《创新设计》2014届高考数学人教A版(理)一轮复习配套word版文档:第二篇 第6讲 幂函数与二次函数.doc
- 格式:doc
- 大小:116.00 KB
- 文档页数:7
第2讲 等差数列及其前n 项和A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2012·福建)等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ).A .1B .2C .3D .4解析 在等差数列{a n }中,∵a 1+a 5=10.∴2a 3=10,∴a 3=5,又a 4=7,∴所求公差为2. 答案 B2.(2013·山东实验中学诊断)设S n 为等差数列{a n }的前n 项和,已知a 1+a 3+a 11=6,那么S 9=( ).A .2B .8C .18D .36解析 设等差数列的公差为d ,则由a 1+a 3+a 11=6,可得3a 1+12d =6,∴a 1+4d =2=a 5.∴S 9=(a 1+a 9)×92=9a 5=9×2=18.答案 C3.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20等于( ). A .-1B .1C .3D .7解析 两式相减,可得3d =-6,d =-2.由已知可得3a 3=105,a 3=35,所以a 20=a 3+17d =35+17×(-2)=1. 答案 B4.(2012·东北三校一模)在等差数列{a n }中,S 15>0,S 16<0,则使a n >0成立的n的最大值为( ).A .6B .7C .8D .9解析 依题意得S 15=15(a 1+a 15)2=15a 8>0,即a 8>0;S 16=16(a 1+a 16)2=8(a 1+a 16)=8(a 8+a 9)<0,即a 8+a 9<0,a 9<-a 8<0.因此使a n >0成立的n 的最大值是8,选C. 答案 C二、填空题(每小题5分,共10分)5.(2012·江西)设数列{a n },{b n }都是等差数列,若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________.解析 设数列{a n },{b n }的公差分别为d 1,d 2,因为a 3+b 3=(a 1+2d 1)+(b 1+2d 2)=(a 1+b 1)+2(d 1+d 2)=7+2(d 1+d 2)=21,所以d 1+d 2=7,所以a 5+b 5=(a 3+b 3)+2(d 1+d 2)=21+2×7=35. 答案 356.(2013·沈阳四校联考)设等差数列{a n }的前n 项和为S n ,若S 412-S 39=1,则公差为________.解析 依题意得S 4=4a 1+4×32d =4a 1+6d ,S 3=3a 1+3×22d =3a 1+3d ,于是有4a 1+6d 12-3a 1+3d9=1,由此解得d =6,即公差为6. 答案 6三、解答题(共25分)7.(12分)在等差数列{a n }中,已知a 2+a 7+a 12=12,a 2·a 7·a 12=28,求数列{a n }的通项公式.解 由a 2+a 7+a 12=12,得a 7=4.又∵a 2·a 7·a 12=28,∴(a 7-5d )(a 7+5d )·a 7=28,∴16-25d 2=7,∴d 2=925,∴d =35或d =-35. 当d =35时,a n =a 7+(n -7)d =4+(n -7)×35=35n -15; 当d =-35时,a n =a 7+(n -7)d =4-(n -7)×35=-35n +415. ∴数列{a n }的通项公式为a n =35n -15或a n =-35n +415.8.(13分)在等差数列{a n }中,公差d >0,前n 项和为S n ,a 2·a 3=45,a 1+a 5=18.(1)求数列{a n }的通项公式;(2)令b n =S nn +c (n ∈N *),是否存在一个非零常数c ,使数列{b n }也为等差数列?若存在,求出c 的值;若不存在,请说明理由. 解 (1)由题设,知{a n }是等差数列,且公差d >0, 则由⎩⎨⎧ a 2a 3=45,a 1+a 5=18,得⎩⎨⎧(a 1+d )(a 1+2d )=45,a 1+(a 1+4d )=18.解得⎩⎨⎧a 1=1,d =4.∴a n =4n -3(n ∈N *).(2)由b n =S nn +c =n (1+4n -3)2n +c =2n ⎝ ⎛⎭⎪⎫n -12n +c ,∵c ≠0,∴可令c =-12,得到b n =2n . ∵b n +1-b n =2(n +1)-2n =2(n ∈N *), ∴数列{b n }是公差为2的等差数列.即存在一个非零常数c =-12,使数列{b n }也为等差数列.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2013·咸阳模拟)已知等差数列{a n }的前n 项和为S n ,S 4=40,S n =210,S n -4=130,则n =( ).A .12B .14C .16D .18解析 S n -S n -4=a n +a n -1+a n -2+a n -3=80,S 4=a 1+a 2+a 3+a 4=40,所以4(a 1+a n )=120,a 1+a n =30,由S n =n (a 1+a n )2=210,得n =14.答案 B2.(2012·广州一模)已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n 为整数的正整数的个数是( ).A .2B .3C .4D .5解析 由A n B n =7n +45n +3得:a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1,要使a n b n 为整数,则需7n +19n +1=7+12n +1为整数,所以n =1,2,3,5,11,共有5个. 答案 D二、填空题(每小题5分,共10分)3.(2013·徐州调研)等差数列{a n }的通项公式是a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项和为________.解析 ∵a n =2n +1,∴a 1=3,∴S n =n (3+2n +1)2=n 2+2n ,∴S n n =n +2,∴⎩⎨⎧⎭⎬⎫S n n 是公差为1,首项为3的等差数列, ∴前10项和为3×10+10×92×1=75.答案 754.(2012·诸城一中月考)设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.解析 设等差数列{a n }的项数为2n +1,S 奇=a 1+a 3+…+a 2n +1=(n +1)(a 1+a 2n +1)2=(n +1)a n +1,S 偶=a 2+a 4+a 6+…+a 2n =n (a 2+a 2n )2=na n +1,∴S 奇S 偶=n +1n =4433,解得n =3,∴项数2n +1=7,S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项. 答案 11 7三、解答题(共25分)5.(12分)在数列{a n }中,a 1=8,a 4=2,且满足a n +2+a n =2a n +1. (1)求数列{a n }的通项公式;(2)设S n 是数列{|a n |}的前n 项和,求S n .解 (1)由2a n +1=a n +2+a n 可得{a n }是等差数列, 且公差d =a 4-a 14-1=2-83=-2.∴a n =a 1+(n -1)d =-2n +10. (2)令a n ≥0,得n ≤5.即当n ≤5时,a n ≥0,n ≥6时,a n <0. ∴当n ≤5时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =-n 2+9n ; 当n ≥6时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5) =-(-n 2+9n )+2×(-52+45) =n 2-9n +40,∴S n =⎩⎨⎧-n 2+9n ,n ≤5,n 2-9n +40,n ≥6.6.(13分)(2012·四川)已知数列{a n }的前n 项和为S n ,且a 2a n =S 2+S n 对一切正整数n 都成立. (1)求a 1,a 2的值;(2)设a 1>0,数列⎩⎨⎧⎭⎬⎫lg 10a 1a n 的前n 项和为T n .当n 为何值时,T n 最大?并求出T n 的最大值.解 (1)取n =1,得a 2a 1=S 2+S 1=2a 1+a 2,① 取n =2,得a 22=2a 1+2a 2,② 由②-①,得a 2(a 2-a 1)=a 2,③(i)若a 2=0,由①知a 1=0, (ii)若a 2≠0,由③知a 2-a 1=1.④由①、④解得,a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2. 综上可得a 1=0,a 2=0;或a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2-2.(2)当a 1>0时,由(1)知a 1=2+1,a 2=2+2.当n ≥2时,有(2+2)a n =S 2+S n ,(2+2)a n -1=S 2+S n -1, 所以(1+2)a n =(2+2)a n -1,即a n =2a n -1(n ≥2), 所以a n =a 1(2)n -1=(2+1)·(2)n -1. 令b n =lg 10a 1a n,则b n =1-lg(2)n -1=1-12(n -1)lg 2=12lg 1002n -1,所以数列{b n }是单调递减的等差数列(公差为-12lg 2), 从而b 1>b 2>…>b 7=lg 108>lg 1=0, 当n ≥8时,b n ≤b 8=12lg 100128<12lg 1=0, 故n =7时,T n 取得最大值,且T n 的最大值为T 7=7(b 1+b 7)2=7(1+1-3lg 2)2=7-212lg 2.。
第 8 讲 函数与方程A 级 基础演练 (时间: 30 分钟 满分: 55 分)一、选择题 (每小题 5 分,共 20 分 ) 1.函数 f(x)=sin x -x 零点的个数是 ().A .0B . 1C . 2D . 3解析 f ′ (x)=cos x -1≤0,∴f(x)单调递减,又 f(0)=0,∴则f(x)= sin x -x 的零点是唯一的. 答案 B2.(2013 ·泰州模拟 )设 f(x)=e x +x -4,则函数 f(x)的零点位于区间 (). A .(-1,0)B .(0,1)C .(1,2)D .(2,3)解析 ∵f(x)=e x +x -4,∴f ′ (x)=e x + 1>0,∴函数 f(x)在 R 上单调递增. 对于 A 项, f(-1)=e -1+ (-1)- 4=- 5+e -1<0,f(0)=- 3<0,f(-1)f(0)>0,A 不 正确,同理可验证 B 、 D 不正确.对于 C 项,∵f(1)= e + 1- 4=e -3<0, f(2) =e 2+ 2- 4= e 2-2>0,f(1)f(2)<0,故选 C.答案 C. ·石家庄期末 ) 函数 f(x)=2 x- 2-a 的一个零点在区间 (1,2)内,则实数 a 3 (2013 x的取值范围是().A .(1,3)B .(1,2)C .(0,3)D .(0,2)解析 由条件可知 f(1)f(2)<0,即 (2-2- a)(4- 1- a)<0,即 a(a -3)<0,解之得 0<a<3.第 1 页共 8 页答案 C4.(2011 ·东山 )已知 f(x)是 R 上最小正周期为 2 的周期函数,且当 0≤x<2 时,f(x) = x3-x,则函数 y=f(x)的图象在区间 [0,6]上与 x 轴的交点的个数为( ).A .6 B. 7 C. 8 D. 9解析当 0≤ x<2 时,令 f(x)=x3-=,得x =或=x 0 x 1.根据周期函数的性质,由f(x)的最小正周期为 2,可知 y= f(x)在[0,6)上有 6 个零点,又f(6)=f(3× 2)=f(0)= 0,∴f(x)在[0,6] 上与 x 轴的交点个数为7.答案 B二、填空题 (每小题 5 分,共 10 分 )x2,x≤0,g(x)=f(x)-x-a,若函数 g(x)有两个零点,5.已知函数 f(x)=f x-1 , x>0,则实数 a 的取值范围为 ________.解析设 n 为自然数,则当n<x≤ n+ 1 时, f(x)=(x- n- 1)2,则当 x>0 时,函数 f(x)的图象是以 1 为周期重复出现.而函数y=x+a 是一族平行直线,当它过点 (0,1)(此时 a= 1)时与函数 f(x)的图象交于一点,向左移总是一个交点,向右移总是两个交点,故实数 a 的取值范围为a<1.答案(-∞, 1)x+1,x≤0,6.函数 f(x)=则函数 y=f[f(x)]+ 1 的所有零点所构成的集合为log2x,x>0,________.解析本题即求方程f[f(x)] =- 1 的所有根的集合,先解方程f(t)=- 1,即t≤0,t>0, 1 1或log2t=- 1,得 t=- 2 或 t=2.再解方程 f(x)=- 2 和 f(x)=2.t+1=- 1第 2 页共 8 页x ≤0, x>0,x ≤0, x>0,即或和1 或 1 x +1=- 2log2x =- 2 x +1=2log2x = 2.1 1 得 x =- 3 或 x = 4和 x =- 2或 x = 2.1 1答案 - 3,- 2,4, 2三、解答题 (共 25 分 )17.(12 分 )设函数 f(x)= 1- x (x>0). (1)作出函数 f(x)的图象;1 1(2)当 0<a<b ,且 f(a)= f(b)时,求 a + b 的值; (3)若方程 f(x)= m 有两个不相等的正根,求 m 的取值范围.解 (1)如图所示.1(2)∵f(x)= 1- x1 x-1,x ∈ 0,1] , =11- x ,x ∈ 1,+∞ ,故 f(x)在 (0,1]上是减函数,而在 (1,+∞ )上是增函数, 由 0<a<b 且 f(a)=f(b),111 1得 0<a<1<b ,且 a -1=1-b ,∴ a +b =2. (3)由函数 f(x)的图象可知,当0<m<1 时,方程 f(x)=m 有两个不相等的正根.8.(13 分 )已知函数 f(x)= x 3 +2x 2 -ax + 1.(1)若函数 f(x)在点 (1, f(1))处的切线斜率为 4,求实数 a 的值; (2)若函数 g(x)= f ′(x)在区间 (-1,1)上存在零点,求实数 a 的取值范围.解 由题意得 g(x)= f ′ (x)=3x 2 +4x - a.(1)f′(1)=3+4-a=4,∴ a=3.第 3 页共 8 页1 (2)法一①当 g(- 1)=- a-1=0,a=- 1 时,g(x)=f′(x)的零点 x=-3∈(-1,1);7②当 g(1)=7-a= 0,a=7 时, f′ (x)的零点 x=-3?(- 1,1),不合题意;③当 g(1)g(- 1)<0 时,- 1<a<7;=4× 4+ 3a ≥0,-1<-2,43<1④当时,-3≤ a<-1.g 1 >0,g -1 >04综上所述, a∈ -3,7 .法二 g(x)=f′(x)在区间 (-1,1)上存在零点,等价于 3x2+4x=a 在区间 (-1,1)上有解,也等价于直线 y=a 与曲线 y=3x2+4x 在(-1,1)有公共点.作图可得4a∈ -3, 7 .或者又等价于当x∈(-1,1)时,求值域.2+4x= 3 x+2 2 4 4.a=3x3 -∈ -,7 3 3B 级能力突破 (时间: 30 分钟满分: 45 分)一、选择题 (每小题 5 分,共 10 分 )1.(2011 ·陕西 )函数 f(x)=x- cos x 在[0,+∞ )内( ).A .没有零点B.有且仅有一个零点C.有且仅有两个零点D.有无穷多个零点解析令 f(x)=0,得x=cos x,在同一坐标系内画出两个函数 y=x与 y=cos x 的图象如图所示,由图象知,两个函数只有一个交点,从而方程x=cos x 只有一个解.∴函数 f(x)只有一个零点.第 4 页共 8 页答案 B2.(2012 ·辽宁 )设函数 f(x)(x∈ R)满足 f(-x)= f(x), f(x)=f(2- x),且当 x∈[0,1]时, f(x)=x3又函数g(x)=π ,则函数h(x)=g(x)-f(x)在-1,3上的. |xcos( x)|2 2零点个数为( ).A .5 B. 6 C. 7D. 8解析由题意知函数 y=f(x)是周期为 2 的偶函数且 0≤x≤1 时, f(x)=x3,则当- 1≤ x≤0 时,f(x)=- x3,且 g(x)=|xcos(x)|π,所以当 x=0 时,f(x)= g(x).当1 3 2x≠0 时,若 0<x≤2,则 x =xcos( x)π,即 x=|cos πx|.同理可以得到在区间-1, 0 ,1, 1 ,1,3上的关系式都是上式,在同一个坐标系中作出所得2 2 2关系式等号两边函数的图象,如图所示,有 5 个根.所以总共有 6 个.答案 B二、填空题 (每小题 5 分,共 10 分 )3.已知函数 f(x)满足 f(x+1)=- f(x),且 f(x)是偶函数,当 x∈[0,1] 时, f(x)=x2.若在区间[-1,3]内,函数g(x)=f(x)-kx-k 有4 个零点,则实数k 的取值范围为________.解析依题意得f(x+ 2)=- f(x+1)=f(x),即函数f(x)是以 2 为周期的函数. g(x)=f(x)-kx- k在区间 [- 1,3]内有 4 个零点,即函数 y=f(x)与 y=k(x+1)的图象在区间 [ -1,3]内有 4 个不同的交点.在坐标平面内画出函数 y =f(x)的图象 (如图所示 ),注意到直线 y=k(x+1)恒过点 (- 1,0),由题及图象可1知,当 k∈ 0,4时,相应的直线与函数y=f(x)在区间 [-1,3] 内有 4 个不同的第 5 页共 8 页1交点,故实数 k 的取值范围是0,4 .1答案0,44.若直角坐标平面内两点 P, Q 满足条件:① P、Q 都在函数 f(x) 的图象上;② P、Q 关于原点对称,则称点对 (P、Q)是函数 f(x)的一个“友好点对” (点对 (P、Q)与点对 (Q , P) 看作同一个“友好点对” ) .已知函数 f(x) =2x2+4x+1,x<0,2 则 f(x)的“友好点对”的个数是 ________.x,x≥0,e解析设 P(x, y)、Q(- x,- y)(x>0)为函数 f(x)的“ 友好点对”,则2 2 2 y=e,- y=2(- x) +4(- x)+1=2x -x4x+1,∴2 2-+=,在同一坐标系中作函数+2x4xx 1 0e2 2y1=e x、y2=- 2x+4x- 1 的图象, y1、y2 的图象有两个交点,所以f(x)有 2 个“友好点对”,故填 2.答案 2三、解答题 (共 25 分 )5.(12 分 )设函数 f(x)=3ax2-2(a+c)x+c (a>0, a, c∈ R).(1)设 a>c>0.若 f(x)>c2-2c+a 对 x∈[1 ,+∞ )恒成立,求 c 的取值范围;(2)函数 f(x)在区间 (0,1)内是否有零点,有几个零点?为什么?a+ c 解(1)因为二次函数 f(x)= 3ax2-2(a+c)x+c 的图象的对称轴为 x=3a,由a+c 2a 2条件 a>c>0,得 2a>a+ c,故3a <3a=3<1,即二次函数 f(x)的对称轴在区间[1,+∞ )的左边,且抛物线开口向上,故f(x)在[1,+∞ )内是增函数.若f(x)>c2- 2c+a 对 x∈ [1,+∞ )恒成立,则 f(x)min= f(1)>c2- 2c+a,即 a-c>c2- 2c+a,得 c2-c<0,第 6 页共 8 页所以 0<c<1.(2)①若 f(0) f(1)·=c·(a-c)<0,则c<0,或 a<c,二次函数 f(x)在 (0,1)内只有一个零点.②若 f(0)=c>0,f(1)= a- c>0,则 a>c>0.因为二次函数 f(x)=3ax2-2(a+c)x+ c 的图象的对称轴是 x=a+c而a+c =3a .f 3a -a2+ c2-ac<0,3aa+ c a+ c所以函数 f(x)在区间 0,3a和3a ,1 内各有一个零点,故函数 f(x)在区间(0,1)内有两个零点.6.(13 分 )已知二次函数 f(x)=x2- 16x+q+3.(1)若函数在区间 [ -1,1]上存在零点,求实数q 的取值范围;(2)是否存在常数 t(t≥0),当 x∈[t,10]时,f(x)的值域为区间 D,且区间 D 的长度为12- t(视区间 [a, b] 的长度为 b-a).解(1)∵函数 f(x)= x2-16x+q+3 的对称轴是 x= 8,∴f(x)在区间 [ -1,1]上是减函数.f 1 ≤ 0,∵函数在区间 [ - 1,1] 上存在零点,则必有即f -1 ≥0,1- 16+q+3≤0,∴- 20≤q≤12.1+ 16+q+3≥0,(2)∵0≤ t<10, f(x)在区间 [0,8] 上是减函数,在区间 [8,10] 上是增函数,且对称轴是 x=8.①当 0≤t≤ 6 时,在区间 [t,10]上, f(t)最大, f(8)最小,∴f(t)-f(8)=12-t,即 t2- 15t+52=0,解得 t=15±17,∴ t=15- 17 2 2;②当 6<t≤8 时,在区间 [t,10]上, f(10)最大, f(8)最小,∴f(10)-f(8)=12-t,解得 t=8;③当 8<t<10 时,在区间 [t,10]上, f(10)最大, f(t)最小,第7 页共 8 页∴f(10)-f(t)=12- t,即 t2-17t+72= 0,解得 t=8,9,∴t=9.15-17综上可知,存在常数t=,8,9 满足条件 .特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见《创新设计·高考总复习》光盘中内容 .第8 页共 8 页。
第2讲 直接证明与间接证明A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2013·中山调研)设a ,b ∈R ,则“a +b =1”是“4ab ≤1”的 ( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 若“a +b =1”,则4ab =4a (1-a )=-4⎝ ⎛⎭⎪⎫a -122+1≤1;若“4ab ≤1”,取a =-4,b =1,a +b =-3,即“a +b =1”不成立;则“a +b =1”是“4ab ≤1”的充分不必要条件. 答案 A2.(2013·金华十校联考)对于平面α和共面的直线m ,n ,下列命题中真命题是( ).A .若m ⊥α,m ⊥n ,则n ∥αB .若m ∥α,n ∥α,则m ∥nC .若m ⊂α,n ∥α,则m ∥nD .若m ,n 与α所成的角相等,则m ∥n解析 对于平面α和共面的直线m ,n ,真命题是“若m ⊂α,n ∥α,则m ∥n ”. 答案 C3.要证:a 2+b 2-1-a 2b 2≤0,只要证明( ).A .2ab -1-a 2b 2≤0 B .a 2+b 2-1-a 4+b 42≤0C.(a +b )22-1-a 2b 2≤0D .(a 2-1)(b 2-1)≥0解析 因为a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0,故选D.4.(2013·四平二模)设a,b是两个实数,给出下列条件:①a+b>1;②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1.其中能推出:“a,b中至少有一个大于1”的条件是().A.②③B.①②③C.③D.③④⑤解析若a=12,b=23,则a+b>1,但a<1,b<1,故①推不出;若a=b=1,则a+b=2,故②推不出;若a=-2,b=-3,则a2+b2>2,故④推不出;若a=-2,b=-3,则ab>1,故⑤推不出;对于③,即a+b>2,则a,b中至少有一个大于1,反证法:假设a≤1且b≤1,则a+b≤2,与a+b>2矛盾,因此假设不成立,a,b中至少有一个大于1.答案 C二、填空题(每小题5分,共10分)5.用反证法证明命题“a,b∈N,ab可以被5整除,那么a,b中至少有一个能被5整除”,那么假设的内容是________________________.解析“至少有n个”的否定是“最多有n-1个”,故应假设a,b中没有一个能被5整除.答案a,b中没有一个能被5整除6.设a>b>0,m=a-b,n=a-b,则m,n的大小关系是________.解析取a=2,b=1,得m<n.再用分析法证明:a-b<a-b⇐a<b+a-b⇐a<b+2b·a-b+a-b⇐2b·a-b>0,显然成立.三、解答题(共25分)7.(12分)若a ,b ,c 是不全相等的正数,求证: lg a +b 2+lg b +c 2+lg c +a2>lg a +lg b +lg c . 证明 ∵a ,b ,c ∈(0,+∞),∴a +b 2≥ab >0,b +c 2≥bc >0,a +c2≥ac >0. 又a ,b ,c 是不全相等的正数,故上述三个不等式中等号不能同时成立. ∴a +b 2·b +c 2·c +a2>abc 成立. 上式两边同时取常用对数, 得lg ⎝ ⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg(abc ),∴lg a +b 2+lg b +c 2+lg c +a2>lg a +lg b +lg c .8.(13分)(2013·鹤岗模拟)设数列{a n }是公比为q 的等比数列,S n 是它的前n 项和. (1)求证:数列{S n }不是等比数列; (2)数列{S n }是等差数列吗?为什么?(1)证明 假设数列{S n }是等比数列,则S 22=S 1S 3, 即a 21(1+q )2=a 1·a 1·(1+q +q 2),因为a 1≠0,所以(1+q )2=1+q +q 2, 即q =0,这与公比q ≠0矛盾, 所以数列{S n }不是等比数列.(2)解 当q =1时,S n =na 1,故{S n }是等差数列; 当q ≠1时,{S n }不是等差数列,否则2S 2=S 1+S 3, 即2a 1(1+q )=a 1+a 1(1+q +q 2), 得q =0,这与公比q ≠0矛盾.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2013·漳州一模)设a ,b ,c 均为正实数,则三个数a +1b ,b +1c ,c +1a ( ). A .都大于2B .都小于2C .至少有一个不大于2D .至少有一个不小于2解析 ∵a >0,b >0,c >0,∴⎝ ⎛⎭⎪⎫a +1b +⎝ ⎛⎭⎪⎫b +1c +⎝ ⎛⎭⎪⎫c +1a =⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b + ⎝ ⎛⎭⎪⎫c +1c ≥6,当且仅当a =b =c 时,“=”成立,故三者不能都小于2,即至少有一个不小于2. 答案 D2.(2012·滨州期末)如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ).A .△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形解析 由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形.不妨令⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin ⎝ ⎛⎭⎪⎫π2-A 1,sin B 2=cos B 1=sin ⎝ ⎛⎭⎪⎫π2-B 1,sin C 2=cos C 1=sin ⎝ ⎛⎭⎪⎫π2-C 1,得⎩⎪⎨⎪⎧A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1.那么,A 2+B 2+C 2=π2,这与三角形内角和为π相矛盾. 所以假设不成立,所以△A 2B 2C 2是钝角三角形. 答案 D二、填空题(每小题5分,共10分)3.(2013·株洲模拟)已知a ,b ,μ∈(0,+∞)且1a +9b =1,则使得a +b ≥μ恒成立的μ的取值范围是________. 解析 ∵a ,b ∈(0,+∞)且1a +9b =1,∴a +b =(a +b )⎝ ⎛⎭⎪⎫1a +9b =10+⎝ ⎛⎭⎪⎫9a b +b a ≥10+29=16,∴a +b 的最小值为16.∴要使a +b ≥μ恒成立,需16≥μ,∴0<μ≤16. 答案 (0,16]4.(2012·金华一模改编)已知下表中的对数值有且只有一个是错误的.解析 由2a -b =lg 3,得lg 9=2lg 3=2(2a -b )从而lg 3和lg 9正确,假设lg 5=a +c -1错误,则由⎩⎪⎨⎪⎧ 1+a -b -c =lg 6=lg 2+lg 3,3(1-a -c )=lg 8=3lg 2,得⎩⎪⎨⎪⎧lg 2=1-a -c ,lg 3=2a -b ,所以lg 5=1-lg 2=a +c .因此lg 5=a +c -1错误,正确结论是lg 5=a +c . 答案 lg 5=a +c 三、解答题(共25分)5.(12分)已知f (x )=x 2+ax +b . (1)求:f (1)+f (3)-2f (2);(2)求证:|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.(1)解 ∵f (1)=a +b +1,f (2)=2a +b +4,f (3)=3a +b +9, ∴f (1)+f (3)-2f (2)=2.(2)证明 假设|f (1)|,|f (2)|,|f (3)|都小于12. 则-12<f (1)<12,-12<f (2)<12,-12<f (3)<12, ∴-1<-2f (2)<1,-1<f (1)+f (3)<1. ∴-2<f (1)+f (3)-2f (2)<2, 这与f (1)+f (3)-2f (2)=2矛盾. ∴假设错误,即所证结论成立.6.(13分)对于定义域为[0,1]的函数f (x ),如果同时满足以下三条:①对任意的x ∈[0,1],总有f (x )≥0;②f (1)=1;③若x 1≥0,x 2≥0,x 1+x 2≤1,都有f (x 1+x 2)≥f (x 1)+f (x 2)成立,则称函数f (x )为理想函数. (1)若函数f (x )为理想函数,求f (0)的值;(2)判断函数g (x )=2x -1(x ∈[0,1])是否为理想函数,并予以证明. 解 (1)取x 1=x 2=0可得f (0)≥f (0)+f (0),∴f (0)≤0, 又由条件①得f (0)≥0,故f (0)=0.(2)显然g (x )=2x -1在[0,1]上满足条件①g (x )≥0; 也满足条件②g (1)=1. 若x 1≥0,x 2≥0,x 1+x 2≤1, 则g (x 1+x 2)-[g (x 1)+g (x 2)] =2x 1+x 2-1-[(2x 1-1)+(2x 2-1)]=2x 1+x 2-2x 1-2x 2+1=(2x 2-1)(2x 1-1)≥0, 即满足条件③,故g (x )是理想函数.。
A 级 基础演练(时间:30分钟 满分:55分)一、选择题侮小题5分,共20分) 1. f (x )是定义在 R 上的奇函数,且满足1Xf(x + 2) = f(x),又当 x € (0,1)时,f(x) = 2-1,则 f(log 26)等于().51A .— 5B .— 6C .— 6D .—亠 21解析 f(log 26) = — f(log 26) =— f(log 26 — 2).33 1T Iog 26 — 2 = log 22 €(0,1),11二 f(log 26) =— 2 答案 D2. (2011 •安徽)设f (x )是定义在R 上的奇函数,当x < 0时,( ).A .— 3B .— 1C . 1D . 32解析 T f(x)是定义在R 上的奇函数,且x < 0时,f(x) = 2x — x ,A f(1) = — f(—04第3讲 函数的奇偶性与周期性二 f log 22 = 2,f(x) = 2x 2— x ,则 f(1)等于1) = —2X (—1) + (—1) =—3.3 .定义在R 上的函数f(x)满足f(x) = f(x + 2),当x € [3,5]时,f(x) = 2 —|x —4|,则下列不等式一定成立的是().2 n 2 nA . f cos 3 >f sin 3 B. f(sin 1)<f(cos 1)n nC. f sin 6 <f cos 6D. f(cos 2)>f(sin 2)解析当x € [ —1,1]时,x+ 4 € [3,5],由f(x) = f(x + 2) = f(x + 4) = 2 —|x + 4 —4|=2 —|x|,第1页共6页时2x— 1<0,故f(x)为R 上的增函数•答案C 二、填空题侮小题5分,共10分)25. (2011 •浙江)若函数f(x) = x — |x + a|为偶函数,2a| = 1 — | — 1 + a|,…a = 0. 答案 026. (2012 •上海)已知 y = f(x) + x 是奇函数,且 f(1) = 1.若 g(x) = f(x) + 2,贝V g( — 1)2解析因为y = f(x) + x 是奇函数,且x = 1时,y = 2,所以当x =— 1时,y =2—2,即f( — 1) + (— 1)=— 2,得 f( — 1) = — 3,所以 g( — 1) = f( — 1) + 2 =— 1.答案 —1三、解答题(共25分)7. (12分)已知f(x)是定义在R 上的不恒为零的函数,且对任意 x , y , f(x)都满足f(xy) = yf(x) + xf(y).显然当x € [ — 1,0]时,f(x)为增函数;当 2,sin答案x 2 n 3 132 >2 , 又 f —2x € [0,1]时,f(x)为减函数,ncos 2 n4 (2013连云港一模)已知函数f(x)>f,所以 f cos 3 >f sinA .偶函数,且单调递增 —x1—2, x >0 ,x2 —1, x<0 ,B •偶函数,且单调递减 则该函数是C •奇函数,且单调递增D •奇函数,且单调递减解析 当x>0时,f( — x) = 21 = — f(x);当 x<0 时,f( — x) = 1 — 2(-x)xL2 =— f(x) •当 xx上为增函数,f(x) = 2 — 1在(—x ■A — X=0 时,f(0) = 0,故 f(x)为奇函数,且 f(x) = 1 — 2—在[0 ,+x )■I—x 1 — 2,0)上为增函数,又x > 0时>0, x<0解析 由题意知,函数 f(x) = x — |x + a|为偶函数,贝I 」f(1) = f( — 1) ,••• 1 —11 +(1) 求f(1), f(—1)的值;(2) 判断函数f(x)的奇偶性.解(1)因为对定义域内任意x, y, f(x)满足f(xy) = yf(x) + xf(y),所以令x= y第2页共6页=1,得f⑴=0,令x = y =—1,得f( - 1) = 0.⑵令y = —1,有f( —x)=—f(x) + xf( —1),代入f( —1) = 0 得f( —x) = —f(x),所以f(x)是(— *,+* )上的奇函数.8 (13分)设定义在[—2,2]上的偶函数f(x)在区间[—2,0]上单调递减,若f(1 —m)vf(m),求实数m的取值范围.解由偶函数性质知f(x)在[0,2]上单调递增,且f(1 —m) = f(|1 —m|), f(m)= f(|m|),—2 < 1 —m < 2,因此f(1 —m)vf(m)等价于—2< m<2,|1 —m|<|m|.1解得:2<m < 2.1因此实数m的取值范围是 2 , 2 .JuB级能力突破(时间:30分钟满分:45分)■ ■一、选择题侮小题5分,共10分)1.函数f(x)的定义域为R,若f(x + 1)与f(x —1)都是奇函数,则()・A . f(x)是偶函数B. f(x)是奇函数C. f(x) = f(x + 2)D. f(x + 3)是奇函数解析由已知条件,得f( —x + 1) = —f(x + 1), f( —x —1) = —f(x —1).由f( —x + 1) =—f(x + 1),得f( —x + 2) = —f(x); 由f( —x —1) = —f(x —1),得f( —x —2)=—f(x) •则f( —x+ 2) = f( —x —2),即f(x + 2) = f(x —2),由此可得f(x + 4) = f(x), 即函数f(x)是以4为周期的周期函数,所以f(x + 3) = f(x —1),即函数f(x + 3)也是奇函数.答案D•福建殳函数1, x为有理数,) D(x)=0, x为无理数,第3页共6页则下列结论错误的是().2 (2012A . D(x)的值域为{0,1} B. D(x)是偶函数C. D(x)不是周期函数D. D(x)不是单调函数解析显然D(x)不单调,且D(x)的值域为{0,1},因此选项A、D正确.若x是无理数,—x , X + 1是无理数;若X是有理数,—x , X + 1也是有理数・•••D( —x) = D(x), D(x + 1) = D(x) •贝U D(x)是偶函数,D(x)为周期函数,B正确,C错误.答案C 二、填空题侮小题5分,共10分)3・f(x) = 2x + sin x为定义在(一1,1)上的函数,则不等式f(1 —a) + f(1 —2a)<0的解集是___________ .解析f(x)在(—1,1)上是增函数,且f(x)为奇函数•于是原不等式为f(1 —a)<f(2a —1<1—a<1 ,—1)等价于—1<2a —1<1 ,1 —a<2a —1.2解得3<a<1.2答案3,14•若定义域为R的奇函数f(x)满足f(1 + x) = —f(x),则下列结论:①f(x)的图象1 1关于点,0对称;②f(x)的图象关于直线x= 对称;③f(x)是周期函数,且22 2是它的一个周期;④f(x)在区间(一1,1)上是单调函数•其中所有正确的序号是1 解析由函数为奇函数且满足f(1 + x)=—f(x),得f(x + 2) = f(x),又f 1 + x—2「111 ・=—f x —, f + x = f —x,所以②③正确.2 2 2答案②③三、解答题(共25分)2 a5. (12分)已知函数f(x) = x + x(x半0,常数a€ R)・(1) 讨论函数f(x)的奇偶性,并说明理由;(2) 若函数f(x)在x€ [2 ,+比)上为增函数.求实数a的取值范围.解(1)函数f(x)的定义域为{x|x工0},2当a= 0 时,f(x) = x , (x工0)第4页共6页显然为偶函数;当a半0时,f(1) = 1 + a, f(- 1)= 1 - a,因此f(1)半 f(-1),且f( - 1)半一f(1),2 a所以函数f(x) = X2+ X既不是奇函数,也不是偶函数.3a 2x —a(2)f f (x)=2x —x2= X2,当a< 0时,f' (x)>0 ,贝U f(x)在[2 ,+* )上是增函数,32x - a当a>0 时,由f‘ (x) =x2 >0 ,3坊解得X>叫,由f(x)在[2 , +TO)上是增函数,23 a可知< 2.解得0<a < 16.A 综上可知实数a的取值范围是(— J 16].6. (13分)已知函数f(x)的定义域为R,且满足f(x + 2) = - f(x).(1)求证:f(x)是周期函数;1 12在⑵若f(x)为奇函数,且当0W x < 1时,f(x) = 2x,求使f(x) = - [0,2014]上的所有x的个数.(1) 证明••• f(x + 2) = - f(x),f(x + 4) = - f(x + 2) =- [ -f(x)] = f(x),••• f(x)是以4为周期的周期函数.1(2) 解当0< x< 1 时,f(x) = 2x,设一K x < 0,贝U 0 <- x < 1,1 1二f( —x)= 2(-x) = - 2x.T f(x)是奇函数,••• f(-x) =- f(x),• ••—f(x) = - 1,即=x2 f(x) 2x.1故f(x) = 2x( —1 < x < 1).又设1<x<3,则—1<x —2<1,第5页共6页f(x —2) = 2(x —2).又V f(x)是以4为周期的周期函数1二f(x—2) = f(x + 2)=—f(x) ,•••—f(x) = 2(x —2),1•f(x) = —2(x —2)(1<x<3).12X , — 1 < x < 1 , …f(x)=1—2 x —2 , 1<x<3.1由f(x) = —2,解得x =—1.V f(x)是以4为周期的周期函数,1•f(x) = —2 的所有x = 4n —1(n € Z).1 2 015令0 w 4n —1< 2 014,则4= n W 4 '又V n€ Z ,• 1 w n w 503(n € Z ),1•••在[0,2 014]上共有503 个x 使f(x) = —2・特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见《创新设计•高考总复习》光盘中内容.第6页共6页。
第2讲 一元二次不等式及其解法A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2012·南通二模)已知f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2+3x ,x <0,则不等式f (x )<f (4)的解集为( ).A .{x |x ≥4}B .{x |x <4}C .{x |-3<x <0}D .{x |x <-3}解析 f (4)=42=2,不等式即为f (x )<2. 当x ≥0时,由x2<2,得0≤x <4;当x <0时,由-x 2+3x <2,得x <1或x >2,因此x <0. 综上,x <4.故f (x )<f (4)的解集为{x |x <4}. 答案 B2.不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是 ( ). A .[-4,4]B .(-4,4)C .(-∞,-4]∪[4,+∞)D .(-∞,-4)∪(4,+∞)解析 不等式x 2+ax +4<0的解集不是空集,只需Δ=a 2-16>0,∴a <-4或a >4,故选D. 答案 D3.设a >0,不等式-c <ax +b <c 的解集是{x |-2<x <1},则a ∶b ∶c = ( ). A .1∶2∶3 B .2∶1∶3 C .3∶1∶2D .3∶2∶1解析 ∵-c <ax +b <c ,又a >0,∴-b +c a <x <c -ba . ∵不等式的解集为{x |-2<x <1}, ∴⎩⎪⎨⎪⎧ -b +c a =-2,c -b a =1,∴⎩⎪⎨⎪⎧b =a 2,c =32a ,∴a ∶b ∶c =a ∶a 2∶3a2=2∶1∶3. 答案 B4.(2013·莆田二模)不等式(x 2-2)log 2x >0的解集是( ).A .(0,1)∪(2,+∞)B .(-2,1)∪(2,+∞)C .(2,+∞)D .(-2,2)解析 原不等式等价于⎩⎨⎧ x 2-2>0,log 2x >0或⎩⎨⎧x 2-2<0,log 2x <0.∴x >2或0<x <1,即不等式的解集为(0,1)∪(2,+∞). 答案 A二、填空题(每小题5分,共10分)5.(2013·烟台模拟)已知关于x 的不等式ax 2+2x +c >0的解集为⎝ ⎛⎭⎪⎫-13,12,则不等式-cx 2+2x -a >0的解集为________.解析 由ax 2+2x +c >0的解集为⎝ ⎛⎭⎪⎫-13,12知a <0,且-13,12为方程ax 2+2x +c=0的两个根,由根与系数的关系得-13+12=-2a ,-13×12=ca ,解得a =-12,c =2,∴-cx 2+2x -a >0,即2x 2-2x -12<0,其解集为(-2,3). 答案 (-2,3)6.在实数集上定义运算⊗:x ⊗y =x (1-y ),若不等式(x -a )⊗(x +a )<1对任意实数x 恒成立,则实数a 的取值范围是________.解析 由题意知(x -a )⊗(x +a )=(x -a )(1-x -a )=-x 2+x +a 2-a .故-x 2+x +a 2-a <1对任意x ∈R 都成立.即-x 2+x <-a 2+a +1对任意x ∈R 都成立.而-x 2+x =-⎝ ⎛⎭⎪⎫x -122+14≤14,只需-a 2+a +1>14即可,即4a 2-4a -3<0,解得-12<a <32. 答案 ⎝ ⎛⎭⎪⎫-12,32三、解答题(共25分)7.(12分)已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }, (1)求a ,b ;(2)解不等式ax 2-(ac +b )x +bc <0.解 (1)因为不等式ax 2-3x +6>4的解集为{x |x <1或x >b },所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,且b >1. 由根与系数的关系,得⎩⎪⎨⎪⎧1+b =3a ,1×b =2a .解得⎩⎨⎧a =1,b =2.(2)由(1)知不等式ax 2-(ac +b )x +bc <0为x 2-(2+c )x +2c <0,即(x -2)(x -c )<0.①当c >2时,不等式(x -2)(x -c )<0的解集为{x |2<x <c };②当c <2时,不等式(x -2)(x -c )<0的解集为{x |c <x <2};③当c =2时,不等式(x -2)(x -c )<0的解集为∅.综上所述:当c >2时,不等式的解集为{x |2<x <c }; 当c <2时,不等式的解集为{x |c <x <2}; 当c =2时,不等式的解集为∅.8.(13分)(2013·淮南质检)已知抛物线y =(m -1)x 2+(m -2)x -1(x ∈R ). (1)当m 为何值时,抛物线与x 轴有两个交点?(2)若关于x 的方程(m -1)x 2+(m -2)x -1=0的两个不等实根的倒数平方和不大于2,求m 的取值范围. 解 (1)根据题意,m ≠1且Δ>0,即Δ=(m -2)2-4(m -1)(-1)>0,得m 2>0, 所以m ≠1且m ≠0.(2)在m ≠0且m ≠1的条件下,⎩⎪⎨⎪⎧x 1+x 2=m -21-m ,x 1·x 2=11-m ,因为1x 1+1x 2=x 1+x 2x 1x 2=m -2,所以1x 21+1x 22=⎝ ⎛⎭⎪⎫1x 1+1x 22-2x 1x 2 =(m -2)2+2(m -1)≤2. 得m 2-2m ≤0,所以0≤m ≤2.所以m 的取值范围是{m |0<m <1或1<m ≤2}.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2013·长沙模拟)已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ).A .(-∞,-1)∪(0,+∞)B .(-∞,0)∪(1,+∞)C .(-1,0)D .(0,1)解析 ∵f (x )=ax 2-(a +2)x +1,Δ=(a +2)2-4a =a 2+4>0, ∴函数f (x )=ax 2-(a +2)x +1必有两个不同的零点, 又f (x )在(-2,-1)上有一个零点,则f (-2)f (-1)<0, ∴(6a +5)(2a +3)<0,∴-32<a <-56,又a ∈Z , ∴a =-1,不等式f (x )>1即为-x 2-x >0, 解得-1<x <0. 答案 C2.(2012·南通期末)若不等式x 2-2ax +a >0对x ∈R 恒成立,则关于t 的不等式a 2t +1<at 2+2t -3<1的解集为( ).A .(1,2)B .(-2,1)C .(-2,2)D .(-3,2)解析 若不等式x 2-2ax +a >0对x ∈R 恒成立,则Δ=4a 2-4a <0,所以0<a <1.又a 2t +1<at 2+2t -3<1,则2t +1>t 2+2t -3>0,即⎩⎨⎧2t +1>t 2+2t -3,t 2+2t -3>0,所以1<t <2. 答案 A二、填空题(每小题5分,共10分)3.(2013·大同一模)已知函数f (x )=-x 2+2x +b 2-b +1(b ∈R ),若当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是________. 解析 依题意,f (x )的对称轴为x =1,且开口向下, ∴当x ∈[-1,1]时,f (x )是增函数.若f (x )>0恒成立,则f (x )min =f (-1)=-1-2+b 2-b +1>0,即b 2-b -2>0,∴(b -2)(b +1)>0,∴b >2或b <-1. 答案 (-∞,-1)∪(2,+∞)4.(2012·浙江)设a ∈R ,若x >0时均有[(a -1)x -1](x 2-ax -1)≥0,则a =________. 解析 显然a =1不能使原不等式对x >0恒成立,故a ≠1且当x 1=1a -1,a ≠1时原不等式成立.对于x 2-ax -1=0,设其两根为x 2,x 3,且x 2<x 3,易知x 2<0,x 3>0.当x >0时,原不等式恒成立,故x 1=1a -1满足方程x 2-ax -1=0,代入解得a =32或a =0(舍去). 答案 32三、解答题(共25分)5.(12分)设函数f (x )=a 2ln x -x 2+ax ,a >0. (1)求f (x )的单调区间;(2)求所有的实数a ,使e -1≤f (x )≤e 2对x ∈[1,e]恒成立. 注 e 为自然对数的底数.解 (1)因为f (x )=a 2ln x -x 2+ax ,其中x >0, 所以f ′(x )=a 2x -2x +a =-(x -a )(2x +a )x.由于a >0,所以f (x )的增区间为(0,a ),减区间为(a ,+∞).(2)由题意得,f (1)=a -1≥e -1,即a ≥e. 由(1)知f (x )在[1,e]内单调递增,要使e -1≤f (x )≤e 2,对x ∈[1,e]恒成立, 只要⎩⎨⎧f (1)=a -1≥e -1,f (e )=a 2-e 2+a e ≤e 2,解得a =e. 6.(13分)(2013·金华模拟)设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a ,比较f (x )与m 的大小. 解 (1)由题意知,F (x )=f (x )-x =a (x -m )(x -n ), 当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2};当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f (x )-m =F (x )+x -m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1), ∵a >0,且0<x <m <n <1a ,∴x -m <0,1-an +ax >0. ∴f (x )-m <0,即f (x )<m .。
第9讲 函数的应用A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2013·成都调研)在我国大西北,某地区荒漠化土地面积每年平均比上一年增长10.4%,专家预测经过x 年可能增长到原来的y 倍,则函数y =f (x )的图象大致为 ( ).解析 由题意可得y =(1+10.4%)x .答案 D2.(2013·青岛月考)某电信公司推出两种手机收费方式:A种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t (分钟)与打出电话费s (元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差 ( ).A .10元B .20元C .30元D.403元 解析 设A 种方式对应的函数解析式为s =k 1t +20,B 种方式对应的函数解析式为s =k 2t ,当t =100时,100k 1+20=100k 2,∴k 2-k 1=15,t =150时,150k 2-150k 1-20=150×15-20=10.答案 A3.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x -0.15x 2和L 2=2x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得最大利润为( ). A .45.606万元B .45.6万元C .45.56万元D .45.51万元解析 依题意可设甲销售x 辆,则乙销售(15-x )辆,总利润S =L 1+L 2,则总利润S =5.06x -0.15x 2+2(15-x )=-0.15x 2+3.06x +30=-0.15(x -10.2)2+0.15×10.22+30(x ≥0),∴当x =10时,S max =45.6(万元).答案 B4.(2013·太原模拟)某汽车运输公司购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y (单位:10万元)与营运年数x (x ∈N *)为二次函数关系(如图所示),则每辆客车营运多少年时,其营运的年平均利润最大( ). A .3 B .4 C .5 D .6解析 由题图可得营运总利润y =-(x -6)2+11,则营运的年平均利润y x =-x-25x +12,∵x ∈N *,∴y x ≤-2 x ·25x +12=2,当且仅当x =25x ,即x =5时取“=”.∴x =5时营运的年平均利润最大.答案 C二、填空题(每小题5分,共10分)5.为了保证信息安全,传输必须使用加密方式,有一种方式其加密、解密原理如下:明文――→加密密文――→发送密文――→解密明文已知加密为y =a x -2(x 为明文,y 为密文),如果明文“3”通过加密后得到密文为“6”,再发送,接受方通过解密得到明文“3”,若接受方接到密文为“14”,则原发的明文是________.解析 依题意y =a x -2中,当x =3时,y =6,故6=a 3-2,解得a =2.所以加密为y =2x -2,因此,当y =14时,由14=2x -2,解得x =4.答案 46.如图,书的一页的面积为600 cm 2,设计要求书面上方空出2cm 的边,下、左、右方都空出1 cm 的边,为使中间文字部分的面积最大,这页书的长、宽应分别为________.解析 设长为a cm ,宽为b cm ,则ab =600,则中间文字部分的面积S =(a -2-1)(b -2)=606-(2a +3b )≤606-26×600=486,当且仅当2a =3b ,即a =30,b =20时,S max =486. 答案 30 cm 、20 cm三、解答题(共25分)7.(12分)为了发展电信事业方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的“如意卡”与“便民卡”在某市范围内每月(30天)的通话时间x (分)与通话费y (元)的关系分别如图①、②所示.(1)分别求出通话费y 1,y 2与通话时间x 之间的函数关系式;(2)请帮助用户计算,在一个月内使用哪种卡便宜?解 (1)由图象可设y 1=k 1x +29,y 2=k 2x ,把点B (30,35),C (30,15)分别代入y 1,y 2得k 1=15,k 2=12.∴y 1=15x +29,y 2=12x .(2)令y 1=y 2,即15x +29=12x ,则x =9623.当x =9623时,y 1=y 2,两种卡收费一致;当x <9623 时,y 1>y 2,即使用“便民卡”便宜;当x >9623时,y 1<y 2,即使用“如意卡”便宜.8.(13分)(2013·济宁模拟)某单位有员工1 000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出x (x ∈N *)名员工从事第三产业,调整后他们平均每人每年创造利润为10⎝ ⎛⎭⎪⎫a -3x 500万元(a >0),剩下的员工平均每人每年创造的利润可以提高0.2x %.(1)若要保证剩余员工创造的年总利润不低于原来1 000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)在(1)的条件下,若调整出的员工创造的年总利润始终不高于剩余员工创造的年总利润,则a 的取值范围是多少?解 (1)由题意得:10(1 000-x )(1+0.2x %)≥10×1 000,即x 2-500x ≤0,又x >0,所以0<x ≤500.即最多调整500名员工从事第三产业.(2)从事第三产业的员工创造的年总利润为10⎝ ⎛⎭⎪⎫a -3x 500x 万元,从事原来产业的员工的年总利润为10(1 000-x )(1+0.2x %)万元,则10⎝ ⎛⎭⎪⎫a -3x 500x ≤10(1 000-x )(1+0.2x %),所以ax -3x 2500≤1 000+2x -x -1500x 2,所以ax ≤2x 2500+1 000+x ,即a ≤2x 500+1 000x +1恒成立,因为2500x +1 000x ≥2 2x 500×1 000x =4,当且仅当2x 500=1 000x ,即x =500时等号成立.所以a ≤5,又a >0,所以0<a ≤5,即a 的取值范围为(0,5].B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2013·潍坊联考)一张正方形的纸片,剪去两个一样的小矩形得到一个“E”形图案,如图所示,设小矩形的长、宽分别为x ,y剪去部分的面积为20,若2≤x ≤10,记y =f (x ),则y =f (x )的图象是 ( ).解析 由题意得2xy =20,即y =10x ,当x =2时,y =5,当x =10时,y =1时,排除C ,D ,又2≤x ≤10,排除B.答案 A2.(2011·湖北)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t 30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln 2(太贝克/年),则M (60)=( ). A .5太贝克B .75ln 2太贝克C .150ln 2太贝克D .150太贝克 解析 由题意M ′(t )=M 02-t 30⎝ ⎛⎭⎪⎫-130ln 2, M ′(30)=M 02-1×⎝ ⎛⎭⎪⎫-130ln 2=-10ln 2, ∴M 0=600,∴M (60)=600×2-2=150.答案 D二、填空题(每小题5分,共10分)3.(2013·阜阳检测)按如图所示放置的一边长为1的正方形P ABC 沿x 轴滚动,设顶点P (x ,y )的轨迹方程是y=f (x ),则y =f (x )在其两个相邻零点间的图象与x 轴所围区域的面积为________.解析 将P 点移到原点,开始运动,当P 点第一次回到x 轴时经过的曲线是三段首尾相接的圆弧,它与x 轴围成的区域面积为π4+⎝ ⎛⎭⎪⎫π2+1+π4=π+1. 答案 π+14.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________km. 解析 由已知条件y =⎩⎨⎧ 8,0<x ≤3,8+2.15(x -3)+1,3<x ≤8,8+2.15×5+2.85(x -8)+1,x >8,由y =22.6解得x =9.答案 9三、解答题(共25分)5.(12分)(2011·湖南)如图,长方体物体E 在雨中沿面P (面积为S )的垂直方向做匀速度移动,速度为v (v >0),雨速沿E 移动方向的分速度为c (c ∈R ).E 移动时单位时间内的淋雨量包括两部分:①P 或P 的平行面(只有一个面淋雨)的淋雨量,假设其值与|v -c |×S 成正比,比例系数为110;②其他面的淋雨量之和,其值为12.记y 为E 移动过程中的总淋雨量.当移动距离d =100,面积S =32时,(1)写出y 的表达式;(2)设0<v ≤10,0<c ≤5,试根据c 的不同取值范围,确定移动速度v ,使总淋雨量y 最少.解 (1)由题意知,E 移动时单位时间内的淋雨量为320|v -c |+12,故y =100v ⎝ ⎛⎭⎪⎫320|v -c |+12=5v(3|v -c |+10). (2)由(1)知,当0<v ≤c 时,y =5v (3c -3v +10)=5(3c +10)v-15; 当c <v ≤10时,y =5v (3v -3c +10)=5(10-3c )v+15. 故y =⎩⎪⎨⎪⎧ 5(3c +10)v -15,0<v ≤c ,5(10-3c )v +15,c <v ≤10.①当0<c ≤103时,y 是关于v 的减函数,故当v =10时,y min =20-3c 2.②当103<c ≤5时,在(0,c ]上,y 是关于v 的减函数;在(c,10]上,y 是关于v的增函数.故当v =c 时,y min =50c .6.(13分)(2013·徐州模拟)某学校要建造一个面积为10 000平方米的运动场.如图,运动场是由一个矩形ABCD 和分别以AD 、BC 为直径的两个半圆组成.跑道是一条宽8米的塑胶跑道,运动场除跑道外,其他地方均铺设草皮.已知塑胶跑道每平方米造价为150元,草皮每平方米造价为30元.(1)设半圆的半径OA =r (米),设建立塑胶跑道面积S 与r 的函数关系S (r );(2)由于条件限制r ∈[30,40],问当r 取何值时,运动场造价最低?最低造价为多少?(精确到元)解 (1)塑胶跑道面积S =π[r 2-(r -8)2]+8×10 000-πr 22r ×2 =80 000r +8πr -64π.∵πr 2<10 000,∴0<r <100π. (2)设运动场的造价为y 元,y =150×⎝ ⎛⎭⎪⎫80 000r +8πr -64π+30×⎝ ⎛10 000-80 000r)-8πr +64π=300 000+120×⎝ ⎛⎭⎪⎫80 000r +8πr -7 680π. 令f (r )=80 000r +8πr ,∵f ′(r )=8π-80 000r 2,当r ∈[30,40]时,f ′(r )<0,∴函数y =300 000+120×⎝ ⎛⎭⎪⎫80 000r +8πr -7 680π在[30,40]上为减函数.∴当r =40时,y min ≈636 510,即运动场的造价最低为636 510元.。
第6讲幂函数与二次函数A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1.(2013·临州质检)下列函数中,在其定义域内既是奇函数又是减函数的是().A.y=1x(x∈R,且x≠0) B.y=⎝⎛⎭⎪⎫12x(x∈R)C.y=x(x∈R) D.y=-x3(x∈R)解析对于f(x)=-x3,∵f(-x)=-(-x)3=-(-x3)=-f(x),∴f(x)=-x3是奇函数,又∵y=x3在R上是增函数,∴y=-x3在R上是减函数.答案 D2.(2013·怀远模拟)如图所示,给出4个幂函数的图象,则图象与函数的大致对应是().A.①y=x 13,②y=x2,③y=x12,④y=x-1B .①y =x 3,②y =x 2,③y =x 12,④y =x -1C .①y =x 2,②y =x 3,③y =x 12,④y =x -1D .①y =x 3,②y =x 12,③y =x 2,④y =x -1解析 因为y =x 3的定义域为R 且为奇函数,故应为图①;y =x 2为开口向上的抛物线且顶点为原点,应为图②.同理可得出选项B 正确.答案 B3.已知函数f (x )=e x -1,g (x )=-x 2+4x -3,若有f (a )=g (b ),则b 的取值范围为 ( ).A .[2-2,2+2]B .(2-2,2+2)C .[1,3]D .(1,3)解析 f (a )=g (b )⇔e a -1=-b 2+4b -3⇔e a =-b 2+4b -2成立,故-b 2+4b -2>0,解得2-2<b <2+ 2.答案 B4.已知函数f (x )=⎩⎨⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于 ( ). A .-3 B .-1 C .1 D .3 解析 f (a )+f (1)=0⇔f (a )+2=0⇔⎩⎪⎨⎪⎧ a >0,2a +2=0或⎩⎪⎨⎪⎧a ≤0,a +1+2=0,解得a = -3.答案 A二、填空题(每小题5分,共10分)5.若f (x )是幂函数,且满足f (4)f (2)=3.则f ⎝ ⎛⎭⎪⎫12=________. 解析 设f (x )=x α,由f (4)f (2)=3,得4α2α=3,解得α=log 23,故f (x )=x log 23,所以f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫12log 23=2-log 23=2log 213=13.答案 136.若二次函数f (x )=ax 2-4x +c 的值域为[0,+∞),则a ,c 满足的条件是________.解析 由已知得⎩⎪⎨⎪⎧ a >0,4ac -164a =0⇒⎩⎪⎨⎪⎧a >0,ac -4=0. 答案 a >0,ac =4三、解答题(共25分)7.(12分)设f (x )是定义在R 上以2为最小正周期的周期函数.当-1≤x <1时,y=f (x )的表达式是幂函数,且经过点⎝ ⎛⎭⎪⎫12,18.求函数在[2k -1,2k +1)(k ∈Z )上的表达式.解 设在[-1,1)上,f (x )=x n ,由点⎝ ⎛⎭⎪⎫12,18在函数图象上,求得n =3. 令x ∈[2k -1,2k +1),则x -2k ∈[-1,1),∴f (x -2k )=(x -2k )3.又f (x )周期为2,∴f (x )=f (x -2k )=(x -2k )3.即f (x )=(x -2k )3(k ∈Z ).8.(13分)已知函数f (x )=x 2-2ax +5(a >1).(1)若f (x )的定义域和值域均是[1,a ],求实数a 的值;(2)若f (x )在区间(-∞,2]上是减函数,且对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4,求实数a 的取值范围.解 (1)∵f (x )=(x -a )2+5-a 2(a >1),∴f (x )在[1,a ]上是减函数.又定义域和值域均为[1,a ]∴⎩⎨⎧ f (1)=a ,f (a )=1,即⎩⎨⎧1-2a +5=a ,a 2-2a 2+5=1,解得a =2. (2)∵f (x )在区间(-∞,2]上是减函数,∴a ≥2.又x =a ∈[1,a +1],且(a +1)-a ≤a -1,∴f (x )max =f (1)=6-2a ,f (x )min =f (a )=5-a 2.∵对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4,∴f (x )max -f (x )min ≤4,得-1≤a ≤3,又a ≥2,∴2≤a ≤3.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2013·合肥八中月考)已知函数f (x )=⎩⎨⎧ x 2+ax ,x ≤1,ax 2+x ,x >1,则“a ≤-2”是“f (x )在R 上单调递减”的( ). A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析 若a ≤-2,则-a 2≥1,且-12a ≤14<1,则f (x )分别在区间(-∞,1]和(1,+∞)上为减函数,又函数在x =1处的值相同,故f (x )在R 上单调递减,若f (x )在R 上单调递减,则a <0,且⎩⎪⎨⎪⎧ -12a ≤1,-a 2≥1,得a ≤-2.故选C.答案 C 2.二次函数f (x )=ax 2+bx +c ,a 为正整数,c ≥1,a +b +c ≥1,方程ax 2+bx +c =0有两个小于1的不等正根,则a 的最小值是( ).A .3B .4C .5D .6 解析 由题意得f (0)=c ≥1,f (1)=a +b +c ≥1.当a 越大,y =f (x )的开口越小,当a 越小,y =f (x )的开口越大,而y =f (x )的开口最大时,y =f (x )过(0,1),(1,1),则c =1,a +b +c =1.a +b =0,a =-b ,-b 2a =12,又b 2-4ac >0,a (a -4)>0,a >4,由于a 为正整数,即a 的最小值为5.答案 C二、填空题(每小题5分,共10分)3.已知函数f (x )=log a (x 2-ax +2)在(2,+∞)上为增函数,则实数a 的取值范围为________.解析 函数f (x )=log a (x 2-ax +2)在(2,+∞)上为增函数,包含两个方面:函数g (x )=x 2-ax +2在(2,+∞)上恒正,以及其在(2,+∞)上的单调性.由于g (x )=x 2-ax +2开口向上,因此在(2,+∞)上只能是增函数,所以⎩⎪⎨⎪⎧ a >1,g (2)≥0,a 2≤2,∴1<a ≤3.答案 (1,3]4.(2012·北京)已知f (x )=m (x -2m )(x +m +3),g (x )=2x -2.若同时满足条件: ①∀x ∈R ,f (x )<0或g (x )<0;②∃x ∈(-∞,-4),f (x )g (x )<0,则m 的取值范围是________.解析 当x <1时,g (x )<0,当x >1时,g (x )>0,当x =1时,g (x )=0,m =0不符合要求;当m >0时,根据函数f (x )和函数g (x )的单调性,一定存在区间[a ,+∞)使f (x )≥0且g (x )≥0,故m >0时不符合第①条的要求;当m <0时,如图所示,如果符合①的要求,则函数f (x )的两个零点都得小于1,如果符合第②条要求,则函数f (x )至少有一个零点小于-4,问题等价于函数f (x )有两个不相等的零点,其中较大的零点小于1,较小的零点小于-4,函数f (x )的两个零点是2m ,-(m +3),故m 满足⎩⎪⎨⎪⎧ m <0,2m <-(m +3),2m <-4,-(m +3)<1或⎩⎪⎨⎪⎧ m <0,-(m +3)<2m ,2m <1,-(m +3)<-4,解第一个不等式组得-4<m <-2,第二个不等式组无解,故所求m 的取值范围是(-4,-2).答案 (-4,-2)三、解答题(共25分)5.(12分)已知函数f (x )=x -k 2+k +2(k ∈Z )满足f (2)<f (3).(1)求k 的值并求出相应的f (x )的解析式;(2)对于(1)中得到的函数f (x ),试判断是否存在q >0,使函数g (x )=1-qf (x )+(2q -1)x 在区间[-1,2]上的值域为⎣⎢⎡⎦⎥⎤-4,178?若存在,求出q ;若不存在,请说明理由.解 (1)∵f (2)<f (3),∴f (x )在第一象限是增函数.故-k 2+k +2>0,解得-1<k <2.又∵k ∈Z ,∴k =0或k =1.当k =0或k =1时,-k 2+k +2=2,∴f (x )=x 2.(2)假设存在q >0满足题设,由(1)知g (x )=-qx 2+(2q -1)x +1,x ∈[-1,2].∵g (2)=-1,∴两个最值点只能在端点(-1,g (-1))和顶点⎝ ⎛⎭⎪⎫2q -12q ,4q 2+14q 处取得.而4q 2+14q -g (-1)=4q 2+14q -(2-3q )=(4q -1)24q ≥0,∴g (x )max =4q 2+14q =178,g (x )min =g (-1)=2-3q =-4.解得q =2,∴存在q =2满足题意.6.(13分)设函数f (x )=x 2+|2x -a |(x ∈R ,a 为实数).(1)若f (x )为偶函数,求实数a 的值;(2)设a >2,求函数f (x )的最小值.解 (1)∵函数f (x )是偶函数,∴f (-x )=f (x ),即|2x -a |=|2x +a |,解得a =0.(2)f (x )=⎩⎪⎨⎪⎧ x 2+2x -a ,x ≥12a ,x 2-2x +a ,x <12a ,①当x ≥12a 时,f (x )=x 2+2x -a =(x +1)2-(a +1),由a >2,x ≥12a ,得x >1,故f (x )在⎣⎢⎡⎭⎪⎫12a ,+∞时单调递增,f (x )的最小值为f ⎝ ⎛⎭⎪⎫a 2=a 24; ②当x <12a 时,f (x )=x 2-2x +a =(x -1)2+(a -1),故当1<x <a 2时,f (x )单调递增,当x <1时,f (x )单调递减,则f (x )的最小值为f (1)=a -1.由于a 24-(a -1)=(a -2)24>0,故f (x )的最小值为a -1.。