极限的运算法则及计算方法
- 格式:docx
- 大小:36.80 KB
- 文档页数:3
千里之行,始于足下。
求极限的计算方法总结极限是数学中重要的概念,它描述了函数在某一点无限接近于某个值的性质。
计算极限是数学分析中的基础内容,对于解决数学问题和理解函数的行为至关重要。
下面将总结一些计算极限的常见方法。
1.代入法:当极限的表达式中存在某个点的函数值不存在时,可以通过代入法来计算极限。
代入法即将极限的定义中与某些点不全都的部分进行代入,然后计算出相应的极限值。
2.分子分母有理化:当极限表达式中含有分数,且分母中有根式时,可以将分子分母有理化,即通过乘以分子分母的共轭形式,将根式消去。
3.利用无穷小量的性质:当极限表达式中存在无穷小量时,可以利用无穷小量的性质进行计算。
例如,常见的无穷小量的性质有:a.加减无穷小量仍旧是无穷小量;b.有界函数与无穷小量相乘仍旧是无穷小量;c.有限次幂无穷小量也是无穷小量等。
4.利用极限的四则运算法则:对于四则运算,极限也有相应的运算法则。
常见的极限运算法则有:a.加减法则:lim(f(x) ± g(x)) = lim f(x) ± lim g(x)b.乘法法则:lim(f(x) * g(x)) = lim f(x) * lim g(x)c.除法法则:lim(f(x) / g(x)) = lim f(x) / lim g(x),其中lim g(x) ≠ 0d.复合函数法则:lim(f(g(x))) = lim f(g(x)), when lim g(x) exists第1页/共2页锲而不舍,金石可镂。
5.利用夹逼定理:当极限表达式无法直接计算时,可以利用夹逼定理进行计算。
夹逼定理规定了假如存在两个函数h(x)和i(x),使得对于足够大的x,h(x) ≤ f(x) ≤i(x),且lim h(x) = lim i(x) = L,则lim f(x)也等于L。
6.利用洛必达法则:洛必达法则可用于计算形如lim(f(x)/g(x))的不定型极限,其中f(x)和g(x)在极限点四周连续可导。
求极限的四则运算法则
1 极限的四则运算
极限的四则运算是数学中一个重要的概念,也是分析数学的核心
内容之一。
在极限的四则运算中,有很多的规则,它们是数学计算的
基础,能够帮助我们理解与解决有关数学问题的答案。
2 极限的四则运算法则
1.加法定义和原则:极限加法定义了两个极限相加,要求其结果
具有相同的极限值。
2.减法定义和原则:极限减法定义了两个极限相减,其结果等于
以极限值来减去另一个极限值。
3.乘法定义和原则:两个极限相乘,它们的结果是其乘积的极限值。
4.除法定义和原则:两个极限相除,它们的结果是其商的极限值。
3 极限的四则运算的应用
极限的四则运算能够用在更多的应用场合,比如说,它可以帮助
我们估算不可知的函数式极限值。
此外,极限的四则运算还可用于估
算有限函数极限值,以及定义数量级大小等等。
4 总结
综上所述,极限的四则运算是数学中一个重要的概念,它提供了加减乘除四种极限运算的规则,能够帮助我们估算不可知的函数式极限值及有限函数极限值,起到重要的作用。
极限的运算一 极限的四则运算法则定理:若()A x f =lim ,()B x g =lim ,则有 (1)()()[]()()x g x f B A x g x f lim lim lim ±=±=± (2)()()[]()()x g x f AB x g x f lim lim lim ⋅==⋅ (3)()()()()x g x f B A x g x f lim lim lim==,(0≠B ) 注意:法则(1)和法则(2)可以推广到有限个函数的情况。
另外,法则(2)还有三个推论。
推论:(1)()()x f k x kf lim lim =, (k 为常数)(2)()[]()[]n x f nx f lim lim =,(n 为正整数) (3)()[]()[]nnx f x f 11lim lim =,(n 为正整数)例1()235lim 22+-→x x x -=→225lim x x +→x x 3lim 22lim 2→x=-→22lim 5x x +→x x 2lim 32=-→22)lim (5x x +⨯232=26252+-⨯=16观察这个例子可以发现函数2352+-x x 在2→x 时的极限正好等于它在2=x 这一点的函数值,因此,我们可以得到这样一条规律:若()x f 是多项式,则()()00lim x f x f x x =→。
例23512222lim +--+→x x x x x =()()35122222lim lim +--+→→x x x x x x =3252122222+⨯--+⨯=39-=3- 例3222123lim x x x x -+-→=()()2222123lim lim x x xx x -+-→→=0从以上三个例子可以看出极限四则运算法则的运用是比较简单的,但是如果我们拿到的极限不满足极限四则运算法则的条件,就不能用极限的四则运算法则来求极限了。
两大基本极限公式在微积分中,基本极限公式是解决各种极限问题的基础。
它们是极限计算的基本工具,对于推导和证明其他数学定理也起到重要作用。
以下是两个基本的极限公式:1.极限的四则运算法则:设函数f(x)和g(x)在一些点a的一些邻域内有定义,且在a处都有极限,则有以下结论:(1)两个函数的和的极限等于各自函数的极限之和:lim(x→a)(f(x) + g(x)) = lim(x→a)f(x) + lim(x→a)g(x)(2)两个函数的差的极限等于各自函数的极限之差:lim(x→a)(f(x) - g(x)) = lim(x→a)f(x) - lim(x→a)g(x)(3)两个函数的乘积的极限等于各自函数的极限之积:lim(x→a)(f(x) * g(x)) = lim(x→a)f(x) * lim(x→a)g(x)(4)一个函数除以另一个函数的极限等于各自函数的极限之商(前提是除数函数在a处不为零):lim(x→a)(f(x) / g(x)) = lim(x→a)f(x) / lim(x→a)g(x)这些法则使得极限的计算更加灵活和方便,可以将复杂的极限问题转化为多个简单的极限计算。
2.极限的代数法则:(1)有界函数的极限性质:如果 f(x) 是在一些点 a 的邻域内的一个有界函数,那么lim(x→a)f(x) 必定存在且有界。
这意味着,如果函数在其中一点的极限存在,并且在该点的邻域内有界,那么该函数在该点处的极限也是有界的。
(2)函数的复合极限性质:设 f(x) 在 a 处的极限为 L,g(x) 在 L 处的一些邻域内有定义,且在该邻域内连续,则复合函数 h(x) = g(f(x)) 在 a 处的极限存在,且有lim(x→a)h(x) = g(lim(x→a)f(x)) = g(L)。
(3)极限的夹逼定理:设函数 f(x)、g(x) 和 h(x) 在一些点 a 的一些邻域内有定义,并满足对于该邻域内的任意 x,有f(x) ≤ g(x) ≤ h(x)。
《应用高等数学》极限的四则运算法则应用高等数学中的极限的四则运算法则是指在计算数列或函数极限时,可以利用四则运算的运算规则进行运算,以便更方便地求出极限值。
四则运算法则主要包括极限和、极限差、极限积和极限商四种情况。
1.极限和法则:若函数f(x)和g(x)在点x=a处极限存在,则它们的和函数[f(x)+g(x)]在点x=a处也存在极限,且极限等于两个函数在点x=a处极限的和,即:lim (x→a) [f(x) + g(x)] = lim (x→a) f(x) + lim (x→a) g(x) 2.极限差法则:若函数f(x)和g(x)在点x=a处极限存在,则它们的差函数[f(x)-g(x)]在点x=a处也存在极限,且极限等于两个函数在点x=a处极限的差,即:lim (x→a) [f(x) - g(x)] = lim (x→a) f(x) - lim (x→a) g(x) 3.极限积法则:若函数f(x)和g(x)在点x=a处极限存在,则它们的积函数[f(x)*g(x)]在点x=a处也存在极限,且极限等于两个函数在点x=a处极限的积,即:lim (x→a) [f(x) * g(x)] = (lim (x→a) f(x)) * (lim (x→a)g(x))4.极限商法则:若函数f(x)和g(x)在点x=a处极限存在,并且g(x)≠0,则它们的商函数[f(x)/g(x)]在点x=a处也存在极限,且极限等于两个函数在点x=a处极限的商,即:lim (x→a) [f(x) / g(x)] = (lim (x→a) f(x)) / (lim (x→a) g(x))需要注意的是,上述四则运算法则只适用于函数在点x=a处极限存在的情况,且在使用这些法则时应保持合理性,并且注意避免除以零等错误操作。
这些四则运算法则在高等数学中被广泛应用于求解各种极限问题,通过利用这些法则,可以更简洁、方便地求出函数的极限值,从而帮助我们更好地理解函数的性质和变化规律。
极限计算方法总结《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。
求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习.下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识.一、极限定义、运算法则和一些结果1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。
说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的 极限严格定义证明,例如:)0,(0lim≠=∞→a b a an bn 为常数且;5)13(lim 2=-→x x ;⎩⎨⎧≥<=∞→时当不存在,时当,1||1||0lim q q q nn ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明.2.极限运算法则定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[(2)B A x g x f ⋅=⋅)()(lim(3))0(,)()(lim成立此时需≠=B BAx g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。
3.两个重要极限 (1)1sin lim0=→xxx(2)e x xx =+→1)1(lim ; e x xx =+∞→)11(lim说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式,作者简介:靳一东,男,(1964—),副教授。
例如:133sin lim0=→xxx ,e x xx =--→210)21(lim ,e x x x =+∞→3)31(lim ;等等.4.等价无穷小定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。
极限常用的9个公式
1、无穷小的极限公式:lim(x→a )f(x)=L(x向a极限时,f(x)的极限为L);
2、无穷大的极限公式:lim(x→a+∞)f(x)=∞(x向正无穷大极限时,
f(x)的极限为无穷大);
3、求极限的公式:lim(x→a) f(x)= lim(x→a+) f(x)= lim(x→a−) f(x)(用正、负无穷可以求出极限);
4、无穷小的连续的极限公式:
lim(x→a)f(x)=lim(x→a−)f(x)=lim(x→a+)f(x)(x接近a时,f(x)的极限是连续的);
5、极限运算法则公式:lim(x→a)[f(x)+g(x)]= lim(x→a)f(x)+
lim(x→a)g(x)(极限的运算需要符合运算法则);
6、极限结合法则公式:lim(x→a)f(g(x))=lim(g(x)→b)f(g(x))(即
先求极限再结合);
7、极限唯一性定理公式:对于任意x0,若存在f(x0)=L且L为有限数,当x→x0时,f(x)必要极限为L(极限只有唯一的计算结果);
8、无穷小计算公式:lim(x→a)f(x)=L 时(除外0除以0情况),
lim(x→a)f(-x)= -L(做无穷小计算时,系数可以乘以-1);
9、极限定义公式:lim(x→a)f(x)= L 如果对于任意epsilon(给定正数)存在delta(给定正数),使得当0<| x-a |<delta 时,则有|
f(x)-L |<epsilon(存在满足极限定义的正数delta)。
洛必达法则的极限运算法则洛必达法则是微积分中经典的极限运算法则,其广泛应用于求极限的过程中。
而在极限运算中,极限运算法则则是解题的重点之一。
本文将从极限运算法则的基本概念、洛必达法则的原理以及洛必达法则的应用场景方面详细阐述。
一、极限运算法则的基本概念极限运算中,我们需要掌握一些基本的运算法则,这些运算法则在解题中起到非常重要的作用。
这些基本的运算法则包括:1. 常数函数的极限运算法则对于一个数a,其常数函数f(x) = a,当x趋向于某一点时,其极限值即为a。
2. 一次函数的极限运算法则对于一个一次函数f(x) = kx + b,其中k和b为常数,则其极限值为kx + b当x趋向于某一点时的极限值。
3. 基本等式的极限运算法则对于两个函数f(x)和g(x),满足lim f(x) = a,lim g(x) = b,则lim [f(x) ± g(x)] = a ± b,lim [f(x)g(x)] = ab,lim [f(x)/g(x)] = a/b (b≠0)。
4. 无穷小的极限运算法则若lim f(x) = 0,lim g(x) = 0,则lim [f(x)·g(x)]为0类无穷小,lim [f(x) ± g(x)]为±0类无穷小,lim [f(x)/g(x)]为0/0型。
5. 复合函数的极限运算法则若存在有限极限lim g(x) = a和lim f(u) = b,则由函数复合可以得到:lim[f(g(x))] = b。
以上几点是极限运算中最基本的运算法则,掌握这些基本法则是做极限运算的前提。
二、洛必达法则的原理洛必达法则是用函数导数的概念来计算极限的方法。
其应用前提是如果一个函数的极限不能用基本的运算法则计算,那么我们就需要用到这种方法。
对于一个函数f(x),在求其在某一点x0处的极限lim f(x)(x→x0)的时候,我们有如下的洛必达法则:lim [f(x)/g(x)] = lim [f'(x)/g'(x)] (g'(x) ≠ 0)其中f'(x)和g'(x)分别表示f(x)和g(x)的导数,如果满足如上条件,则可以为求出函数f(x)在x0处的极限提供便利。
极限的四则运算法则:极限的四则运算法则是在学习了极限概念和无穷小量与无穷大量之后的又一重要内容,也是学习导数和微分的重要基础知识。
在进行极限的四则运算法则之前,需要对极限的概念、无穷小量和无穷大量的概念、无穷小量的运算性质、无穷小量和无穷大量的关系等基本内容都有初步学习和了解,而对于如何利用无穷小量的运算法则、无穷小量与无穷大量之间的关系求取函数的极限,以及利用观察法求取数列的极限和简单函数的极限,需要进行进一步的学习与掌握。
极限的四则运算公式表公式加减法,,则乘法,,则除法,,且y≠0,B≠0,则极限的四则运算法则是两个函数的极限都存在,并且分母的极限还不等于0的情况下,当这两个条件都满足的,那么两个函数在和、差、积、商的极限和这两个函数的极限的和、差、积、商都相等;对于一个常数与一个函数的乘积的极限的情况,其结果等于这个常数与这个函数的极限乘积;并且一个函数的乘方的极限和这个函数的极限乘方也是相等的。
在解决具体问题时,需要根据实际情况进行运算和解答,重视实际应用。
当极限的函数是一个整式,可以直接运用极限的四则运算法则来进行计算。
例如,当x趋近于1时,分母的极限不是0,可以直接对法则进行运用和计算。
例:= =三极限的四则运算法则在进行函数极限求解时需要注意的事项第一,对于分式来说,当其分母的极限不等于0时,才能直接运用四则运算法则进行求解。
第二,避免一些常见的错误的认识,例如对c/0=∞,(c为任意的常数),∞-∞=0,∞/∞=0等。
第三,对于无穷多个无穷小量来说,其和未必是无穷小量。
四极限的四则运算法则的归类1.x→x0这种情况第一,当函数f(x)是一个整式,可以对极限的四则运算法则进行直接的运用和计算,或是直接对f(x0)进行求解。
第二,当函数f(x)是一个分式,其分母的极限等于0,而要注意分子的极限并不等于0,那么便可以对极限的四则运算法则进行直接的运用并计算,或者求出f(x0)。
第三,在函数f(x)是个分式的情况下,当分母的极限为0时,那么分子的极限不等于0,可以先对lim =0进行求解,再根据无穷小量和无穷大量这之间的关系来进行计算。
极限的运算法则及计算方法
极限是数学分析中的重要概念,用于描述函数在一些点无限接近一些值的情况。
极限的运算法则涉及到极限的四则运算、复合函数的极限、反函数的极限以及夹逼定理等内容。
下面将详细介绍极限的运算法则及计算方法。
1.极限的四则运算法则:
(1)和差运算法则:
设函数f(x)和g(x)在点x=a处极限存在,那么函数f(x)和g(x)的和差的极限存在,并且有以下公式:
lim (f(x) ± g(x)) = lim f(x) ± lim g(x)
(2)乘积运算法则:
设函数f(x)和g(x)在点x=a处极限存在,那么函数f(x)和g(x)的乘积的极限存在,并且有以下公式:
lim f(x)g(x) = lim f(x) · lim g(x)
(3)商运算法则:
设函数f(x)和g(x)在点x=a处极限存在,并且lim g(x)≠0,那么函数f(x)和g(x)的商的极限存在,并且有以下公式:
lim f(x)/g(x) = lim f(x)/lim g(x)
2.复合函数的极限:
(1)设函数f(x)在点x=a处极限存在,并且函数g(x)在点x=lim
f(x)处极限存在,那么复合函数g(f(x))在点x=a处极限存在,并且有以下公式:
lim g(f(x)) = lim g(u) (u→lim f(x)) = lim g(u) (u→a) = lim g(v) (v→a)
(2)特别地,如果函数f(x)在点x=a处极限存在,并且函数g(x)在点x=lim f(x)处连续,那么复合函数g(f(x))在点x=a处极限存在,并且有以下公式:
lim g(f(x)) = g(lim f(x)) = g(f(a))
3.反函数的极限:
(1)设函数y=f(x)在点x=a处具有反函数,并且在点x=a处极限存在,那么函数x=f^[-1](y)在点y=f(a)处极限存在,并且有以下公式:lim x→a f^[-1](y) = f^[-1](lim y→f(a))
4.夹逼定理:
假设函数g(x)≤f(x)≤h(x)在点x=a处成立,并且g(x)和h(x)在点x=a处极限都等于L,那么函数f(x)在点x=a处也存在极限,并且极限等于L,即有以下公式:
lim f(x) = L
以上就是极限的运算法则及计算方法的基本内容。
在实际的极限计算中,可以根据具体的函数形式和问题特点,运用这些运算法则,逐步进行化简、代入和运算,最终得出极限的结果。
需要注意的是,在运用极限运
算法则时,必须确保相关的极限存在,并且要遵循相应的前提条件,以保证结果的正确性。