线性方程组极小最小二乘解
- 格式:doc
- 大小:13.00 KB
- 文档页数:2
最小二乘法最小二乘法起源于以测量和观测为基础的天文学。
Gauss 在1794年利用最小二乘法解决了多余观测问题,当时他只有十七岁。
可以用下面的简单例子描述这类问题。
假定通过观测或实验得到如下一组数据(即列表函数):我们的目的是一简单的式子表出这些数据间的关系。
从分析数据看出,这些点差不多分布在一条直线上,因此我们自然想到用线性式b ax y +=表示它们之间的关系。
这就须定出参数a 和b 的值来。
这实际上是多余观测问题,用插值法不能确定出a 和b 的值。
代定参数的确定归结为矛盾方程组的求解问题。
假定有某方法可以定出a 和b ,则按bx a y +=,给出一个x 便可以算出一个y 。
我们记).8,,1( =+=k bxa y kk y 称为k y 的估计值,显然它们不会是完全相同的,它们之间的差(通常称为残差))8,,1( =-=k y y kk k ε无疑是衡量被确定的参数a 和b (也就是近似多项式b ax y +=)好坏的重要标志。
可以规定许多原则来确定参数b a ,。
例如(1) 参数的确定,将使残差绝对值中最大的一个达到最小,即kkT εmax =为最小;(2) 参数的确定,将使残差绝对值之和达到最小,即∑kk ε为最小;(3) 参数的确定,将使残差的平方和达到最小,即∑2k ε为最小。
(1) 和(2)两个原则是很直观的,也很理想,但很不好用;而原则(3)既直观又很好用。
按原则(3)确定待定参数,从而得到近似多项式的方法,就是通常所说的最小二乘法。
这一方法的理论根据是,概率理论已证明,只有这样的原则才能使得观测或实验的偶然误差对于所作的近似多项式有最小的影响。
回到所提出的问题上来,即用最小二乘法确定参数b a ,。
按最小二乘法,应使∑=+-=si i i b a y b a S 12))((),(取最小值。
因此,应有.0))((2,0))((28181=+-=∂∂=+-=∂∂∑∑==i i i i i i i x b a y b Sb a y a S由此,得到如下线性方程组:.,81812818181810∑∑∑∑∑∑=======+=+i i i i i i i i i i i i y x x b x a y x b i a经过简单计算,这个方程组成为⎩⎨⎧=+=+.3.4714028,2.12288b a b a 解之可得,110.0,142.1==b a 从而得近似多项式.110.0142.1)(1x x p +=现在转入讨论更为一般的情形。
MATLAB中的最小二乘问题求解技巧最小二乘问题是求解一个最优拟合曲线或平面的方法,它在各种科学和工程领域中都有广泛的应用。
在MATLAB中,有很多强大的工具和函数可以用来解决最小二乘问题。
本文将介绍一些MATLAB中常用的最小二乘问题求解技巧,帮助读者更好地利用MATLAB来解决实际问题。
一、线性最小二乘问题求解线性最小二乘问题是最简单的一类最小二乘问题,它对应于求解一个线性方程组。
在MATLAB中,我们可以使用“\”运算符来直接求解线性最小二乘问题。
例如,如果我们有一个包含m个方程和n个未知数的线性方程组Ax=b,其中A是一个m×n的矩阵,b是一个m×1的向量,我们可以使用以下代码来求解该方程组:```matlabx = A\b;```在这个例子中,MATLAB将会利用最小二乘法来计算出一个使得Ax与b之间误差的平方和最小的向量x。
二、非线性最小二乘问题求解非线性最小二乘问题的求解相对复杂一些,因为它不再对应于一个简单的方程组。
在MATLAB中,我们可以使用“lsqcurvefit”函数来求解非线性最小二乘问题。
该函数的基本用法如下:```matlabx = lsqcurvefit(fun,x0,xdata,ydata);```其中,fun是一个函数句柄,表示我们要拟合的目标函数;x0是一个初始值向量;xdata和ydata是实验数据的输入和输出。
lsqcurvefit函数将会尝试找到一个使得目标函数与实验数据之间残差的平方和最小的参数向量。
三、加权最小二乘问题求解加权最小二乘问题是在非线性最小二乘问题的基础上引入权重因子的一种求解方法。
它可以用来处理实验数据中存在的误差或不确定性。
在MATLAB中,我们可以使用“lsqnonlin”函数来求解加权最小二乘问题。
```matlabx = lsqnonlin(fun,x0,[],[],options);```其中,fun、x0、options的含义与lsqcurvefit函数相同。
⼀看就会(废)的最⼩⼆乘法的推导⼀、预备知识:⽅程组解的存在性及引⼊ 最⼩⼆乘法可以⽤来做函数的拟合或者求函数极值。
在机器学习的回归模型中,我们经常使⽤最⼩⼆乘法。
我们先举⼀个⼩例⼦来⾛进最⼩⼆乘法。
某次实验得到了四个数据点(x,y):(1,6)、(2,5)、(3,7)、(4,10) (下图中红⾊的点)。
我们希望找出⼀条与这四个点最匹配的直线y = \theta_{1} +\theta_{2}x,即找出在某种"最佳情况"下能够⼤致符合如下超定线性⽅程组的\theta_{1}和\theta_{2},我们把四个点代⼊该直线⽅程可得:\theta_{1} + 1 \theta_{2} = 6\\ \theta_{1}+2\theta_{2}=5\\ \theta_{1}+3\theta_{2}=7\\ \theta_{1}+4\theta_{2}=10我们要求的是\theta_{1}和\theta_{2}两个变量,但是这⾥列出了四个⽅程组,我们是⽆法求解的。
我们现在以向量空间的⾓度来解释为何⽆解,以及最⼩⼆乘法如何处理这种⽆解的情况。
Ax = b\\ \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \\ \end{bmatrix} _{4\times2} \begin{bmatrix} \theta1\\ \theta2 \end{bmatrix}_{2\times1} =\begin{bmatrix} 6\\ 5\\ 7\\ 10 \end{bmatrix}_{4\times1}我们将四个⽅程组成的⽅程组写成矩阵形式。
矩阵A代表系数,x即待求的参数,b是每个⽅程对应的值。
从线性代数的⾓度来看,要判断Ax=b是否有解可以从向量空间⾓度来看。
这⾥先给出向量空间的性质:向量空间要求取其任意取两个列向量v和w,v+w或者cv(c是⼀个常数)都要属于该向量空间,并且任意列向量数乘的排列组合cv+dw+ek(c,d,e 表⽰常数,v,w,k表⽰任意的列向量)也要属于该向量空间。
用共轭梯度法求解最小二乘问题摘要 本文先讨论了求解对称正定线性方程组的共轭梯度法.然后对系数矩阵列满秩的线性方程组运用正则化方法将其转化为对称正定线性方程组后再运用实用共轭梯度法进行求解,最后举例并通过Matlab 程序实现其结果.关键词 共轭梯度法;正则化方法;最小二乘问题;Krylov 子空间1 引言在实际的科学与工程问题中,常常将问题归结为一个线性方程组的求解问题,而求解线性方程组的数值解法大体上可分为直接法和迭代法两大类.直接法是指在没有舍入误差的情况下经过有限次运算可求得方程组的精确解的方法.因此,直接法又称为精确法.迭代法则是采取逐次逼近的方法,亦即从一个初始向量出发,按照一定的计算格式,构造一个向量的无穷序列,其极限才是方程组的精确解,只经过有限次运算得不到精确解.当线性方程组的系数矩阵为对称正定矩阵时,我们常用共轭梯度法(或简称CG 法)求解,目前有关的方法与理论已经相当成熟,并且已成为求解大型稀疏线性方程组最受欢迎的一类方法.2 最小二乘问题定义1[1] 给定矩阵m n A R ⨯∈,A 列满秩及向量m b R ∈,确定nx R ∈使得()()2222min min n ny Ry Rb Ax r x r y Ay b ∈∈-===-. 该为问题称为最小二乘问题,简记为LS (Least Squares )问题,其中()r x 称为残向量.最小二乘问题的解x 又可称为线性方程组Ax b =,m n A R ⨯∈的最小二乘解,即x 在残向量()r x b Ax =-的2范数最小的意义下满足线性方程组 Ax b =,m n A R ⨯∈.3 共轭梯度法考虑线性方程组Ax b =的求解问题,其中A 是给定的n 阶对称正定矩阵,b 是给定的n 维向量,x 是待求解的n 维向量.为此,定义二次泛函()2T T x x Ax b x ϕ=-.定理1[1]设A 对称正定,求方程组Ax b =的解,等价于求二次泛函()x ϕ的极小点. 定理1表明,求解线性方程组问题就转化为求二次泛函()x ϕ的极小点问题.求解二次函数极小值问题,通常好像盲人下山那样,先给定一个初始向量0x ,确定一个下山方向0p ,沿着经过点0x 而方向为0p 的直线00x x p α=+找一个点1000x x p α=+,使得对所有实数α有()()00000x p x p ϕαϕα+≤+,即在这条直线上1x 使()x ϕ达到极小.然后从1x 出发,再确定一个下山的方向1p ,沿着直 线11x x p α=+再跨出一步,即找到1α使得()x ϕ在2111x x p α=+达到极小:()()11111x p x p ϕαϕα+≤+.重复此步骤,得到一串012,,,ααα 和 012,,,p p p ,称k p 为搜索方向,k α为步长.一般情况下,先在k x 点找下山方向k p ,再在直线k k x x p α=+上确定步长k α使()(),k k k k k x p x p ϕαϕα+≤+最后求出1k k k k x x p α+=+.然而对不同的搜索方向和步长,得到各种不同的算法.由此,先考虑如何确定k α.设从k x 出发,已经选定下山方向k p .令()()k k f x p αϕα=+()()()2TT k k k k k k x p A x p b x p ααα=++-+()22TT k k k k k p Ap r p x ααϕ=-+,其中k k r b Ap =-.由一元函数极值存在的必要条件有()220TT k k k k f p Ap r p αα'=-=所确定的α即为所求步长k α,即T k kk Tk kr p p Ap α=. 步长确定后,即可算出1k k k k x x p α+=+.此时,只要0Tk k r p ≠,就有()()()()1k k k k k k x x x p x ϕϕϕαϕ+-=+-()2220T kk TTk k k k k kT k kr p p Ap r p p Ap αα=-=-<即()()1k k x x ϕϕ+<.再考虑如何确定下山方向k p .易知负梯度方向是()x ϕ减小最快的方向,但简单分析就会发现负梯度方向只是局部最佳的下山方向,而从整体来看并非最佳.故采用新的方法寻求更好的下山方向——共轭梯度法.定义2[2]若n 维非零向量,x y 满足0T x Ay =其中A 为n 阶对称正定矩阵,则称x 与y 是相互共轭(A -共轭)的. 下面给出共轭梯度法的具体计算过程:给定初始向量0x ,第一步仍选用负梯度方向为下山方向,即00p r =,于是有00010001000,,T T r r x x p r b Ax p Ap αα==+=-.对以后各步,例如第k+1步(k ≥1),下山方向不再取k r ,而是在过点由向量k r 和1k p -所张成的二维平面21{|,,}k k k x x x r p R πξηξη-==++∈内找出使函数ϕ下降最快的方向作为新的下山方向k p .考虑ϕ在2π上的限制:()1,()k k k x r p ψξηϕξη-=++11()()Tk k k k k k x r p A x r p ξηξη--=++++12()Tk k k b x r p ξη--++.计算ψ关于,ξη的偏导得:()()11112,2,T T T k k k k k k T Tk k k k r Ar r Ap r r r Ap p Ap ψξηξψξηη----∂=+-∂∂=+∂其中最后一式用到了10Tk k r p -=,这可由k r 的定义直接验证.令0ψψξη∂∂==∂∂, 即知ϕ在2π内有唯一的极小值点001k k k x x r p ξη-=++,其中0ξ和0η满足00101011,0.T T T k k k k k k T Tkk k k r Ar r Ap r r r Ap p Ap ξηξη----⎧+=⎨+=⎩ 由于0k r ≠必有00ξ≠,所以可取()0101k k k k p x x r p ηξξ-=-=+作为新的下山方向.显然,这是在平面2π内可得的最佳下山方向.令010k ηβξ-=,则可得 1111.T k k k T k k r Ap p Ap β----=-注:这样确定的k p 满足10Tk k p Ap -=,即k p 与1k p -是相互共轭的.总结上面的讨论,可得如下的计算公式:T k kk Tk kr p p Ap α= , 1k k k k x x p α+=+, 11k k r b Ax ++=-, 1T k kk Tk kr Ap p Ap β+=-, 11k k k k p r p β++=+. 在实际计算中,常将上述公式进一步简化,从而得到一个形式上更为简单而且对称的计算公式.首先来简化1k r +的计算公式:11()k k k k k k k k r b Ax b A x p r Ap αα++=-=-+=-.因为k Ap 在计算k α是已经求出,所以计算1k r +时可以不必将1k x +代入方程计算,而是从递推关系1k k k r b Ap α+=-得到.再来简化k α和k β的计算公式.此处需要用到关系式1110,T T T k k k k k k r r r p r p +-+=== 1,2,k =.从而可导出1111,T T k k k kr r r α+++=-,()111T TTk k k k k k k kkp Ap p r r p r αα+=-=()1111T T k k k k k k kkr r p r r βαα--=+=.由此可得,T k k k T k k r r p Ap α=, 11.T k k k T k kr r r r β++=.从而有求解对称正定方程组的共轭梯度法算法如下:0x =初值00r b Ax =-;0k =while 0k r ≠1k k =+if 1k = 00p r =else21122T Tk k k k k r r r r β-----= 1122k k k k p r p β----=+ end11111T Tk k k k k r r p Ap α-----= 111k k k k x x p α---=+ 111k k k k r r Ap α---=-endk x x =注:该算法每迭代一次仅需要使用系数矩阵A 做一次矩阵向量积运算. 定理2 [1]由共轭梯度法得到的向量组{}i r 和{}i p 具有如下基本性质:(1)0Ti j p r =, 0;i j k ≤<≤ (2)0Ti j r r =, i j ≠,0,;i j k ≤≤ (3)0Ti j p Ap =, i j ≠,0,;i j k ≤≤ (4)000{,,}{,,}(,,1)k k span r r span p p A r k κ==+,其中0000(,,1){,,,}k A r k span r Ar A r κ+=,通常称之为Krylov 子空间.下面给出共轭梯度法全局最优性定理:定理3[1]用共轭梯度法计算得到的近似解k x 满足()(){}00min :(,,)k x x x x A r k ϕϕκ=∈+或{}**00min :(,,)k AAx x x x x x A r k κ-=-∈+,其中Ax=,*x 是方程组Ax b =的解,0(,,)A r k κ是由所定义的Krylov 子空间.定理2表明,向量组0,,k r r 和0,,k p p 分别是Krylov 子空间0(,,1)A r k κ+的正交基和共轭正交基.由此可知,共轭梯度法最多n 步便可得到方程组的解*x .因此,理论上来讲,共轭梯度法是直接法.然而实际使用时,由于误差的出现,使k r 之间的正交性很快损失,以致于其有限步终止性已不再成立.此外,在实际应用共轭梯度法时,由于一般n 很大,以至于迭代()O n 次所耗费的计算时间就已经使用户无法接受了.因此,实际上将共轭梯度法作为一种迭代法使用,而且通常是k r 是否已经很小及迭代次数是否已经达到最大允许的迭代次数max k 来终止迭代.从而得到解对称正定线性方程组的实用共轭梯度法,其算法如下:x =初值0;k =;r b Ax =-T r r ρ=while)()max2band k kε><1k k =+if 1k =p r = else;p r p βρρβ==+ end;;TAp p x x p ωαρωα===+ ;;Tr r r r αωρρρ=-== end算法中,系数矩阵A 的作用仅仅是用来由已知向量p 产生向量Ap ω=,这不仅可以充分利用A 的稀疏性,而且对某些提供矩阵A 较为困难而由已知向量p 产生向量Ap ω=又十分方便的应用问题有益.4 共轭梯度法求解最小二乘问题的正则化方程组(法方程组)定理4[1] 当A 列满秩时,求最小二乘问题的解等价于解T TA Ax A b =.应用共轭梯度法于对称正定方程组T T A Ax A b =来求方程组Ax b =,m nA R ⨯∈()m n ≥且A 列满秩的最小二乘解,即为Krylov 子空间法中的正则化方法.由A 列满秩有T A A 对称正定,则方程组T T A Ax A b =,m nA R ⨯∈()m n ≥存在唯一解.下面给出其实用共轭梯度法的详细算法且算法中不出现计算TA A 情形:x =初值0;;;;T T k b A b m Ax r b A m ====-while)()max2band k kε><1k k =+if 1k =p r = else;p r p βρρβ==+end;;;T Tn Ap A n p x x p ωαρωα====+ ;;Tr r r r αωρρρ=-==end注:算法中采用了两次矩阵向量积来避免出现计算T A A 情形.算例编写实用共轭梯度法的Matlab 程序求解方程组TTA Ax A b =,其中11112231A -⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦, 1234b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦. 解 先建立conjgrad.m 文件,内容如下:function [x]=conjgrad(A,b,x) A=[1 -1;-1 1;2 -2;-3 1]; b=[1;2;3;4]; x=rand(2,1); k=0;b=A'*b;m=A*x; r=b-A'*m; T=r'*r;While norm(r)>1e-10*norm(b) k=k+1; if k==1 p=r;else B=T/t; p=r+B*p;endn=A*p;w=A'*n; a=T/(p'*w); x=x+a*p; r=r-a*w; t=T; T=r'*r; end然后运行后得 ans =-2.4167 -3.2500即有方程组的数值解 2.41673.2500x -⎡⎤=⎢⎥-⎣⎦.而其精确解可由如下方法求得: 111123111591121229731T A A -⎡⎤⎢⎥----⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎢⎥-⎣⎦,11123271121314T A b ⎡⎤⎢⎥---⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎢⎥⎣⎦, 则有121597971x x --⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦, 解得122912134x x ⎡⎤-⎢⎥⎡⎤=⎢⎥⎢⎥⎣⎦⎢⎥-⎢⎥⎣⎦,即方程精确解为*2912134x ⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦,故可验证通过Matlab 程序求得的数值解2.41673.2500x -⎡⎤=⎢⎥-⎣⎦满足精度要求.5 总结本文首先给出最小二乘问题的定义,随后从盲人下山法开始讨论了共轭梯度法的具体推导过程及其相关性质与算法.继而重点给出正则化方法的实用共轭梯度算法并举例进行检验.最后,需要说明虽然正则化方法是求一般线性方程组Ax b =,m nA R⨯∈()m n ≥且A 列满秩的最小二乘解的一种方法且简单易行,但是也有许多不足之处,如m n >时一般无解;TA A 形成时运算量大,A 中某些信息会丢失;当A 病态时其收敛性速度由于222()()T A A A κκ=很大变得非常之慢等,故为了避免正则化方法的缺点,还可运用残量极小化方法或残量正交化方法等更好的方法来解决此类问题.参考文献[1] 徐树方,高立,张平文.数值线性代数[M].北京:北京大学出版社,2000.139--151. [2] 施光燕,董加礼.最优化方法[M].北京:高等教育出版社,1999.47--52.。
广义逆矩阵与线性最小二乘广义逆矩阵及其应用是线性代数中一个重要的研究方向。
在许多实际问题中,我们需要找到一种方法来解决超定方程组的问题。
而广义逆矩阵就是解决这类问题的有效工具之一。
本文将介绍广义逆矩阵的定义和性质,并探讨其在线性最小二乘问题中的应用。
一、广义逆矩阵的定义广义逆矩阵,也被称为伪逆矩阵,是矩阵理论中的一种扩展。
对于任意的实矩阵A,它的广义逆矩阵记作A⁺。
如果存在一个矩阵B,满足以下条件:1)ABA=A;2)BAB=B;则矩阵B为A的广义逆矩阵。
二、广义逆矩阵的性质广义逆矩阵具有以下性质:1)(A⁺)⁺=A,即广义逆矩阵的广义逆矩阵等于原矩阵本身;2)(AB)⁺=B⁺A⁺,即矩阵乘法的广义逆等于矩阵广义逆的乘法;3)(Aᵀ)⁺=(A⁺)ᵀ,即转置矩阵的广义逆等于广义逆的转置;4)如果A是满秩矩阵,则A⁺=A⁻¹,即广义逆矩阵等于逆矩阵。
三、广义逆矩阵的应用1. 线性最小二乘线性最小二乘问题是指在一组超定方程中,通过最小化误差的平方和,找到最佳的解。
设A为一个m×n的实矩阵,b为一个m维实向量,我们的目标是找到一个n维实向量x,使得||Ax-b||²取得最小值。
利用广义逆矩阵,线性最小二乘问题可以转化为求解如下方程的问题:A⁺Ax = A⁺b其中,A⁺表示A的广义逆矩阵。
解x = A⁺b即可得到最小二乘解。
2. 线性方程组的逼近解对于一个不一定可逆的矩阵A,我们可以通过广义逆矩阵来逼近求解线性方程组Ax=b。
即使A不是方阵,也可以通过广义逆矩阵来找到一个近似解。
通过求解A⁺Ax=A⁺b,我们可以得到一个逼近解x = A⁺b。
这在实际问题中往往是非常有用的,特别是当我们无法求解方程组的精确解时。
四、总结广义逆矩阵是一种重要的工具,在线性代数中广泛应用于解决超定方程组的问题。
它具有许多重要的性质,使得它成为线性最小二乘和逼近解的有力工具。
通过合理利用广义逆矩阵,我们可以在实际问题中找到最佳的解,为相关领域的研究和应用提供了新的途径。
第七章 最小二乘法最小二乘法是实验数据处理的一种基本方法。
它给出了数据处理的一条准则,即在最小二乘以一下获得的最佳结果(或最可信赖值)应使残差平方和最小。
基于这一准则所建立的一整套的理论和方法,为随机数据的处理提供了行之有效的手段,成为实验数据处理中应用十分广泛的基础内容之一。
自1805年勒让得(Legendre )提出最小二乘法以来,这一方法得到了迅速发展,并不断完善,成为回归分析、数理统计等方面的理论基础之一,广泛地应用于天文测量,大地测量及其他科学实验的数据处理中。
现代,矩阵理论的发展及电子计算机的广泛应用,为这一方法提供了新的理论工具和得力的数据处理手段。
随着计量技术及其他现代科学技术的迅速发展,最小二乘法在各学科领域将获得更为广泛的应用。
本章仅涉及独立的测量数据的最小二乘法处理。
以等精度线性参数的最小二乘法为中心,叙述最小二乘法原理,正规方程和正规方程的解,以及最小二乘估计的精度估计。
最后给出测量数据最小二乘法处理的几个例子。
7 .1 最小二乘法原理县考察下面的例子。
设有一金属尺,在温度()C t ︒条件下的长度可表示)1(0t y y t α+=式中 y 0——温度为0°C 时的金属尺的长度;α——金属材料的线膨胀系数; t ——测量尺长时的温度。
现要求给出y 0与α的数值。
为此,可在t 1与t 2两个温度条件下分别测得尺的长度l 1与l 2,得方程组()()⎭⎬⎫+=+=20210111t y l t y l αα由此可解得y 0与α。
事实上,由于测量结果l 1与l 2含有测量误差,所得到的y 0与α的值也含有误差。
显而易见,为减小所得y 0与α值的误差,应增加y t 的测量次数,以便利用抵偿性减小测量误差的影响。
设在n t t t ,,,21 温度条件下分别测得金属尺的长度n l l l ,,,21 共n 个结果,可列出方程组⎪⎪⎭⎪⎪⎬⎫+=+=+=)1()1()1(0202101n n t y l t y l t y l ααα)1(0t y y t α+=但由于方程式的数目n 多于待求量的数目,所以无法直接利用代数法求解上述方程组。
matlab最小二乘解过约束方程组最小二乘法是一种常用的数值优化方法,用于求解线性方程组的近似最优解。
在实际应用中,我们常常会遇到约束条件的情况,即需要在满足一定约束条件的前提下,找到一个最优解。
本文将介绍如何用MATLAB求解带约束的最小二乘问题,并详细分析其原理和步骤。
首先,我们来回顾一下最小二乘法的基本思想。
最小二乘法是一种通过最小化残差平方和来求解线性方程组最优解的方法。
对于一个具有m个方程和n个变量的线性方程组,其一般形式可以表示为Ax=b,其中A是一个m×n的系数矩阵,x是一个n×1的未知数矩阵,b是一个m×1的常数矩阵。
当该方程组没有精确解时,我们希望找到一个近似最优解x̂,使得残差向量r=b-A x̂的范数最小,即minimize||b-Ax||。
在实际应用中,我们常常需要考虑一些额外的约束条件。
这些约束条件可能是指定某些变量的取值范围,也可能是要求变量之间的关系满足一定条件。
带约束的最小二乘问题可以形式化为以下形式:minimize ||b-Ax||,subject to Cx=d,其中C是一个p×n的矩阵,d是一个p×1的向量,p是约束条件的个数。
为了求解带约束的最小二乘问题,我们可以使用拉格朗日乘子法。
该方法是一种通过构造拉格朗日函数,将约束条件转化为目标函数的一部分,从而可以将带约束的问题转化为一个无约束的问题。
通过求解目标函数的梯度为零的点,我们可以得到带约束的最小二乘问题的最优解。
在MATLAB中,我们可以使用"lsqnonlin"函数来求解带约束的最小二乘问题。
该函数可以处理非线性约束,适合求解复杂的优化问题。
使用该函数的步骤如下:1.定义目标函数首先,我们需要定义要最小化的目标函数。
在这里,我们定义残差平方和为目标函数。
MATLAB提供了符号计算工具箱(Symbolic Math Toolbox),可以方便地进行符号计算,有助于简化复杂的运算过程。
数值分析作业最小二乘法最小二乘法是提供“观测组合”的主要工具之一,它依据对某事件的大量观测而获得最佳”结果或最可能”表现形式。
如已知两变量为线性关系y= a+ bx,对其进行n(n> 2)次观测而获得n对数据。
若将这n对数据代入方程求解a,b之值则无确定解。
最小二乘法提供了一个求解方法,其基本思想就是寻找最接近”这n 个观测点的直线。
最小二乘法不仅是19世纪最重要的统计方法,而且还可以称为数理统计学之灵魂。
相关回归分析、方差分析和线性模型理论等数理统计学的几大分支都以最小二乘法为理论基础。
作为其进一步发展或纠正其不足而采取的对策,不少近现代的数理统计学分支也是在最小二乘法基础上衍生出来的。
正如美国统计学家斯蒂格勒(S.M. Stigler)所说,最小二乘法之于数理统计学犹如微积分之于数学”最小二乘法创立的历史过程充满着丰富的科学思想,这些对今日的数学创造仍有着重要的启示意义。
本文旨在全面认识最小二乘法的历史系统发育过程以及创立者的思路。
一先驱者的相关研究天文学和测地学的发展促进了数理统计学及其他相关科学的发展。
丹麦统计史家哈尔德曾指出天文学在数理统计学发展中所起的作用。
“天文学自古代至18 世纪是应用数学中最发达的领域。
观测和数学天文学给出了建立数学模型及数据拟合的最初例子,在此种意义下,天文学家就是最初的数理统计学家。
天文学的问题逐渐引导到算术平均,以及参数模型中的种种估计方法,以最小二乘法为顶峰。
” 这也说明了最小二乘法的显著地位。
有关统计计算思想记载的著作要首推天文学家罗杰柯茨的遗作,即1715年其所发论文中所蕴含的统计方法,亦即对各种观测值赋予加权后求其加权平均。
尽管当时得到认可,然而事实证明如此计算的结果不太精确。
1749年,欧拉(L. Euler,1707—1783)在研究木星和土星之间相互吸引力作用对各自轨道影响时,最后得到一个含8个未知量75个方程的线性方程组。
欧拉的求解方法繁杂而奇特,只能看作是一次尝试。
最小二乘法探究0. 前言最小二乘法发源于天体物理学,并广泛应用于其他各个学科。
最小二乘法(Least squares )又称最小平方法,一元线性回归法,是一种数学优化技术,用于建立经验公式,利用它可以把生产或实验中所积累的某些经验提高到理论上加以分析。
它通过最小化误差的平方和寻找数据的最佳函数匹配。
利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。
最小二乘法还可用于曲线拟合,是我们在建模竞赛中常用的一种手段。
一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
最小二乘法发源于天体物理学,并广泛应用于其他各个学科。
最小二乘法对于统计学具有十分重要的意义。
相关回归分析,方差分析和线性模型理论等数理统计学的几大分支都以最小二乘法为理论基础,正如美国统计学家斯蒂格勒(S.M,Stigler )所说,“最小二乘法之于数理统计学犹如微积分之于数学”。
故对最小二乘法做一番探究进而理解并掌握这一思想是十分有必要的。
1. 原理在古汉语中“平方”称为“二乘”,“最小”指的是参数的估计值要保证各个观测点与估计点的距离的平方和达到最小。
根据教材中的描述(两个变量间的函数关系),其基本原理为: 根据已知的自变量与因变量数据做出散点图,进而观察判定出两者间的函数关系,本次探讨以一次函数关系为例,其他类型的函数关系也可通过两边取对数等方法转化为一次函数形式进行求解。
认定y =f (x )是线性函数:f (x )=ax +b a,b 即为待求的常数。
对于求的函数,我们希望它可以尽可能多的拟合到已知的数据点,或者说尽可能的靠近。
转化为量化形式即为使偏差y i −f (x i ) 都很小,对此经过综合分析我们用M =∑[y i −(ax i +b )]2imax i=0最小来保证每个偏差的绝对值都很小,即根据偏差的平方和为最小的条件来确定常数a,b 。
然后运用多远函数的极值求法知识来求解求M =(a,b )的极小值,具体步骤为:{M a (a,b )=0M b (a,b )=0>>>>>>>>>>>>>>{ðM ða =−2∑[y i −(ax i +b )]x i =0imax i=0ðM ðb =−2∑[y i −(ax i +b )]=0imax i=0 >>>>{∑[y i −(ax i +b )]x i =0imax i=0∑[y i −(ax i +b )]=0imax i=0>>>>>>{a ∑x i 2+b ∑x i imax i=0=∑y i x i imax i=0imax i=0a ∑x i + 8b =∑y i imax i=0imax i=0 (1) 然后再列表计算∑x i 2,∑x i imax i=0,∑y i x i imax i=0imaxi=0,及 ∑y i imax i=0,代入方程组(1),即可求出a,b 。
加权最小二乘法求线性方程组加权最小二乘法:1、什么是加权最小二乘法?加权最小二乘法,简称WLS,是一种优化统计分析方法,用于拟合模型到多元数据集中的真实观测值。
加权最小二乘法在非线性回归中得到广泛应用,是一种能够有效地拟合不同测量误差的有效方法。
它以计算误差的最小平方和作为最小化的目标,以权重矩阵来衡量不同变量的影响,可以有效地适应噪声和其他不可控干扰。
2、加权最小二乘法的优点(1)它可以让用户提供不同变量的不同权重,以反映不同变量的不同程度的重要性。
(2)加权最小二乘法可以有效地拟合数据,对噪声和其他不可控干扰具有良好的鲁棒性。
(3)最小二乘法具有出色的数学优势,可以有效降低计算的复杂度并减少计算量。
(4)由于具有较低的复杂度,它可以比其他算法更快地完成优化计算任务。
3、加权最小二乘法的应用(1)加权最小二乘法被广泛用于拟合多元数据和统计模型。
它可以用于多元回归,用于做回归分析,并计算推断和预测模型。
(2)加权最小二乘法也经常用于有关气象、水质分析和生物学领域的研究中。
例如,它可以用于分析多个变量对气候变化的影响,也可以用于研究物种变化。
(3)加权最小二乘法还可以用于解决计算机视觉领域中的复杂问题,例如分析图像和处理图像。
它可以帮助人们更好地理解和识别图像数据以及物体的动作和特征。
(4)加权最小二乘法在分类和聚类数据分析中也经常被应用,它可以用来探索解释变量和响应变量之间的关系。
因此,它可以帮助数据分析人员找到更多的细节。
4、加权最小二乘法的缺点(1)加权最小二乘法会假设观测值的权重是正确的,这可能会导致模型的偏差。
(2)加权最小二乘法可能会忽略一些重要的信息,这可能会影响模型的精度和可靠性。
(3)加权最小二乘法可能无法有效地处理过大的数据集,因为它可能会产生过多的计算量。
(4)加权最小二乘法求解过程比较困难,即使在线性情况下也需要计算更复杂的表达式。
线性方程组极小最小二乘解
解决线性方程组的极小最小二乘问题(LeastSquaresProblem,LSP)是数学和应用数学中非常重要和有用
的研究课题。
文主要讨论和解释如何解决线性方程组的最小二乘问题,并讨论有关概念,定义习语。
本文将连接数学概念和应用数学,以帮助读者理解极小最小二乘问题及其解决方案。
首先,让我们来解释一下最小二乘问题。
最小二乘问题是指寻找一组最能拟合给定数据的线性方程组参数集合的过程。
因此,极小最小二乘问题是指寻找拟合给定数据的最佳线性方程组参数集合的过程。
当给定线性方程组和相应的数据时,最小二乘问题的求解结果可以利用最小二乘方法(Least Squares Method,LSM)来完成。
为了建立一个最小二乘模型,需要以下步骤:首先,定义给定的数据,用于建立模型;其次,为数据定义一个线性模型;最后,使用最小二乘法,确定模型参数。
定义给定的数据包括:N个点,X为N
维特征向量,Y为N维目标向量。
在定义线性模型时,我们可以使用线性回归模型,参数为β1、
β2、... 、βN,类似于多项式回归模型,其模型的表达式为:Y =0 +1X1 +2X2 +…+NXN。
使用最小二乘法来确定模型参数时,会使用到损失函数,损失函数定义为:L(β1、2…、N) =i=1~N(Yi-β0-1Xi-2X2i-…-NXNi)^2
式可以看出,最小二乘法求解的目标是使损失函数的值最小。
实际上,最小二乘问题所求解的是损失函数的极小值,因此,本文也将其称为
极小最小二乘问题(LSP)。
求解极小最小二乘问题,主要有两种方法:一种是梯度下降法,即从损失函数的初始值出发,沿着梯度下降的方向迭代搜索,从而得到最优解;另外一种是正定对称矩阵法,即利用正定对称矩阵特性,应用数值解法,从而计算出最优解。
此外,极小最小二乘问题也与其他概念有关,比如残差(residuals)将是可以拟合的数据的残差,它们是模型拟合的度量。
偏差(bias)可以用来评估模型的准确性,它可以提供有关模型对未知数据的预测能力的信息。
此外,还可以使用方差(Variance)来评估模型的精确度,它可以说明模型总体的预测准确性。
最后,经过介绍,可以看出,极小最小二乘问题是一个重要且有用的研究课题,通过最小二乘法,可以找到最佳的线性模型参数,从而对数据进行准确的拟合。
此外,在求解LSP问题的过程中,也可以与其他概念联系起来,比如残差、偏差和方差,这些概念可以提供有关极小最小二乘问题及其解决方案的实用信息。