第五章 最小二乘问题分解
- 格式:ppt
- 大小:587.00 KB
- 文档页数:23
第五章 广义逆及最小二乘解在应用上见得最频繁的、大约莫过于线性方程组了。
作一番调查或整理一批实验数据,常常归结为一个线性方程组:Ax b =然而是否是相容方程呢?倘若不是,又如何处理呢?最小二乘解是常见的一种处理方法。
其实它不过是最小二乘法的代数形式而已。
广义逆从1935年Moore 提出以后,未得响应。
据说: (S.L.Campbell & C.D.Meyer.Jr Generalized Inverses of Linear Transformations 1979 P9)原因之一,可能是他给出的定义,有点晦涩。
其后,1955年Penrose 给出了现在大都采用的定义以后,对广义逆的研究起了影响,三十年来,广义逆无论在理论还是应用上都有了巨大发展,一直成为了线性代数中不可缺少的内容之一。
为了讨论的顺利进行,我们在第一节中先给出点准备,作出矩阵的奇值分解。
§5.1 矩阵的酉交分解、满秩分解和奇值分解在线行空间中,知道一个线性变换在不同基偶下的矩阵表示是相抵的或等价的。
用矩阵的语言来说,就是:若 ,m n A B C ×∈,倘有非异矩阵()P m n ×,()Q n n ×存在,使B PAQ =则称A 与B 相抵的或等价的。
利用初等变换容易证明m n A C ×∈,秩为r ,则必有P ,Q ,使000r m nI PAQ C ×⎛⎞=∈⎜⎟⎝⎠(5.1-1) 其中r I 是r 阶单位阵。
在酉空间中,上面的说法,当然也成立,如果加上P ,Q 是酉交阵的要求,情形又如何呢?下面就来讨论这个问题。
定理 5.1.1 (酉交分解) m n A C ×∈,且秩为r ,则(),(),,H H m n U m n V n n U U I V V I ∃××==,使00r HU AV Δ⎛⎞=×⎜⎟⎝⎠(m n) (5.1-2) 其中r Δ为r 阶非异下三角阵。
第五章线性函数的最小二乘处理最小二乘原理应用时的条件是:函数关系确定已知、等精度、误差独立、无偏估计得到满足,在众多的N个测量方程中利用最小二乘原理求得t个(t</N)参数的最佳估计值。
如前所叙,在随机因素作用下,测量次数较多时,计算的结果就会更精密,测量次数往往大于待求未知量的个数,因而出现N>t的现象就成为自然而然的事情了。
众所周知,当N=t时可由线性代数知识求得一组唯一正确解。
当N>t时,代数解法则无能为力了。
也许读者会提出另外一个问题:既然N>t,可由N中取出t个方程来求解,而把(N-t)个方程弃掉,问题不就解决了吗?答案是不行的。
这样求解后的结果不是最佳值,有时会与最佳值离歧很大。
最小二乘法是一种数学原理,高斯于1809年在他的名著《天体沿圆锥截面绕太阳运动的理论》一书中,发表了他发现的最小二乘原理并应用于测量之后,在许多科学领域及技术领域中得到越来越多地应用。
5.1 函数为直接测量值得线性组合5.1.1 测量方程式函数中可能存在着多个待定参数,根据该函数关系可列出多个测量后的方程式,该方程式称作测量方程式。
设含有t个待求参数Xj(j=1,2,…,t)的函数关系已知,表现为线性组合,即Xj是待定系数的真值,aj是在某具体测量条件下获得的直接测量值,经N次测量(N>t)后,理应得到N个函数真关系式。
为了表达更简洁,可将各方程中系数用aij(i=1,2, …,N;j=1,2, …,t)表示,上述方程可简写成量值Y经N次测量后的测量值用Mi表示,则上述方程变为测量方程式,又称测量条件方程,式中,aij及Mi是在某具体测量条件下的直接测量值,Mi含有误差,即Mi≠Yi。
5.1.2 剩余误差方程式若用同直接测量时一样,可将称作剩余误差。
由此便可得到N个剩余误差方程式可以看出,剩余误差是各最可信赖值的函数,即5.1.3 正规方程组现在以三个待求量x1,x2,x3为例,说明建立正规方程组的过程,该计算方法和过程及结论,可推广到t个待求量中去。
最小二乘的解
最小二乘法是一种常见的数学方法,用于解决线性回归问题。
它的基本思想是通过求解最小化误差平方和的问题,找到最接近观测数据的数学模型。
在最小二乘法中,我们首先需要有一组观测数据,通常表示为一系列的点。
我们假设这些观测数据可以由一个线性模型表示,该模型可以用一条直线的方程来描述。
我们的目标是找到一条直线,使得观测数据点到这条直线的距离之和最小。
为了达到这个目标,我们先定义一个误差函数,它是观测数据点到直线的距离的平方和。
然后我们通过对误差函数求导,将问题转化为求解一个线性方程组的问题。
最终,我们可以得到一组系数,这些系数可以用来表示最佳拟合直线的方程。
最小二乘法在实际问题中有着广泛的应用。
例如,在经济学中,我们可以使用最小二乘法来分析需求和供应关系。
在物理学中,最小
二乘法可以用来拟合实验数据,从而找到实验结果的数学模型。
在工程学中,最小二乘法可以用来解决信号处理和图像处理的问题。
总而言之,最小二乘法是一种强大的数学工具,用于解决线性回归问题。
通过最小化观测数据与数学模型之间的误差平方和,我们可以找到最佳拟合模型的系数。
这种方法在实际应用中具有重要的意义,并且被广泛应用于各个领域。
最小二乘法超详细推导好,咱们聊聊最小二乘法,听起来是不是有点儿高大上?但其实它的原理就像是在生活中解决问题一样简单。
想象一下,你跟朋友约好一起去看电影,结果两个人的时间都不太对付,最后迟到了。
为了避免下次再犯错,你们想出一个办法:每次都提前半小时出门。
这就像最小二乘法,简单明了,追求一个更好的结果。
最小二乘法的基本思想就像是给一堆点点画线,想要找到一条“最佳”线,让这条线跟所有的点距离最小。
听上去有点抽象,但我给你举个例子。
假设你正在学习滑板,刚开始的时候,可能会摔得东倒西歪,根本控制不住。
你想要找出一个滑行的规律,比如,哪个角度、哪个姿势滑起来更顺畅。
于是你反复尝试,记录每次摔倒的位置,然后把所有这些点连起来,最后找到那个“最佳姿势”。
这就像是在求一个最小值,把每次摔倒的距离都尽量缩短。
让我们深入一点儿,最小二乘法的数学公式其实挺简单,咱们用y=ax+b来表示。
这里的y就像你想要达到的目标,比如说滑板的速度,x是你能控制的因素,比如滑板的角度。
a是斜率,代表你加速的程度,b则是你起步的高度。
听上去是不是有点像在调配一杯完美的饮料?如果把这几个变量调得刚刚好,恰到好处,那就能滑得又快又稳。
这时候,我们就要把所有的点放到图上,看看哪个点偏离得最多。
每个点到那条线的距离就像是你在追求完美的过程中产生的小失误。
咱们要做的,就是把这些距离的平方加起来,然后最小化,尽量让整体的偏差小到可忽略不计。
这个过程就像在追求一个完美的曲线,让你在滑板上飞翔的时候不再摔倒。
在实际操作中,我们往往需要用到一些数学工具,比如微积分。
听起来是不是有点吓人?别担心,其实就是为了找出那条最佳线的斜率和截距。
简单来说,就是要把所有的偏差搞清楚,给出一个准确的答案。
就像你在追求更好的生活方式,每天记录饮食和运动,最后找到那个最适合自己的节奏。
想象一下,咱们在找线的时候,就像在追寻自己的梦想。
每一次失败,每一次尝试,都是为了一条更完美的路径。
广义最小二乘法第五章广义最小二乘法当计量经济学模型同时存在序列相关和异方差,而且随机误差项的方差-协方差矩阵未知时我们可以考虑使用广义最小二乘法(gls)。
即下列模型:y=xβ+μ满足这样一些条件:e(μ)=0cov(μμ')=δ2ωω=11ω1221ω221ωn2...ω1n...ω2nωnn设立ω=dd'用d左乘y=xβ+μ的两边,得到一个新的模型d-1y=d-1xβ+d-1μy=x**-1β+μ*(1)该模型具备同方差性和随机误差相互独立性。
因为可以证明:e(μ*μ*')=δ2i于是需用普通最轻二乘法估算(1)式,获得的参数估计结果为ˆ=(x*'x*)-1x*'y*β=(x'ωx)x'ωy整个过程最重要的一步就是要估计ω,当模型存在一阶自相关时。
我们取-1-1-1ρn-1ρn-2ρn-1ρn-21案例四:广义最小二乘法在这里我们举例子去表明广义最轻二乘法的应用领域。
在探讨这个问题时所使用的数据如下表中5.1右图:首先我们计算ρ,我们可以直接根据ols估计出来的dw来计算,ols估计出来的结果为下表5.2:可以根据ρ=1-dw/2,dw=0.8774,因此ρ=0.5613,在这个基础上,我们可以得出结论这个方差-协方差矩阵。
方差协方差矩阵可以由以下一个程序去赢得:!p=0.5613matrix(17,17)fac1for!i=1to17fac1(!i,!i)=1for!j=1to17for!i=!j+1to17fac1(!i,!j)=!p^(!i-!j)fac1(!j,!i)=fac1(!i,!j)得到的矩阵结果为下表5.3下面再展开cholosky水解,获得d,展开cholosky水解时所用至的命令如下:1sym(17,17)fact1matrixfact1=@cholesky(fact)得到的fact1矩阵如下解fact1的逆矩阵就可以将数据展开切换,获得m2和gdp,解逆矩阵时使用的命令如下:matrix(17,17)fact2**fact2=@inverse(fact)得到的fact1矩阵的逆矩阵fact2如下m2*=m2*fact2gdp*=gdp*fact这样就可以获得一组转换后的数据,数据如下再对这组数据进行普通最小二乘法就可以得到这个方程的广义最小二乘法的估计结果,结果如下:可以看见,采用广义最轻二乘法后,序列有关的情况获得提升。
第五章 最小二乘问题的解法1.最小二乘问题 1)回归方程问题[]Ti i l i y t t)()()(1,,...,,m i ,...,2,1=是m 个实验点。
现要根据这些点确定y 与l 个物理量l t t t ,...,,21之间的关系式。
设这种关系式为),...,,,...,(11n l x x t t F y =,其中n x x ,...,1是方程中需要待定的n 个参数(系数)。
因此问题是如何通过)(n m m >个实验点,确定方程中的系数。
由于实验点的个数大于待定系数的个数,因此方程中系数的确定是一个超静定问题,无法按一般的方法进行求解。
此时将实验点到曲面距离最短的那个曲面作为所求曲面,从而求取该曲面方程。
即求解[]∑=-mi i i y x t F 12)()(),(min ,这就是最小二乘问题。
2)非线性方程组问题求解非线性方程组⎪⎪⎩⎪⎪⎨⎧===0),...,(............................0),...,(0),...,(11211n n nn x x f x x f x x f 可转化为求解如下形式的最小二乘问题。
∑=mi n i x x f112),...,(min显而易见,最小二乘法的一般形式可写为)()(min x f x f T最小二乘法问题实际上是具有n 个变量的无约束极小化问题,前面解无约束优化问题的方法均可应用。
但是最小二乘问题具有一定的特殊性,即目标函数的表达式是由多个表达式的平方和组成,理应有更、更有效的方法。
这正是最小二乘解法要解决的问题。
2.线性最小二乘问题的解法最小二乘法的一般形式可写为)()(min x f x f T特别地,当b Ax x f -=)(,即)(x f 为线性函数时,则最小二乘问题可表示为:2min b Ax -1) 线性最小二乘问题解的条件定理1:*x 是线性最小二乘问题极小点的充要条件是*x 满足b A Ax A T T =。