变岩石流变性等。 特性,在较低的使用浓度条件下,表面活性剂溶液就能够很快地降低界面张力,根据极性基团的区别,将表面活性剂划分以下几大类:阴离子型、两性型、阳离子型、和非离子型表面活性剂等。其降压增注机理体现为:降低油水界面张力、改变岩石润湿性、降低注入压力、改变原油流变性、提高洗油能力。 2表面活性剂降压增注机理 由于组成表面活性剂分子的两部分为具有极性的“头基”和具有非极性的“链尾”,因此表面活性剂显示两亲性的。 2.1 降低油水界面张力。 由于低渗储层具有孔吼半径细小的特征,连续油流在通过狭小孔隙吼道时,毛管力急剧地增加,会引起贾敏效应,在储层孔隙中油柱会变成断断续续的油滴,从而引起流体渗流阻力的增加。在注入表面活性剂段塞后,在油水界面上吸附着活性剂,引起油水界面张力的降低,引起油滴变形从而更容易通过孔隙吼道,有效地解除了含油堵塞,从而达到了降低注水压力的目的。 关于降低油/水界面张力以降压增注的研究已经很多,且形成了较为一致的看法,在这里做简述。由于表面活性剂都具有一定的表面活性,能够降低界面张力,驱替液(水相)与被驱替液(油相)接触时,表面活性剂快速地达到油/水界面,起到降低界面张力的作用,减小相间相互作用,同时乳化原油、降低原油粘度,阳离子表面活性剂压缩双电层、使边界层变得更薄,从而改善油、水渗流性,提高水相渗透率,降低注入压力。界面张力动态实验表明,双子表面活性剂能快速达到油/水界面,在较短的时间内,使界面张力降低到10-2mN/m,降低了3-4个数量级,故起到了显著的降压增注效果。而表面活性剂降低界面张为能力

储层

储层:凡是能够储集和渗滤流体的地层的岩石构成的地层叫储层。 储层地质学:是一门从地质学角度对油气储层的主要特征进行描述、评价及预测的综合性学科。 研究内容:储层层位、成因类型、岩石学特征、沉积环境、构造作用、物性、孔隙结构特征、含油性、储集岩性几何特征储集体分布规律、对有利储层分布区的预测。有效孔隙度:指那些互相连通的,且在一定压差下(大于常压)允许流体在其中流动的孔隙总体积与岩石总体积的比值。 绝对渗透率:如果岩石孔隙中只有一种流体存在,而且这种流体不与岩石起任何物理、化学反应,在这种条件下所测得的渗透率为岩石的绝对渗透率。 剩余油饱和度:地层岩石孔隙中剩余油的体积与孔隙体积的比值 残余油饱和度:地层岩石孔隙中残余油的体积与孔隙体积的比值 储层发育的控制因素:沉积作用、成岩作用、构造作用低渗透储层的基本地质特征:孔隙度和渗透率低、毛细管压力高、束缚水饱和度高 低渗透储层的成因:沉积作用、成岩作用 论述碎屑岩储层对比的方法和步骤: 1、依据 2、对比单元划分 3、划分的步骤 1、依据:①岩性特征:指岩石的颜色、成分、结构、构造、地层变化、规律及特殊标志层等。在地层的岩性、厚度横向变化不大的较小区域,依据单一岩性标准层法,特殊标志层进行对比;在地层横向变化较大情况下依据岩性组合②沉积旋回:地壳的升降运动不均衡,表现在升降的规模大小不同。在总体上升或下降的背景上存在次一级规模的升降运动,地层剖面上,旋回表现出次一旋回对比分级控制③地球物理特征:主要取决于岩性特征及所含流体性质,电测曲线可清楚反映岩性及岩性组合特征,有自己的特征对比标志可用于储层对比;测井曲线给出了全井的连续记录,且深度比较准确,常用的对比曲线:视电阻率曲线、自然电位曲线、感应测井曲线 2、对比单元划分:储层层组划分与沉积旋回相对应,由大到小划分为四级:含油层系、油层、砂层组和单油层。储层单元级次越小,储层特性取性越高,垂向连通性较好 3、划分的步骤:沉积相的研究方法主要包括岩心沉积相标志研究、单井剖面相分析、连续剖面相对比和平面相分析四种方法 岩心沉积相标志的研究方法是以岩石学研究为基础,可分为三类:岩性标志,古生物标志和地球化学标;单井剖面分析是根据所研究地层的露头和岩化剖面,以单井为对象,利用相模式与分析剖面的垂向层序进行对比分析,确是沉积相类型,最后绘出单井剖面相分析图;连井剖面相对比分析主要表示同一时期不同井之间沉积相的变化,平面相分析是综合应用剖面相分析结果进行区域岩相古地理研究的方法。 碳酸盐岩与碎屑岩储层相比,具有哪些特征? ①岩石为生物、化学、机械综合成因,其中化学成因起主导作用。岩石化学成分、矿物成分比较简单,但结构构造复杂,岩石性质活泼,脆性大②以海相沉积为主,沉积微相控制储层发育③成岩作用和成岩后生作用严格控制储集空间发育和储集类型形成。 扇三角洲储层特征? ①碎屑流沉积。由于沉积物和水混合在一起的一种高 密度、高粘度流体,由于物质的密度很大,沿着物质聚集体内的剪切面而运动。②片汜沉积。是一种从冲积扇河流末端漫出河床而形成的宽阔浅水中沉积下来的产物,沉积物为呈板片状的砂、粉砂和砾石质。 。③河道沉积。指暂时切入冲积扇内的河道充填沉积物。④筛积物。当洪水携带的沉积物缺少细粒物质时,便形成由砾石组成的沉积体。 碎屑岩才沉积作用:垂向加积、前积、侧向加积、漫积、筛积、选积、填积、浊积 喉道:在扩大孔隙容积中所起作用不大,但在沟通孔隙形成通道中起着关键作用的相对狭窄部分,称为喉道。孔隙结构:岩石所具有的孔隙和喉道的几何形状、大小、分布、相互连通情况以及孔隙与喉道间的配置关系。 碎屑岩的喉道类型:孔隙缩小型喉道、缩颈型喉道、片状喉道、弯片状喉道、官束状喉道 孔隙类型:原生孔隙、次生孔隙、混合孔隙 排驱压力:非润湿相开始进入岩样所需要的最低压力,它是泵开始进入岩样最大连通孔喉而形成连续流所需的启动压力,也称阀压。 成岩作用:指碎屑沉积物在沉积之后到变质之前所发生的各种物理、化学及生物的变化。 同生成岩作用:沉积物沉积后尚未完全脱离上覆水体时发生的变化与作用的时期。 表成岩作用:指处于某一成岩阶段弱固结或固结的碎屑岩,因构造抬升而暴露或接近地表,受到大气淡水的溶蚀,发生变化与作用的阶段。 成岩作用的基本要素:岩石、流体、温度、压力 孔隙水的流动方式和动力:压实驱动流、重力驱动流、滞流 碎屑岩主要的成岩作用有哪些?分别对孔隙有什么影响? 根据成岩作用对储层孔隙演化的影响,可将碎屑岩的残岩作用分为两大类:一是降低储层孔渗性的成岩作用,主要有机械压实作用和胶结作用,其次压溶作用和重结晶作用;其中机械压实作用是沉积物在上覆重力及静水压力作用下,发生水分排出,碎屑颗粒紧密排列而使孔隙体积缩小,孔隙度降低,渗透性变差的成岩作用;胶结作用是指孔隙溶液中过饱和成分发生沉淀,将松散的

储层伤害源_定义_作用机理和描述体系

第19卷 第3期 西南石油学院学报 Vol.19 No.3 1997年 8月 Journal of S outhwest Petroleum Institute Aug 1997 储层伤害源 —定义、作用机理和描述体系Ξ 康毅力 罗平亚 高约友 (西南石油学院油井完井技术中心,四川南充637001) (河南石油勘探局) 摘要 根据储层损害的特殊性和损害机理,将储层伤害源定义为:打开储层时,在温度压力环境 下,由于储层内组分或外来组分与储层组分作用所发生的变化,导致岩石孔隙结构的调整并引 起绝对渗透率降低的物质。储层伤害源包括内伤害源、外伤害源和复合伤害源三个部分。内伤 害源是储层内固有的,外伤害源是引入的,复合伤害源是内、外伤害源相互作用的产物。伤害源 作用机理研究表明,伤害源是一个复杂的系统,具有明显的结构层次和功能,可划分为五级描述 体系,这就为保护油气层技术系统工程提供了理论依据。 主题词 储集层;结构;孔隙度;污染源;系统 中图分类号 P618.130.23 随着地层损害研究的深入[1],特别是对一地区或油田进行详细的保护储层技术研究之后,人们希望将地层损害的特征表述在剖面图上,以指导下一步作业或为邻区提供借鉴,为此中国石油天然气总公司开发局曾下文要求各油田根据自己的实际情况,建立伤害源剖面图。然而伤害源的定义、限定范围以及如何全面有效地把握主要的伤害源等技术问题至今尚未圆满解决。 1 储层伤害源的定义 在环境保护科学领域中,经常使用“污染源”这一术语。在水污染控制工程中,污染源指污染纯净水体的沉积物(及其所携带的有害物)、重金属、氮磷化合物以及有毒有机物、或溶解有有害气体的水,或被污染的水体等[2]。污染源实际上是“物”源,即污染物的来源。这点与沉积学中的物源(母岩区)相似,如果把进入水盆地中沉积物当做污染物的话,那么“物源”也就成为“污染源”。 针对地层损害(Formation Damage),曾提出过含义相同、或相近,但称谓不一致的几个术语,如污染源、损害源、伤害源、损害的内因和外因等。考虑到地层损害的特殊性,以及对“伤害源”的提法已为多数人接受或认同,我们建议统一使用“伤害源”,以避免称谓上的混乱。 国内较早使用“污染源”这一词,在正式报告中见于《岩性测试及分析技术研究》国家“七五”重点科技攻关项目成果报告75-02-03-01,该报告由中原石油勘探局与西南石油学院共同完成。文中多次提到“污染源”,并限定为“敏感性组分———储层在流体作用下易发生 Ξ1996—10—31收稿 康毅力,男,1964年生,讲师,在读博士生,主要从事粘土矿物在石油工程中的应用研究

表面活性剂

表面活性剂的分类及应用学生姓名段倩 学号 20104540122 院系化学化工学院 专业精工 101 班

【摘要】:表面活性剂(surfactant)是指具有固定的亲水亲油基团,在溶液的表面能定向排列,并能使表面张力显著下降的物质。表面活性剂是由两种截然不同的粒子形成的分子,一种粒子具有极强的亲油性,另一种则具有极强的亲水性。溶解于水中以后,表面活性剂能降低水的表面张力,并提高有机化合物的可溶性。表面活性剂由于具有润湿或抗粘、乳化或破乳、起泡或消泡以及增溶、分散、洗涤、防腐、抗静电等一系列物理化学作用及相应的实际应用,成为一类灵活多样、用途广泛的精细化工产品。表面活性剂除了在日常生活中作为洗涤剂,其他应用几乎可以覆盖所有的精细化工领域,在石油化工中等其他化工生产中也有应用。 【关键词】:表面活性剂分类应用食品农药化肥医 药 表面活性剂的概念 凡是在低浓度下吸附于体系的两相界面上,改变界面性质并显著降低界面能并通过改变界面状态,从而产生润湿与反润湿,乳化与破乳,起泡与消泡以及在较高浓度下产生增容的物质称为表面活性剂。表面活性剂是一类具有一定功能特性的化合物,是一类专用化学品。它通

常不作为最终制品或商品直接与使用者或消费者见面,而是作为最终制品或某种商品的一个重要组分加入以应用。由表面活性剂可以配制多种最终制品或商品,如洗涤剂、润湿剂、渗透剂、乳化剂、破乳剂、消泡剂、分散剂等。这些制品或商品是按一定的配方调制的产品,其必要组分是表面活性剂,出表面活性剂外,还有助剂、促进剂,其配方的目的是提高表面活性剂的功能。表面活性剂(surfactant),是指具有固定的亲水亲油基团,在溶液的表面能定向排列,并能使表面张力显著下降的物质。表面活性剂的分子结构具有两亲性:一端为亲水基团,另一端为憎水基团;亲水基团常为极性的基团,如羧酸、磺酸、硫酸、氨基或胺基及其盐,也可是羟基、酰胺基、醚键等;而憎水基团常为非极性烃链,如8个碳原子以上烃链。表面活性剂分为离子型表面活性剂和非离子型表面活性剂等。 表面活性剂的分类 1、阴离子表面活性剂:硬脂酸,十二烷基苯磺酸钠 2、阳离子表面活性剂:季铵化物 3、两性离子表面活性剂:卵磷脂,氨基酸型,甜菜碱型 4、非离子表面活性剂:脂肪酸甘油酯,脂肪酸山梨坦(司盘),聚山梨酯(吐温) 表面活性剂的作用: 增溶乳化作用润湿作用助悬作用起泡和消泡作用消毒、杀菌去垢、洗涤作用

生物表面活性剂降压增注技术

生物表面活性剂降压增注技术 技术原理:当油层的油气进行渗透时,在岩石—原油—水系统的界面现象起着在液体和固体直接接触时,在固体的表面上选择性地吸附液体的某些组分,使液体的某些成份在这里浓缩,形成一个其物理化学性质有别于液体体相性质的薄液体层,称之为边界层。在边界层内原油的组分呈现出有规律的变化,在越靠近固体表面的地方,胶质和沥青质的含量越大,在远离固体表面的地方,边界层内原油的组分逐渐过渡到原油体相的组分。这表明,在离固体表面不同的地方,原油边界层有不同的结构力学性质。 不同的压力梯度只能驱动具有相应结构力学性质的原油,不同结构力学性质的原油有各自相应的极限剪切应力。当剪切应力等于或小于这个极限剪切应力时,该原油是不能流动的。这就是低渗或特低渗油层中渗流时呈现某种启动压力梯度的根本原因。 微生物制剂中有有机酸、有机溶剂、表面活性剂和活菌体组成,这些有机代谢产物对于清除岩石表面的原油边界层、降低毛管力、改善油水渗特征具有良好的效果。微生物制剂中含有的大量的活菌体,它们能以岩石表面吸附层的原油为营养源而生长繁殖,因此将会对原油边界起到直接破坏作用。边界原油的清除,将大大降低启动压力,改变油水渗流规律,起到降压增注效果。 微生物制剂中的生物表面活性剂和保护段塞中的表面活性剂能够吸附到岩石表面,改变岩石表面的润湿性,使岩石表面呈现强亲水特性。对于具有亲水特性的孔隙介质表面,当油水两相渗流时,原油

与岩石表面的粘附力会大大减弱,宏观上表现为油水流动阻力降低,注入压力下降,表面活性剂的存在,降低了油水界面张力,使水井井底附近的原油可能克服由第三毛管力所形成的贾敏效应而通过喉道,达到了疏通的目的。 性能指标:(1)矿场试验有效率80%以上;(2)矿场试验有效期6个月以上;(3)矿场试验工艺成功率90%;(4)注水量、注入压力下降1-2Mpa以上,或注入压力不变,注水量超过原子核注水量25%以止;(5)投入产出比利1:2以上; 创造性和先进性:该技术首次将生物与化学技术创造性有机结合在一起、并将微生物技术首次应用在油田注水井的降压增注领域、属国内首创。它的先进性在于该技术在应用过程中施工、工艺简单、对环境及地层无二次污染。

表面活性剂在新药研发中的应用概况

表面活性剂在新药研发中的应用概况 (成都中医药大学2012级药学专科,第八组) 摘要:表面活性剂在新药研发中起着至关重要的作用,一种合适的表面活性剂对一种新药的开发、剂型的改变有着非常重要的作用,同时一种优良的表面活性剂也是对人类生命的一种保障。本文重点介绍了表面活性剂在新药研发中的一些基本应用,以期能让大家在课本的知识外多了解表面活性剂的应用和发展方向。、关键词:表面活性剂;传统药物中的应用;新剂型中的应用;微乳;脂质体表面活性剂是指在液体中仅加入少量即能使液体表面张力急速下降的物质,分子是由性质不同的两部分组成。一部分为疏水亲油的碳氢链组成的非极性基团——亲油基,另一部分为亲水疏油的极性基团——亲水基。按表面活性剂分子在水溶液中能否解离及解离后所带电荷类型,可分为非离子型、阴离子型、阳离子型、两性离子型,其中阳离子表面活性剂的毒性和刺激性最大,非离子型最小。作为药物制剂的辅料,表面活性剂可在各类药物中应用,发挥润湿、乳化、增溶等作用。 1表面活性剂在传统药物中的应用 1.1在片剂和丸剂中做润湿剂表面活性剂作为片剂辅料,常用的有:聚氧乙烯月桂醇;PEG4000和PEG6000也有润滑作用,它毒性小,能溶于水,可用作盐洗水、硼酸等可溶性片剂的润滑剂,常用的质量分数约在2%左右。表面活性剂在滴丸剂中的作用主要是改善难溶药物的吸收和溶出,提高其生物利用度,这类应用中,以聚乙二醇类(PEG)最多。 1.2在片剂中做粘合剂常用的有聚乙二醇,用量(质量分数)一般为15%,此外也常用聚乙烯吡咯烷酮(PVP)。 1.3在片剂中做崩解剂吐温类能增加药物的润湿性,加速水分的渗入及颗粒的空隙和毛细管作用,均可使片剂较快崩解。 1.4包衣物料常用的为苯二甲酸醋酸纤维素(CAP)和聚乙烯醇醋酸-苯二甲酸(PVAP),CAP为较好的肠溶衣物料,合成高分子化合物,具有特殊的理化性质,在制剂中的应用逐渐增多,用于薄膜包衣物料的聚合物更为重要。PVAP是一种新的肠溶性包衣物料,它具有制备简单、成本低、化学性稳定、成膜性能好、抗胃酸能力强、肠溶性可靠、包衣简单等特点。

储层的敏感性特征及开发过程中的变化

储层的敏感性特征及开发过程中的变化 摘要:由于储层岩石和流体的性质,储层往往存在多种敏感性,即速敏、水敏、盐敏、 酸敏、碱敏、应力敏感性和温度敏感性等七种敏感性。不同的敏感性产生的条件和产生的影响都有各自的特点。本文主要从三个部分研究分析了储层的敏感性特征。即:粘土矿物的敏感性;储层敏感性特征;储层敏感性在开发过程中的变化。通过这三个方面的研究,希望能给生产实际提供理论依据,进而指导合理的生产。 关键词:粘土矿物;储层;敏感性 1.粘土矿物的敏感性特征 随着对储层研究进一步加深,除了进行常规的空隙结构和空隙度、渗透率、饱和度等的研究外,还必须对储层岩心进行敏感性分析,以确定储层与入井工作液接触时,可能产生的潜在危险和对储层可能造成伤害的程度。 由于各种敏感性多来至于砂岩中粘土矿物,因此它们的矿物组成、含量、分布以及在空隙中的产出状态等将直接影响储层的各种敏感性。 1.1 粘土含量 在粒度分析中粒径小于5um 者皆称为粘土,其含量即为粘土总含量。当粘土矿物含量在1%~5%时,则是较好的油气层,粘土矿物超过10%的一般为较差的油气层[1]。 1.2 粘土矿物类型 粘土矿物的类型较多,常见的有蒙皂石、高岭石、绿泥石、伊利石以及它们的混层粘土[2]。粘土矿物的类型和含量与物源、沉积环境和成岩作用阶段有关。不同类型的粘土矿物对流体的敏感性不同,因此要分别测定不同储集层出现的粘土矿物类型,以及各类粘土矿物的相对含量。目前多彩采用X 射线衍射法分析粘土矿物。常见粘土矿物及其敏感性如表 1 所示。 1.3 粘土矿物的产状 粘土矿物的产状对储层内油气运动影响较大,其产状一般分为散状(充填式)、薄层状(衬底状)和搭桥状[1]。在三种粘土矿物类型中,以分散式储渗条

油气储层地质学基础胜利学院

1.储层地质学:是一门从地质学角度对油气储层的成因类型、特性、形成、溶化、几何形态及分布规律进行描述,评价及预测的综合性学科。 2.有效孔隙度:是指那些互相连通的,且在一定压差下(大于常压)允许流体在其中流动的孔隙总体积(即有效孔隙体积)与岩石总体积的比值。 3.绝对渗透率:如果岩石孔隙中只有一种流体存在,而且这种流体不与岩石起任何物理化学反应,在这种条件下所测的的渗透率。 4.低渗透储层的特征:孔喉半径小、渗透率低、毛细血管压力大、束缚水饱和度高。 5.低渗透储层的成因:沉积作用控制、成岩作用控制 6.有效渗透率:又称相渗透率,当有两种或两种以上流体存在于岩石中时,对其中一种流体所测的的渗透率。 7.剩余油饱和度:即剩余在油层中石油体积战油层孔隙体积的百分数。 8.残余油饱和度:地层岩石孔隙中残余油(被工作剂驱洗过的地层中滞留或闭锁在岩石孔隙中的油)的体积与孔隙体积的比值。 9.储层:由能够储存油气并在其中渗滤流体的岩石所构成的地层。 10.储层发育、影响非均质性的因素:沉积因素、成岩作用、构造改造作用。 11.储层的划分和对比: (1)依据:岩性特征、沉积旋回、地球物理特征; (2)根据陆相碎屑岩油层特性的一致性与垂向上的连通性,一般可将油层单元从大到小划分为四级:含油层系、油层组、砂岩组、单油层 旋回对比分级控制划分:1)一级旋回,受区域性构造运动所控制,包含整个含油层系在内的旋回性沉积,在全区稳定分布。它相当于区域性生储组合或储盖组合。 2)二级旋回,为一级旋回中不同岩相段组成的旋回性沉积,在二级构造范围内可以对比。二级旋回代表湖盆水域的扩张与收缩,不同二级旋回之间地层是连续的,常有湖侵层分隔。3)三级旋回,根据二级旋回中同一岩相段内几种不同类型岩石组成的旋回性沉积,在三级构造范围内稳定分布。对于三角洲沉积来说,是一次前三角洲-三角洲前缘的旋回沉积。 4)四级旋回,是同一沉积条件下的微相单元在三级构造内部某些局部地段稳定分布。 (3)程序:点(典型井段的选择)线(骨架对比剖面建立)面(面积控制)12.碎屑岩单个成因单元(砂体)形成时的沉积作用:垂、前、侧、漫、筛、选、填、浊。 13.碳酸盐岩与碎屑岩储层相比,具有哪些特征 (1)岩石为生物、化学、机械综合成因,其中化学成因起主导作用。岩石化学成分、矿物成分比较简单,但结构构造复杂。岩石性质活泼、脆性大。 (2)以海相沉积为主,沉积微相控制储层发育。 (3)成岩作用和成岩后生作用严格控制储集空间发育和储集类型形成。 14.扇三角洲储层特征 (1)扇根:它既可有孔隙性差的泥石流沉积,又有储集性可变的漫流沉积,又有储集性相对较好的河道冲填沉积,甚至可发育孔渗性很好的筛状沉积。 (2)扇中:主要为辫状河河道、泥石流及漫流沉积互层组成。扇中的储集性能则相对较好,辫状冲填沉积相对发育,因而储层可能较好。 (3)扇端:漫流沉积为主,悬浮泥质相对较多,储集性相对较差。

压裂液对储层伤害机理及室内评价分析

压裂液对储层伤害机理及室内评价分析 【摘要】在压裂施工过程中,压裂液起着传递压力、形成地层裂缝、携带支撑剂进入裂缝的作用,压裂液或其添加剂由于与地层不配伍,或者在施工过程中都可能会造成对油气层的伤害。压裂液对产层的伤害程度决定了压裂施工效果的成败,因此最大程度的降低压裂液对储层的伤害在压裂作业过程中至关重要。 【关键词】压裂液岩心伤害率渗透率 随着油气勘探开发的不断进行,低渗透油气储量所占的比例不断增大,低渗透油气田将是相当长一段时间内增储上产的主要资源。低渗透油藏的自然产能较低,一般不能满足工业油流标准,必须进行压裂改造才能够进行有效的工业开发,因此,压裂是低渗透油气田开发的关键技术和基本手段。在压裂施工过程中,压裂液起着传递压力、形成地层裂缝、携带支撑剂进入裂缝的作用,压裂液或其添加剂由于与地层不配伍,或者在施工过程中都可能会造成对油气层的伤害。压裂液对产层的伤害程度决定了压裂施工效果的成败,因此最大程度的降低压裂液对储层的伤害在压裂作业过程中至关重要。 1 伤害机理 压裂液的滤失系数,粘温关系、抗剪切能力,携砂能力和对岩心的伤害程度等都可以作为评价压裂液性能的指标,其中压裂液对岩心伤害程度是影响压裂施工成功后增产效果大小的一个重要因素。 压裂液滤液侵入岩心,引起粘土膨胀或运移,使孔隙半径变小,当渗透率较低时,储层本身孔隙半径小,毛管力影响较大,使渗透率大幅度降低,随着渗透率增大,由于孔隙半径较大,滤液的毛管力影响就较弱了,所以渗透率伤害幅度减小。压裂液对储层基质的损害用岩心渗透率的变化来表征。岩心伤害率综合反映流经岩心后压裂液滤液渗透率的变化,岩心伤害率越大,表明压裂液对地层的伤害越严重。 2 压裂液滤液对天然岩心的伤害试验 岩心渗透率测试方法:岩心流动试验是研究压裂液损害的基本方法,是指通过岩心渗透率变化规律评价压裂液损害室内试验方法,通过正反向流动试验,用天然岩心进行压裂液破胶液对岩心基质渗透率损害率的测定。本试验对胍胶配方压裂液的岩心伤害进行了评价。参考标准《SY/T5107-2005水基压裂液性能评价方法》。 同一压裂液在不同试验条件下可以有不同的伤害率,因此对比各种压裂液的伤害程度,必须有统一的试验条件,采用具有相同矿物组成、孔隙度和渗透率的标准岩心。

钻井液对储层损害

1.钻井液中分散相颗粒堵塞油气层 1)固相颗粒堵塞油气层 钻井液中存在多种固相颗粒,如膨润土、加重剂、堵漏剂、暂堵剂、钻屑和处理剂的不溶物及高聚物鱼眼等。钻井液中小于油气层孔喉直径或裂缝宽度的固相颗粒,在钻井液有效液柱压力与地层孔隙压力之间形成的压差作用下,进入油气层孔喉和裂缝中形成堵塞,造成油气层损害。损害的严重程度随钻井液中固相含量的增加而加剧,特别是分散得十分细的膨润土的含量影响最大。其损害程度与固相颗粒尺寸大小、级配及固相类型有关。固相颗粒侵入油气层的深度随压差增大而加深。 2)乳化液滴堵塞油气层 对于水包油或油包水钻井液,不互溶的油水二相在有效液柱压力与地层孔隙压力之间形成的压差作用下,可进入油气层的孔隙空间形成油-水段塞;连续相中的各种表面活性剂还会导致储层岩心表面的润湿反转,造成油气层损害。 2.钻井液滤液与油气层岩石不配伍引起的损害 钻井液滤液与油气层岩石不配伍诱发以下五方面的油气层在损害因素。 1)水敏 低抑制性钻井液滤液进入水敏油气层,引起粘土矿物水化、膨胀、分散、是产生微粒运移的损害源之一。 2)盐敏 滤液矿化度低于盐敏的低限临界矿化度时,可引起粘上矿物水化、膨胀、分散和运移。当滤液矿化度高于盐敏的高限临界矿化度,亦有可能引起粘土矿物土水化收缩破裂,造成微粒堵塞。 3)碱敏

高pH值滤液进入碱敏油气层, 引起碱敏矿物分散、运移堵塞及溶蚀结垢。 4)涧湿反转 当滤液含有亲油表面活性剂时,这些表面活性剂就有可能被亲水岩石表面吸附,引起油气层孔喉表面润湿反转,造成油气层油相渗透率降低。 5)表面吸附 滤液中所含的部分处理剂被油气层孔隙或裂缝表面吸附;缩小孔喉或孔隙尺寸。 3.钻井液滤液与油气层流体不配伍引起的损害 钻井液滤液与油气层流体不配伍可诱发油气层潜在损害因素,产生以下五种损害:1)无机盐沉淀 滤液中所含无机离子与地层水中无机离子作用形成不溶于水的盐类,例如含有大量碳酸根、碳酸氢根的滤液遇到高含钙离子的地层水时,形成碳酸钙沉淀。 2)形成处理剂不溶物 当地层水的矿化度和钙、镁离子浓度超过滤液中处理剂的抗盐和抗钙镁能力时,处理剂就会盐析而产生沉淀。例如腐植酸钠遇到地层水中钙离子,就会形成腐植酸钙沉淀。 3)发生水锁效应 特别是在低孔低渗气层中最为严重。 4)形成乳化堵塞 特别是使用油基钻井液、油包水钻井液、水包油钻井液时,含有多种乳化剂的滤液与地层中原油或水发生乳化,可造成孔道堵塞。 5)细菌堵塞 滤液中所含的细菌进入油气层,如油气层环境适合其繁殖生长,就有可能造成喉道堵塞。4.相渗透率变化引起的损害

表面活性剂的分类

表面活性剂的分类、应用及发展前景 A08化工(2)班080702206 陈波 摘要:介绍了表面活性剂的分类情况,论述了表面活性剂的功能,如润湿、分散、乳化、增溶、起泡、消泡和洗涤去污等功能,介绍了常用的几种表面活性剂。以及在化妆品、洗涤剂、食品和医药中的作用。对表面活性剂的发展趋势进行了阐述。 关键词:表面活性剂HLB值分类应用发展 一、HLB值----HLB值越大代表亲水性越强,HLB值越小代表亲油性越强,一般而言HLB值从1 ~ 40之间。区分亲水亲油的HLB为10,当HLB小于10为亲油性,反之为亲水性。 1~--3作消泡剂 3~--6作W/O型乳化剂 7~--9作润湿剂; 8~--18作O/W型乳化剂, 二、表面活性剂的分类、主要作用及常用表面活性剂 2.1表面活性剂的分类 表面活性剂的分类方法有很多种,根据表面活性剂的来源进行分类,通常把表面活性剂分为合成表面活性剂、天然表面活性剂和生物表面活性剂三大类。按亲水基生成的离子类型可将表面活性剂分为四类阳离子型、阴离子型、两性离子型和非离子型。通常使用的表面活性剂,其憎水基是碳氢烃基,分子中还可能含有氧、氮、硫、氯、溴和碘等元素,称为碳氢表面活性剂或普通表面活性剂。含有氟、碘、硅、磷等元素的表面活性剂称为特种表面活性剂。 2.2 表面活性剂的主要作用 2.2.1乳化作用:由于油脂在水中表面张力大,当水中滴入油脂后,用力搅拌,油脂被粉碎成细珠状,互相混合成乳浊液,但搅拌停止又重新分层。如果加入表面活性剂,用力搅拌,停止后很长时间内却不易分层,这就是乳化作用。其原因是油脂的疏水性被活性剂的亲水基团所包围,形成定向的吸引力,降低了油在水中分散所需要的功,使油脂得到很好的乳化。 2.2.2润湿作用:零件表面上往往粘附有一层蜡、油脂或鳞片状的物质,这些物质是疏水性的。由于这些物质的污染,零件表面不易被水润湿,当水溶液中加入表面活性剂时,零件上的水珠就很容易分散开来,使零件的表面张力大大降低,达到润湿目的。 2.2.3增溶作用:溶解度的大小根据增溶对象和性质来决定。一般情况下,饱和烃链比不饱和烃链增容作用强,长的疏水基因烃链要比短烃链强,非离子表面活性剂增溶作用一般比较显著。 2.2.4分散作用:灰尘和污粒等固体粒子比较容易聚集在一起,在水中容易发生沉降,表面活性剂的分子能使固体粒子聚集体分割成细小的微粒,使其分散悬浮在溶液中,起到促使固体粒子均匀分散的作用。 2.2.5泡沫作用:泡沫的形成主要是活性剂的定向吸附作用,是气液两相间的表面张力降低所致。一般低分子活性剂容易发泡,高分子活性剂泡沫少,豆蔻酸黄

表面活性剂驱在改善低渗油藏开发中的作用

表面活性剂驱在改善低渗油藏开发中的作用X 陈 勇 (长江大学工程技术学院) 摘 要:针对低渗透油藏在开发过程中所遇到的注水压力过高、注入水沿裂缝突进等问题,应用表面活性剂驱通过降低油水界面张力、增加毛管数,以达到提高驱油效率的目的。 关键词:低渗透油藏;表面活性剂驱;驱油效率 中图分类号:T E357.46 文献标识码:A 文章编号:1006—7981(2011)05—0118—01 低渗透油藏普遍存在着孔喉细小、渗流阻力大,只有较大的驱替压力液体才能流动。为提高注水开发效果而增加注入压力,但注水压力高,易造成微裂缝开启,注入水沿裂缝突进,造成驱油效率低,波及体积小,且套损严重。 之所以会产生上述的情况,是因为在低渗透油层中,低渗透油层渗流时表面分子力、毛管力等对渗流起到实质性的影响。低渗透油层的显著特征是低渗、低孔隙度、微观孔隙结构影响增强。这样,孔道细小,孔喉作用增强,微观孔隙结构影响增强,高比表面这些特点就直接对流体产生明显影响,而且渗透率较低,这种影响愈强,使得渗流过程出现了较达西渗流更复杂的、更强烈的一些作用力。由于高比表面,细孔道,表面分子力作用更为强烈,造成了“流动渗透率”的影响程度和影响速度域的加大,甚至微毛细孔道内液体的滞留、孔道结构复杂程度的增强使得孔喉控制作用加大,于是出现了渗透能力随压力梯度改变的非线性流动。低渗透油层液体非达西型渗流特征反映了渗流过程中强烈的固液表面分子力的影响。 1 表面活性剂驱应用于低渗透油藏开发的优势以及国内外研究趋势 通过上述分析,可以看出,由于表面活性剂溶液可降低油水界面张力,减小亲油油层的毛细管阻力、能增加毛管数及提高驱油效率性能。因此,表面活性剂降压增注技术研究可以有效地提高低渗透油藏的开发效率。 从国外文献看:有关表面活性剂降压增注技术研究方面国外已在一些油田开展了先导性研究及矿场试验,并取得了成功经验。《用于提高注入井吸水性、油层采收率的水溶性高洗油效率表面活性剂复合物》[1]一文主要选择了用于不同地质条件下表面活性剂复合物,这些复合物溶于水中可使油水界面张力降到10-2-10-3mN/m,具有很强的增溶性。在鞑靼石油公司进行了6口注入井的现场试验,试验温度20~40℃、90~100℃,注入水为矿化水(由淡水至170g/L)。化学剂用量28.8~54m3(分散剂在近井地带的波及半径为4~12m)。处理之后注入井的吸水性平均提高1.4倍。吸水指数在指示曲线上平均增加到2倍。在压降曲线上平均增加到1.5倍。有效期可达4~18个月(平均12个月)。在塔林石油管理局处理了5口井,砂岩层射开厚度为14.9~31.7m,注水井在加压注水时吸水量为200~700m3,而在试验初期为70~100m3。为了恢复其吸水性注了3.4~6.6t被稀释成95~150m3水溶液的表面活性剂复合物。处理后所有井吸水性平均提高到1.5倍,有效期平均为一年左右。《马格纳斯油田注水井表面活性剂驱油增产经验》[2]一文介绍了BP公司曾在马格纳斯油田实施了注水井表面活性剂增注先导性试验方案,其机理是通过注表面活性剂,降低残余油饱和度,改善井眼附近水相对渗透率,从而提高注入能力。BP公司最初在实验室内对多种表面活性剂体系进行了筛选,选出两种表面活性剂体系:一种是用于低温试验的聚链烷碳酸盐与烷基酚烷氧基甲醇和C4、C5脂肪族甲醇混合物;另一种是用于高温试验的烷基芳香族烷环基硫酸盐。这些表面活性剂浓度较低(1.4%)。在室内温度下用旋滴界面张力仪测量油水界面张力,其结果是从25左右降至约10-3m N/ m,这样低的界面张力值能使毛管力圈闭的残余油量大大降低。同时,高温岩心驱替试验结果表明,在注入表面活性剂溶液注入不到1个孔隙体积时,残余油饱和度就开始降低,直到注入2.5个孔隙体积停止。随着残余油的大幅度降低,渗透率有很大改善,几乎恢复到绝对渗透率值,渗透率提高了5~6倍。最后在室内研究基础上,BP公司在一口卫星井开展了先导性试验。从注表面活性剂期间的野外监测以及试验数据的解释结果显示:注水井注入表面活性剂后注入能力得到明显改善。 国内有关表面活性剂研究方面的大多是用于提高采收率方法研究。表面活性剂是提高采收率幅度较大、适用较广、具有发展潜力的一种化学驱油剂。室内岩心驱油效率试验结果表明:碱/表面活性剂驱不但能较大幅度地提高采收率,而且可以增大油藏中的渗滤速度,降低注入压力,从而减小渗透率较低油藏的高压注水难度,节省开采费用。在长庆油田表面活性剂降压增注试验中,通过研究找到了一种以石油磺酸盐和非离子表面活性剂按一定比例组成的表面活性剂复配体系,在长庆油田所提供的油水条 118内蒙古石油化工 2011年第5期

相关主题
文本预览
相关文档 最新文档