转向机建模(adams.car)
- 格式:doc
- 大小:331.50 KB
- 文档页数:7
ADAMS_CAR模块实例(整车仿真分析篇)11整车仿真 (234)11.1整车装配模型 (234)11.2整车仿真 (235)11.3后处理曲线读取 (237)11.4动画演⽰ (237)11.4录制动画演⽰ (241)11.5整车仿真调试 (241)附例 (242)233《整车仿真分析篇》11整车仿真在Adams/Car环境下进⾏整车动⼒学仿真必须包含的⼦系统有:前/后悬架转向系统前/后轮胎车⾝此外Adams/Car还会包含⼀个Test Rig(测试台)。
在开环(Open-loop)、闭环(Close-loop)和准静态分析(Quasi-static)中必须选择._MDI_SDI_TESTRIG。
⽤户可以在整车模型中包含其它的⼦系统,如制动⼦系统、动⼒系统等。
11.1整车装配模型在Standard Interface界⾯菜单⾥选择File>New>Full_Vehicle Assembly。
在出现的对话框⾥输⼊⾃⼰取的整车装配体名称,在各个⼦系统栏⽬⾥右击⿏标,在⾃⼰的数据库⾥找到相应的各个⼦系统:234235点击OK ,如图所⽰:本例分析以双移线仿真为例,没有添加动⼒总成部分。
11.2整车仿真从菜单选择Simulation>Full_Vehicle Analysis>Course Events>ISO Lane_Change 。
设定对话框如图所⽰:点击OK,如果运算成功的话信息窗⼝如下:23611.3后处理曲线读取⽅法和步骤请参照悬架分析篇11.4动画演⽰动画演⽰有两种⽅式:Review>Animation Controls1)从菜单选择Array设定动画控制如下:237点击播放按钮,可以观看动画演⽰。
2)从后处理窗⼝去看,并可以保存动画演⽰为*.avi格式视频。
点击Review>Postprocessing Window或直接按F8,进⼊后处理窗⼝。
因此,ADAMS/Car在汽车动力学分析和仿真上具有较好的应用前景。
2)当汽车具有不足转向特性时,稳态横摆角速度变化不大,而峰值(超调量)变化较大。
车速对汽车稳态转向特性的影响明显。
参考文献:[1]石博强,等.ADAMS基础与工程范例教程[M].北京:中国铁道出版社,2007.[2]邓亚东,等.ADAMS在汽车操纵稳定性仿真分析中的运用[J].武汉大学学报(工学版),2005,38(2):95—98.[3]余志生.汽车理论(第4版)[M].北京:机械工业出版社,2006.[4]王国强,等.虚拟样机技术及其在ADAMS上的实践[M].西北工业大学出版社,2002.[5]于海峰.基于ADAMS/Car的悬架系统对操作稳定性影响的仿真试验研究[D].大连理工大学硕士学位论文。
2007.[作者简介】黄志刚(1966一),男(汉族),上海市人,博士,教授。
中国计算机用户协会仿真应用分会理事,主要研究车辆工程等;王丰(1982一),男(汉族),湖北荆门市人,硕士研究生,主要研究虚拟技术与仿真;朱慧(1973一),女(汉族),陕西西安市人,博士,副教授,主要研究图像处理等;王晶(1973一),女(汉族),浙江宁波市人,硕士,副教授,主要研究机械工程及自动化等。
(上接第283页)图6Madab仿真曲线5结论文中根据水泥工业中,分解炉的大时滞、大惯性、非线性的特点,用传统PID算法很难达到满意的控制效果。
文中介绍了一种新型复合型模糊预测控制算法,结合预测控制的预报功能和模糊控制在大偏差范围时响应较快的理想控制效果,相互切换,优势互补。
通过对三种控制策略在Matlab中的仿真曲线进行比较,可得出如下结论:与单纯的模糊控制、预测控制相比,这种复合型模糊预测控制有较快的相应速度,超调更小,温度波动更小,控制效果更好。
另外,此复合型模糊预测控制系统原理简单,易于工程实际应用,适用于水泥等一类大时滞、大惯性的过程控制系统。
ADAMS/Car 轿车模块专业领域模块ADAMS/Car是MDI公司与Audi,BMW,Renault和Volvo等公司合作开发的整车设计软件包,集成了他们在汽车设计,开发方面的专家经验,能够帮助工程师快速建造高精度的整车虚拟样机,其中包括车身,悬架,传动系统,发动机,转向机构,制动系统等,工程师可以通过高速动画直观地再现在各种试验工况下(例如:天气,道路状况,驾驶员经验)整车的动力学响应,并输出标志操纵稳定性,制动性,乘坐舒适性和安全性的特征参数,从而减少对物理样机的依赖,而仿真时间只是进行物理样机试验的几分之一.ADAMS/Car采用的用户化界面是根据汽车工程师的习惯而专门设计的.工程师不必经过任何专业培训,就可以应用该软件开展卓有成效的开发工作.ADAMS/Car中包括整车动力学模块(Vehicle Dynamics)和悬架设计模块(Suspension Design),其仿真工况包括:方问盘角阶跃,斜坡和脉冲输入,蛇行穿越试验,漂移试验,加速试验,制动试验和稳态转向试验等,同时还可以设定试验过程中的节气门开度,变速器档位等.ADAMS/Solver 求解器模块基本模块ADAMS/Solver是ADAMS系列产品的核心模块之一,是ADAMS 产品系列中处于心脏地位的仿真器.该软件自动形成机械系统模型的动力学方程,提供静力学,运动学和动力学的解算结果.ADAMS/Solver 有各种建模和求解选项,以便精确有效地解决各种工程应用问题.ADAMS/Solver可以对刚体和弹性体进行仿真研究.为了进行有限元分析和控制系统研究,用户除要求软件输出位移,速度,加速度和力外,还可要求模块输出用户自己定义的数据.用户可以通过运动副,运动激励,高副接触,用户定义的子程序等添加不同的约束.用户同时可求解运动副之间的作用力和反作用力,或施加单点外力.ADAMS/Solver新版中对校正功能进行了改进,使得积分器能够根据模型的复杂程度自动调整参数,仿真计算速度提高了30%;采用新的S12型积分器(Stabilized Index 2 intergrator),能够同时求解运动方程组的位移和速度,显著增强积分器的鲁棒性,提高复杂系统的解算速度;采用适用于柔性单元(梁,衬套,力场,弹簧-阻尼器)的新算法,可提高S12型积分器的求解精度和鲁棒性;可以将样条数据存储成独立文件使之管理更加方便,并且spline语句适用于各种样条数据文件,样条数据文件子程序还支持用户定义的数据格式;具有丰富的约束摩擦特性功能,在Translational, Revolute, Hooks, Cylindrical, Spherical, Universal等约束中可定义各种摩擦特性.ADAMS/Flex 柔性分析模块接口模块ADAMS/Flex是ADAMS软件包中的一个集成可选模块,提供了与ANSYS,MSC/NASTRAN,ABAQUS,I-DEAS等软件的接口,可以方便地考虑零部件的弹性特性,建立多体动力学模型,以提高系统仿真的精度.ADAMS/Flex模块支持有限元软件中的MNF(模态中性文件)格式.结合ADAMS/Linear模块,可以对零部件的模态进行适当的筛选,去除对仿真结果影响极小的模态,并可以人为控制各阶模态的阻尼,进而大大提高仿真的速度.同时,利用ADAMS/Flex模块,还可以方便地向有限元软件输出系统仿真后的载荷谱和位移谱信息,利用有限元软件进行应力,应变以及疲劳寿命的评估分析和研究.ADAMS/Vibration 振动分析模块扩展模块ADAMS/Vibration是进行频域分析的工具,可用来检测ADAMS 模型的受迫振动(例如;检测汽车虚拟样机在颠簸不平的道路工况下行驶时的动态响应),所有输入输出都将在频域内以振动形式描述,该模块可作为ADAMS运动仿真模型从时域向频域转换的桥梁.通过运用ADAMS/Vibration可以实现各种子系统的装配,并进行线性振动分析,然后利用功能强大的后处理模块ADAMS/PostProcessor进一步作出因果分析与设计目标设置分析.采用ADAMS/Vibration模块,可以在模型的不同的测试点,进行受迫响应的频域分析.频域分析中可以包含液压,控制及用户系统等结果信息;能够快速准确将ADAMS线性化模型转入Vibration模块中;能够为振动分析开辟输入,输出通道,能定义频域输入函数,产生用户定义的力频谱;能求解所关注的频带范围的系统模型,评价频响函数的幅值大小及相位特征;能够动画演示受迫响应及各模态响应;能把系统模型中有关受迫振动响应的信息列表;为进一步分析能把ADAMS模型中的状态矩阵输出到MATLAB及MATRIX中;运用设计研究,DOE及振动分析结果和参数化的振动输入数指优化系统综合性能.运用ADAMS/Vibration能使工作变得快速简单,运用虚拟检测振动设备方便地替代实际振动研究中复杂的检测过程,从而避免了实际检测只能在设计的后期进行且费用高昂等弊病,缩短设计时间,降低设计成本.ADAMS/Vibration输出的数据还可被用来研究预测汽车,火车,飞机等机动车辆的噪音对驾驶员及乘客的振动冲击,体现了以人为本的现代设计趋势.ADAMS/View 用户界面模块基本模块ADAMS系列产品的核心模块之一,采用以用户为中心的交互式图形环境,将图标操作,菜单操作,鼠标点击操作与交互式图形建模,仿真计算,动画显示,优化设计,X-Y曲线图处理,结果分析和数据打印等功能集成在一起.ADAMS/View采用简单的分层方式完成建模工作.采用Parasolid 内核进行实体建模,并提供了丰富的零件几何图形库,约束库和力/力矩库,并且支持布尔运算,支持FORTRAN/77和FORTRAN/90中的函数.除此之外,还提供了丰富的位移函数,速度函数,加速度函数,接触函数,样条函数,力/力矩函数,合力/力矩函数,数据元函数,若干用户子程序函数以及常量和变量等.自9.0版后,ADAMS/View采用用户熟悉的Motif界面(UNIX系统)和Windows界面(NT系统),从而大大提高了快速建模能力.在ADAMS/View中,用户利用TABLE EDITOR,可像用EXCEL一样方便地编辑模型数据,同时还提供了PLOT BROWSER和FUNCTION BUILDER工具包.DS(设计研究),DOE(实验设计)及OPTIMIZE(优化)功能可使用户方便地进行优化工作.ADAMS/View有自己的高级编程语言,支持命令行输入命令和C++语言,有丰富的宏命令以及快捷方便的图标,菜单和对话框创建和修改工具包,而且具有在线帮助功能.ADAMS/View新版采用了改进的动画/曲线图窗口,能够在同一窗口内可以同步显示模型的动画和曲线图;具有丰富的二维碰撞副,用户可以对具有摩擦的二维点-曲线,圆-曲线,平面-曲线,以及曲线-曲线,实体-实体等碰撞副自动定义接触力;具有实用的Parasolid输入/输出功能,可以输入CAD中生成的Parasolid文件,也可以把单个构件,或整个模型,或在某一指定的仿真时刻的模型输出到一个Parasolid文件中;具有新型数据库图形显示功能,能够在同一图形窗口内显示模型的拓扑结构,选择某一构件或约束(运动副或力)后显示与此项相关的全部数据;具有快速绘图功能,绘图速度是原版本的20倍以上;采用合理的数据库导向器,可以在一次作业中利用一个名称过滤器修改同一名称中多个对象的属性,便于修改某一个数据库对象的名称及其说明内容;具有精确的几何定位功能,可以在创建模型的过程中输入对象的坐标,精确地控制对象的位置;多种平台上采用统一的用户界面,提供合理的软件文档;支持Windows NT平台的快速图形加速卡,确保ADAMS/View的用户可以利用高性能OpenGL图形卡提高软件的性能;命令行可以自动记录各种操作命令,进行自动检查.ADAMS/Exchange 图形接口模块接口模块ADAMS/Exchange是ADAMS/View的一个集成可选模块,其功能是利用IGES,STEP,STL,DWG/DXF等产品数据交换库的标准文件格式完成ADAMS与其他CAD/CAM/CAE软件之间数据的双向传输,从而使ADAMS与CAD/CAM/CAE软件更紧密地集成在一起.ADAMS/Exchange可保证传输精度,节省用户时间,增强仿真能力.当用户将CAD/CAM/CAE软件中建立的模型向ADAMS传输时,ADAMS/Exchange自动将图形文件转换成一组包含外形,标志和曲线的图形要素,通过控制传输时的精度,可获得较为精确的几何形状,并获得质量,质心和转动惯量等重要信息.用户可在其上添加约束,力和运动等,这样就减少了在ADAMS中重建零件几何外形的要求,节省建模时间,增强了用户观察虚拟样机仿真模型的能力.ADAMS/Controls 控制模块接口模块ADAMS/Controls是ADAMS软件包中的一个集成可选模块.在ADAMS/Controls中,设计师既可以通过简单的继电器,逻辑与非门,阻尼线圈等建立简单的控制机构,也可利用通用控制系统软件(如:Matlab,MATRIX,EASY5)建立的控制系统框图,建立包括控制系统,液压系统,气动系统和运动机械系统的仿真模型.在仿真计算过程中,ADAMS采取两种工作方式:其一,机械系统采用ADAMS解算器,控制系统采用控制软件解算器,二者之间通过状态方程进行联系;其二,利用控制软件书写描述控制系统的控制框图,然后将该控制框图提交给ADAMS,应用ADAMS解算器进行包括控制系统在内的复杂机械系统虚拟样机的同步仿真计算.这样的机械-控制系统的联合仿真分析过程可以用于许多领域,例如汽车自动防抱死系统(ABS),主动悬架,飞机起落架助动器,卫星姿态控制等.联合仿真计算可以是线性的,也可以是非线性的.使用ADAMS/Controls的前提是需要ADAMS与控制系统软件同时安装在相同的工作平台上.ADAMS/Durability 久性分析模块扩展模块耐久性试验是产品开发的一个关键步骤.耐久性试验能够解答"机构何时报废或零部件何时失效"这个问题,它对产品零部件性能,整机性能都具有重要影响.MDI公司已经与MTS公司及nCode公司合作,共同开发ADAMS/Durability,使之成为耐久性试验的完全解决方案. ADAMS/Durability按工业标准的耐久性文件格式对时间历程数据接口进行了一次全新的扩展.目前,该模块支持两种时间历程文件格式:nSoft和MTS的RPC3.ADAMS/Durability可以把上述文件格式的数据直接输入到ADAMS仿真模块中去,或把ADAMS的仿真分析结果输出到这种文件格式中来.ADAMS/Durability集成了VTL(Virtual Test Lab)技术.VTL工具箱是由MTS与MDI公司设计及创建的标准机械检测系统,通过MTS 的RPC图形用户界面可实施检测,并保留检测配置及操作问题,VTL 的检测结果将返回工业标准的RPC格式文件中,以便由标准分析应用程序使用,一旦得到实际检测结果,便可以执行预测分析及验证. nCode公司的nSoft耐久性分析软件可以进行应力寿命,局部应变寿命,裂隙扩展状况,多轴向疲劳及热疲劳特征,振动响应,各种焊接机构强度等分析.ADAMS/Durability把以上技术集成在一起,从而使虚拟样机检测系统耐久性成为现实.ADAMS/Durability的主要功能是,可以从nSoft的DAC及RPC3文件中提取时间记载数据,并将其内插入ADAMS仿真模块中进行分析;可以把REQUEST数据存储在DAC及MTS RPC3文件中,把ADAMS仿真结果及测量数据输出到DAC及MTS RPC3文件;可以查看DAC及MTS RPC3文件的头信息与数据;可以提取DAC及MTS RPC3文件中的数据并绘图,以此与ADAMS仿真结果相对照.MSC Easy5(Engineering Analysis System)是一套面向控制系统和多学科动态系统的仿真软件,用于在产品的概念和系统级设计阶段快速地建立完整、可靠的功能虚拟样机。
密级:秘密项目报告Adams/Car中转向系统验模流程报告人:审核:日期:目录一、问题描述 (3)1.1验模意图 (3)1.2验模内容 (3)二、验模流程 (4)2.1转向系干摩擦验证 (4)2.1.1试验目的 (4)2.1.2实际试验方法 (4)2.1.3 仿真试验方法 (4)2.2转向系角传动比特性验证 (9)2.2.1试验目的 (9)2.2.2实际试验方法 (9)2.2.3仿真试验方法 (10)2.3转向系正向刚度特性验证 (10)2.3.1试验目的 (10)2.3.2实际试验方法 (11)2.3.3仿真试验方法 (11)2.4转向系逆向刚度特性验证 (13)2.4.1试验目的 (13)2.4.2实际试验方法 (13)2.4.3仿真试验方法 (13)一、问题描述1.1验模意图同其它CAE方法一样,在建立Adams车辆动力学仿真模型时,需要考察模型仿真试验与实际试验的一致性。
即:实车动力学试验的准确性和重复性;Adams模型在多大程度上能够预测车辆动力学行为。
因目前模型建立尚未有一整套详细规范,而有可能导致同一车辆、不同人所建的模型计算结果大相径庭。
模型建立时需要考虑诸多因素,同时每一子系统都要进行相关的仿真测试验证,而MSC发布的adams/car中仅保留了与悬架、转向相关的TestRig,因而至于转向系、轮胎、动力传动系和制动系乃至悬架偏频等的测试试验台都需要开发建立。
1.2验模内容与实际试验内容相一致,主要包括转向系角传动特性试验、转向系正向刚度特性试验、转向系逆向刚度特性试验和转向系干摩擦特性试验。
以AVANZA车型为例,对其转向系统的验模流程做初步规范。
二、验模流程2.1转向系干摩擦验证转向系的干摩擦主要包括主销的摩擦阻力矩、转向机的摩擦力矩(取决于转向机效率)、各个球头的摩擦力矩以及原地转向时轮胎与地面的摩擦力矩等。
2.1.1试验目的通过试验得到转向系的摩擦及阻尼特性。
2.1.2实际试验方法试验前,标定各传感器的零点,轮胎气压和轴荷分别符合制造厂规定,滑盘解锁,使车轮能在滑盘上自由转动。
10_ADAMS_CAR模块详细实例教程(悬架分析篇)10悬架分析 (225)10.1悬架模型参数调整 (225)10.2悬架参数设定 (229)10.3悬架仿真 (231)10.4查看后处理结果 (233)附例 (234)224《悬架分析篇》10悬架分析在ADAMS/Car下可进⾏的悬架分析包括:(1)车轮同向运动(Parallel wheel analysis)(2)车轮反向运动(Oppositel wheel analysis)(3)侧倾和垂直⼒分析(Roll and vertical forces)-悬架的侧倾⾓变化,同时保持作⽤于悬架的总垂直⼒不变,因此作⽤于左右车轮的垂直⼒会变化,导致左右轮⼼的位置改变。
(4)单轮运动(Single wheel travel)-⼀个车轮固定,另⼀个车轮运动。
转向(Steering)-在给定轮⼼⾼度下,在转向盘或转向机上施加运动。
(5)静态分析(Static load)-可以在轮⼼或轮胎印迹上施加载荷,如纵向⼒、侧向⼒、垂直⼒。
(6)外部⽂件分析(External file)-利⽤外部⽂件来驱动仿真。
1)载荷分析(Loadcase),⽂件中包含的输⼊可以是轮⼼位移、转向盘转⾓,或者是作⽤⼒;2)车轮包络分析(wheel envelope),车轮同向运动的同时,车轮发⽣转到,主要是与CAD软件结合检查悬架、转向系等与车⾝的⼲涉。
10.1悬架模型参数调整在前⾯第8章已经完成前悬架模块的装配,在⼦系统或装配体中质量、硬点、衬套、弹簧和减振器特性是可以修该的,以满⾜⽤户实际情况。
1)修改质量特性在部件附近右击⿏标,在出现的清单⾥找到所要修改的部件,选择Modify。
出现如下窗⼝:225226在该对话框⾥可以修改质量和转动惯量特性。
2)修改硬点从菜单选择Ajust>Hardpoint>Table ,选择Table 可以同时编辑所有硬点。
⽽如果选择Modify 则⼀次只能修改⼀个硬点。
《概述》1 Adams/Car概述Adams/Car是专门用于汽车建模的方针环境,属于面向专门行业和基于模板的建模和分析工具。
由于是面向汽车行业,软件本身包含了大量的车辆动力学建模和仿真的工程经验。
现在的Adams/Car是由MSC、Audi、BMW、Renault和Volvo公司共同开发的。
Adams/Car不仅包含了很多悬架模型,还包含一系列车辆开发中用到的仿真工况和设计仿真时关心的输出。
这些已经定义好的输出极大地方便了车辆动力学工程师,这是Adams/Car的突出优点。
Adams/Car的模型结构由三级组成:模板(Template)、子系统(Subsystem)和装配体(Assembly),层级关系如下图所示:1.1认识adams/car模块当点击进入adams/car模块后,会看到一个界面:其中有Standard interface和Template Builder两个选项,默认的是选择Standard interface。
如果是初次安装和使用ADAMS2005,需要注意的是打开ADAMS/Car后并没有Template Builder选项,可以通过修改C:\Documents and Settings\管理者(用户名)文件下的acar.cfg文件来添加该选项。
用记事本打开该文件,如下图所示:系统默认的是standard用户类型,将其改为expert后重新打开ADAMS/Car后可以看到有Template Builder选项出现。
1.2 理解Standard interface(标准用户)和Template Builder(模板建立)的区别理解template builder和standard interface的区别是使用ADAMS/Car的关键一步。
1)Standard interface是建立和打开subsystem(子系统)、Assembly(装配体)的环境。
进入Standard interface后点击File>New可以看到在这个环境中可以建立子系统、悬架装配和整车装配。
《转向篇》
6转向机建模 (185)
6.1打开系统自带转向机模板 (185)
6.2修改转向机硬点 (187)
6.3修改助力特性 (188)
6.4通讯器修改 (188)
6.5修改齿轮齿条传动比 (189)
6.6保存模型 (191)
6.转向机建模
轿车常用的转向机结构形式基本都是齿轮齿条式,为加快建模速度,在此推荐修改Adams/Car自带模板,主要是硬点、助力特性曲线、通讯器和齿轮齿条传动比的修改。
6.1打开系统自带转向机模板
Template Builder
进入
在出现的对话框Template Name一栏右击鼠标,Search><acar_shared>/template.tbl
185
在出现的文件夹里选择rack_pinion_steering.tbl。
点击“打开”。
点击OK,将自带转向机模板文件调入建模界面,如下图所示:
186
BMW X5转向机各硬点如下表所示:
点击Build>Hardpoint>Table,打开自带模板的硬点表:
187
把上表内的各硬点值修改为X5的实际硬点值。
6.3修改助力特性
点击Build下拉菜单,选择Steering Assist。
出现如下对话框:
如果设置转向助力的话勾选Steering Assist Active,其特性文件是系统自带的,可根据实际情况做出修改。
6.4通讯器修改
一般情况默认自带模板的通讯器命名,需要注意的是其中的Swich part选项。
188
189
在出现的对话框里右击鼠标,Switch Part>Guesses>sws_rack_house_mount 。
如下图所示:
由于X5的转向机是固定在前副车架上,则要将Switch To Part 一栏选为
._rack_pinion_steering.mts_rack_housing_to_suspension_subframe ,如下图所示:
点击OK 。
6.5修改齿轮齿条传动比
从下拉菜单选择Build>Gear>Reduction Gear>Modify 。
在出现的对话框Reduction Gear Name一栏右击鼠标,选择grsred_pinion_to_rack:
Ratio是要修改的传动比,根据实际情况修改,这里默认此值。
至此转向机模板修改完成,如下图所示:
190
191
6.6保存模型
从下拉菜单选择File>Save As ,在出现的对话框里设定新的模板名称及目标数据库。
点击OK 完成模板文件保存。