圆锥曲线的定义、方程和性质
- 格式:ppt
- 大小:954.00 KB
- 文档页数:13
高二圆锥曲线方程知识点圆锥曲线方程是高二数学中的重要知识点之一。
在本文中,我们将讨论圆锥曲线方程的相关概念和性质,并解释如何通过给定信息推导出相应的方程。
同时,我们还将介绍不同类型的圆锥曲线方程,并探讨它们的基本形式和特点。
希望本文能够帮助您更好地理解和掌握高二圆锥曲线方程知识点。
1. 圆锥曲线的定义在数学中,圆锥曲线是由一个平面与一个双曲面、抛物面或椭球面相交而产生的曲线。
根据平面与曲面的位置和交点情况,圆锥曲线被分为四种类型:椭圆、双曲线、抛物线和直线。
2. 椭圆的方程椭圆是圆锥曲线中最简单的一种形式。
其方程可以写为:(x-h)²/a² + (y-k)²/b² = 1其中,(h, k)为椭圆的中心坐标,a和b分别为椭圆在x轴和y 轴上的半长轴长度。
3. 双曲线的方程双曲线是由双曲面与平面相交而产生的曲线。
它的方程可以写为:(x-h)²/a² - (y-k)²/b² = 1或(y-k)²/b² - (x-h)²/a² = 1其中,(h, k)为双曲线的中心坐标,a和b分别为双曲线在x轴和y轴上的半长轴长度。
4. 抛物线的方程抛物线是由抛物面与平面相交而产生的曲线。
它的方程可以写为:y = ax² + bx + c其中,a、b和c为常数,决定了抛物线的形状和位置。
5. 直线的方程直线也可以看作是一种特殊的圆锥曲线。
其方程可以写为:y = mx + c其中,m为直线的斜率,c为直线与y轴的截距。
通过以上的介绍,我们可以看到不同类型的圆锥曲线方程有着不同的形式和特点。
在解题时,我们需要根据题目给出的信息和所求的要素,选择相应的方程进行推导和计算。
总结起来,高二圆锥曲线方程知识点包括了椭圆、双曲线、抛物线和直线的方程形式和性质。
通过学习和理解这些知识,我们可以更好地解决与圆锥曲线相关的问题,提高数学解题能力。
圆锥曲线知识点总结圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线。
它们在数学和物理学等领域都有广泛的应用。
接下来,让我们详细了解一下圆锥曲线的相关知识点。
一、椭圆1、定义平面内与两个定点$F_1$、$F_2$的距离之和等于常数(大于$|F_1F_2|$)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
2、标准方程(1)焦点在$x$轴上:$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$($a > b > 0$),其中$a$为长半轴长,$b$为短半轴长,$c$为半焦距,满足$c^2 = a^2 b^2$。
(2)焦点在$y$轴上:$\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1$($a > b > 0$)。
3、椭圆的性质(1)范围:对于焦点在$x$轴上的椭圆,$a \leq x \leq a$,$b \leq y \leq b$;对于焦点在$y$轴上的椭圆,$b \leq x \leq b$,$a \leq y \leq a$。
(2)对称性:椭圆关于$x$轴、$y$轴和原点对称。
(3)顶点:焦点在$x$轴上的椭圆顶点为$(±a, 0)$,$(0, ±b)$;焦点在$y$轴上的椭圆顶点为$(0, ±a)$,$(±b, 0)$。
(4)离心率:椭圆的离心率$e =\frac{c}{a}$($0 < e <1$),它反映了椭圆的扁平程度,$e$越接近$0$,椭圆越接近于圆;$e$越接近$1$,椭圆越扁。
二、双曲线1、定义平面内与两个定点$F_1$、$F_2$的距离之差的绝对值等于常数(小于$|F_1F_2|$)的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距。
2、标准方程(1)焦点在$x$轴上:$\frac{x^2}{a^2} \frac{y^2}{b^2} =1$,其中$a > 0$,$b > 0$,$c^2 = a^2 + b^2$。
圆锥曲线的定义及应用一、圆锥曲线的定义1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。
即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。
2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。
即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。
3. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。
当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
二、圆锥曲线的方程。
1.椭圆:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)2.双曲线:-=1(a>0, b>0)或-=1(a>0, b>0)(其中,c2=a2+b2)3.抛物线:y2=±2px(p>0),x2=±2py(p>0)三、圆锥曲线的性质1.椭圆:+=1(a>b>0)(1)X围:|x|≤a,|y|≤b(2)顶点:(±a,0),(0,±b)(3)焦点:(±c,0)(4)离心率:e=∈(0,1)(5)准线:x=±2.双曲线:-=1(a>0, b>0)(1)X围:|x|≥a, y∈R(2)顶点:(±a,0)(3)焦点:(±c,0)(4)离心率:e=∈(1,+∞)(5)准线:x=±(6)渐近线:y=±x3.抛物线:y2=2px(p>0)(1)X围:x≥0, y∈R(2)顶点:(0,0)(3)焦点:(,0)(4)离心率:e=1(5)准线:x=-四、例题选讲:例1.椭圆短轴长为2,长轴是短轴的2倍,则椭圆中心到准线的距离是__________。
解:由题:2b=2,b=1,a=2,c==,则椭圆中心到准线的距离:==。
圆锥曲线的分类及基本方程圆锥曲线是解析几何中最为重要的一类曲线,不仅在数学领域有广泛应用,在物理、化学、工程等多个领域中也有着重要的作用。
本文将围绕圆锥曲线的分类及基本方程展开讨论。
一、圆锥曲线的定义圆锥曲线是指由一个固定点F(焦点)和一个固定直线L(直角母线)所确定的点P(动点)的轨迹。
如果点P在直线L同侧与焦点F的距离大于点P到直线L的距离,则称此为椭圆;如果点P在直线L同侧与焦点F的距离等于点P到直线L的距离,则称此为双曲线;如果点P在直线L的另一侧,且距离相等,则称此为圆。
二、圆锥曲线的分类根据圆锥曲线的定义,可以将它们分为三类:椭圆、双曲线和圆。
下面分别进行讲解。
1. 椭圆椭圆是指在平面直角坐标系中,到空间内两个定点F1、F2距离之和为定值2a、固定数e小于1的点P所形成的轨迹。
其中,a为椭圆的半长轴,b为椭圆的半短轴,c为椭圆的焦距,e为椭圆的离心率,有以下基本方程:(x^2 / a^2) + (y^2 / b^2) = 1其中,如果椭圆的中心在坐标系原点上,则方程为:x^2 / a^2 + y^2 / b^2 = 12. 双曲线双曲线是指在平面直角坐标系中,到空间内两个定点F1、F2距离之差为定值2a、固定数e大于1的点P所形成的轨迹。
其中,a为双曲线的半轴,b为双曲线的次轴,c为双曲线的焦距,e为双曲线的离心率,有以下基本方程:(x^2 / a^2) - (y^2 / b^2) = 1其中,如果双曲线的中心在坐标系原点上,则方程为:x^2 / a^2 - y^2 / b^2 = 13. 圆圆是指在平面直角坐标系中离空间内一个固定点O距离相等的点P所组成的轨迹,该固定点称为圆心,离圆心最远的点称为圆的周围。
圆的方程为:(x - a)^2 + (y - b)^2 = r^2其中,(a,b)为圆心坐标,r为圆的半径。
三、圆锥曲线的性质1. 椭圆的离心率小于1,且对称轴平行于 y 轴,故对称于 x 轴的部分也是椭圆。
圆锥曲线知识点总结圆锥曲线是代数几何中重要的一部分,它由平面和一个定点的两条曲线组成。
在数学的发展历史中,圆锥曲线的研究经历了漫长的时期,涉及到众多的数学家和学者的努力。
本文将对圆锥曲线的基本概念、性质、分类以及应用等知识点进行总结。
一、圆锥曲线的基本概念1. 圆锥曲线的定义圆锥曲线是由平面与一个定点和这个定点到平面上任意一点的连线组成的图形。
2. 圆锥曲线的基本元素圆锥曲线由定点称为焦点和一条固定的直线称为准线组成。
3. 圆锥曲线的标准方程圆锥曲线可以用一般的二次方程表示,即 Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0,其中A、B、C、D、E和F为常数。
4. 圆锥曲线的焦点和准线焦点是定点到平面上各点的距离与准线到这些点距离之比的极限值。
准线是过焦点且垂直于对称轴的直线。
二、圆锥曲线的性质1. 直线和圆的特例直线是当离心率为1的圆锥曲线,圆是离心率为0的圆锥曲线。
2. 焦准属性圆锥曲线上的任意一点到焦点的距离与到准线的距离之比始终为常数,这就是焦准属性。
3. 长轴和短轴圆锥曲线的焦点和准线确定了两条互相垂直的轴线,这两条轴线分别称为长轴和短轴。
4. 离心率圆锥曲线的离心率是一个反映离心程度的量,离心率为0时曲线为圆,离心率为1时曲线为直线。
5. 对称性圆锥曲线具有平移和对称性,即曲线在对称轴两侧具有相同的形状。
三、圆锥曲线的分类1. 椭圆圆锥曲线的离心率小于1,且大于0,形状近似于椭圆的曲线称为椭圆。
2. 抛物线圆锥曲线的离心率等于1,形状类似于抛物线的曲线称为抛物线。
3. 双曲线圆锥曲线的离心率大于1,形状类似于双曲线的曲线称为双曲线。
四、圆锥曲线的应用1. 天文学圆锥曲线在天文学中有广泛的应用,例如行星和彗星的轨道可以用圆锥曲线描述。
2. 工程学在工程学中,圆锥曲线被用于设计天桥、隧道、公路弯道等工程项目。
3. 经济学圆锥曲线在经济学中有重要的应用,例如需求曲线和供给曲线可以用圆锥曲线表示。
圆锥曲线统一的定义方程及性质例析作者:周丹来源:《黑龙江教育·中学教学案例与研究》2014年第04期圆锥曲线是解析几何的重要部分,在考试大纲中大部分都是掌握的内容,而且分值占了20多分,足见其作用的重要.教材中主要从椭圆、双曲线、抛物线这三种曲线的定义、方程及性质横向的分别来研究的,可这三种曲线各有特点又都有共性,这就给记忆、证明及应用带来了麻烦,这里想对它们共同的特点,如统一的定义及方程、部分统一性质,从纵向的角度加以探究.圆锥曲线各自都有很多性质,其实性质的证明方法及应用都大同小异,因此对常用的性质进行研究.一、圆锥曲线的几种统一定义及方程1.它们都是平面内到一个定点的距离和到一个定直线(不经过定点)距离的比值是一个常数的点的轨迹,比值的取值范围不同形成了不同的曲线.教材中为了能得到椭圆、双曲线的标准方程,选的点和直线方程与抛物线选的不同,表面上看好象此定义不是完全统一的,其实这个点都是它们的焦点,直线都是它们的准线,比值就是离心率 .例1:平面内点M到点F(0,0)的距离和它到直线l∶x=-p(p>0)的距离之比是一个常数e,求点M的轨迹.解:过点M作MH⊥l,H为垂足,设M(x,y)则MF=eMH.即=e|x+p|两边平方,化简得(1-e2)x2-2e2px+y2-e2p2=0(*).当00,M轨迹是椭圆.当e>1时,(*)式整理得(e2-1)(x-)2-y2=>0,M轨迹是双曲线.当e=1时,(*)式整理得y2=2px+P 2,点M的轨迹是抛物线.评注:此种定义的缺陷:不能表示圆的方程.(*)式为统一方程.2. 一动点与两个定点连线的斜率之积或差为实数的点的轨迹是圆锥曲线.例2:设A(a,0)B(-a,0)(a≠0),直线AM,BM相交于M,且它们的斜率之积是实数P(P≠0),求点M的轨迹.解:设M(x,y)则kAM ·kBM =P即=P(x≠±a),整理得y2-Px2+Pa2=0-=1(*)(x≠±a).当p=>0时(*)式+=1(x≠±a)为双曲线方程,当p=当p=-1时(*)式x2+y2= a2(x≠±a)为圆的方程.变式:若直线AM,BM的斜率之差是实数p(p≠0),求点M的轨迹.解:-=p,整理得y=(x2-a2),点M的轨迹是抛物线.评注:这种定义源于教材中的例题.动点的轨迹是圆锥曲线,主要是因为它的轨迹方程是关于x,y的二元二次方程.此定义能得到圆、椭圆、双曲线的标准方程.由例题可知,两个定点是椭圆、双曲线的顶点.如果两定点只是椭圆或双曲线上的两个关于原点对称的点,kAM kBM =P,点M的轨迹是什麽呢?变式:已知椭圆+=1(a>b>0),A、B为在椭圆上关于原点对称的两点,直线AM,BM 相交于M,且它们的斜率之积是实数p=-(p≠0),求点M的轨迹.解:设A(m,n)、B(-m,-n),M(x0,y0).∵A在椭圆上,∴+=1,变形得n2 = b2 (1- ),∴kAM·kBM= ==-,∴+=1,∴点M的轨迹是方程为++=1(x0≠±m)的椭圆.思考:双曲线有这个结论吗?有,同理可证.3. 圆O半径为定长r,A是平面内一定点,P是圆上任意一点.线段AP的垂直平分线l和半径OP相交与点Q,当P在圆上运动时,点Q的轨迹是什麽?解:QP=QA,①若点A在圆内(QA则OP=OQ+QP=OQ+QA=r>OA,Q的轨迹是以O、A为焦点,r为长轴长的椭圆.②若点A在圆上(QA=r),则点Q与点O重合,Q与点O重合,Q的轨迹就是O点.③若点A在圆外(QA>r),则OP=QP-OQ= QA-OQ =rQ的轨迹是以O、A为焦点,r为实轴长的双曲线.评注:这种定义源于教材中的书后习题,适当建系后可得到曲线方程,但不够完整,无法表示抛物线.二、圆锥曲线的统一性质性质1:圆锥曲线(不包括圆)上过焦点的弦中,通径最短.证明:设曲线上过焦点的弦AB,由例1可知焦点F(0,0)且A、B满足方程(1-e2)x2-2e2px+y2-e2p2=0(*).设弦AB直线方程若斜率不存在,则x=0 ,此时AB=2ep(通径),若斜率存在,弦AB直线方程y=kx,y=kx(1-e2)x2-2e2px+y2-e2p2=0(1-e2+k2)x2-2e2px-e2p2=0(*),Δ=4e2p2(1+k2),AB==2ep|1+|>2ep,∴AB的最小值是2ep.性质2:圆锥曲线(不包括圆)中,过焦点的弦长与焦点弦的中点到相应准线的距离之比为常数.证明:由性质1可知,过焦点F(0,0)的弦AB=且AB中点的横坐标为,由例1可知曲线的一条准线l∶x=p,设AB中点的横坐标到准线的距离为d=|+p|==即=2e.特别当e=1时,即轨迹为抛物线,以焦点弦为直径的圆与准线相切.性质3:过曲线某点处的切线,结论相似.①过抛物线y2 =2px(p>0)上一点(x0,y0)作切线,切线方程为yy0=p(x+x0);②过椭圆+=1(a>0,b>0)上一点(x0,y0)作切线,切线方程为+=1;③过双曲线-=1(a,b>0)上一点(x0,y0)作切线,切线方程为-=1;结论②、③与圆的切线结论相似,同样有:④过圆x2+y2=r2上一点(x0,y0)作其切线,切线方程为 xx0+yy0=r2.证明方法一致,直线与曲线连立Δ=0.上述四个结论,如出一辙,曲线方程与切线方程的关联之处,不言而喻.性质4:以焦半径为直径的圆与以长(实)轴为直径的圆相切.证明:设曲线(椭圆、双曲线)上一点P(x,y)由例1可知焦点F(0,0),且P满足方程(1-e2)x2-2e2px+y2-e2p2=0(*),则PF===e|x+p|,PF的中点坐标M(,),以长(实)轴为直径的圆C的方程为(x-)2+y2=,则CM===|x-|=|x+p-|,由x的范围可知=|e|x+p±|||=|=PF±Rc|,∴以PF为直径的圆与圆C相切.补充:当P在方程y2=2px(p>0)的抛物线上,则以PF为直径的圆与y轴相切.证明:设P(x0,y0),则PF=x0+,PF的中点坐标M(,),∴以PF为直径的圆与y轴相切.。