相遇追及问题
- 格式:doc
- 大小:44.50 KB
- 文档页数:15
奥数行程多次相遇和追及问题The document was prepared on January 2, 2021一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………, ………………;第N 次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N 米,以后每次都走2N 米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………, ………………;第N 次相遇,共走2N 个全程;知识框架多次相遇与追及问题3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
例题精讲【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点【巩固】甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次【例 2】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。
第四讲追及和相遇问题1.追及问题的三种情况(1)初速度为零的匀加速直线运动的物体甲追赶同方向的匀速运动的物体乙时,一定能追上,在追上前两者有最大距离的条件是两者速度相等。
(2)匀速运动的物体甲追赶同方向做匀加速运动的物体乙时,两物体速度相等时是否处在同一位置是解决该问题的关键。
(3)速度大者减速(如匀减速直线运动)追速度小者(如匀加速直线运动)A.两者速度相等,追者位移仍小于被追者位移,则永远追不上,此时有最小距离。
B.若速度相等时,有相同的位移,刚好追上,也是避碰的临界条件。
C.若位移相同时追者的速度仍大于被追者的速度,则被追者还能有一次追上追者,速度相等时二者有最大距离。
2.相遇问题的两类情况(1)同向运动的两物体追及即相遇.(2)相向运动的物体,当各自发生的位移大小之和等于开始时两物体间的距离时即相遇.1.甲、乙两车某时刻由同一地点沿同一方向开始做直线运动,若以该时刻作为计时起点,得到两车的x-t的图象如图所示,则下列说法正确的是()A.t1时刻乙车从后面追上甲车B.t1时刻两车相距最远C.t1时刻两车的速度刚好相等D.0到t1时间内,乙车的平均速度小于甲车的平均速度2.(多选)甲、乙两辆汽车沿平直公路从同一地点同时由静止开始向同一方向运动的v -t图象如图所示,则下列说法正确的是()A.0~t时间内,甲的平均速度大于乙的平均速度B.0~2t时间内,甲的平均速度大于乙的平均速度C.t时刻两车再次相遇D.在t~2t时间内的某时刻,两车相遇3.甲、乙两辆汽车在平直的公路上沿同一方向做直线运动,t=0时刻同时经过公路旁的同一个路标.在描述两车运动的v-t图象中(如图所示),直线a、b分别描述了甲、乙两车在0~20 s的运动情况.关于两车之间的位置关系,下列说法中正确的是()A.在0~10 s内两车逐渐靠近B.在10~20 s内两车逐渐远离C.在5~15 s内两车的位移相等D.在t=10 s时两车在公路上相遇4.物体甲的位移与时间图象和物体乙的速度与时间图象分别如图甲、乙所示,则这两个物体的运动情况是()A.甲在整个t=6 s时间内有来回运动,它通过的总位移为零B.甲在整个t=6 s时间内运动方向一直不变,它通过的总位移大小为4 mC.乙在整个t=6 s时间内有来回运动,它通过的总位移为零D.乙在整个t=6 s时间内运动方向一直不变,它通过的总位移大小为4 m5.甲、乙两物体由同一位置出发沿一直线运动,其速度—时间图象如图所示,下列说法正确的是()A.甲做匀速直线运动,乙做匀变速直线运动B.两物体两次相遇的时刻分别是在2 s末和6 s末C.乙在前2 s内做匀加速直线运动,2 s后做匀减速直线运动D.2 s后,甲、乙两物体的速度方向相反6.如图所示的位移(x)—时间(t)图象和速度(v)—时间(t)图象中给出四条图线,甲、乙、丙、丁代表四辆车由同一地点向同一方向运动的情况,则下列说法正确的是()A.甲车做直线运动,乙车做曲线运动B.0~t1时间内,甲车通过的路程大于乙车通过的路程C.0~t2时间内,丙、丁两车在t2时刻相距最远D.0~t2时间内,丙、丁两车的平均速度相等7.如图所示,是一辆汽车做直线运动的x-t图象,对线段OA、AB、BC、CD所表示的运动,下列说法中正确的是()A.OA段汽车运动速度最大B.AB段汽车做匀速运动C.CD段汽车的运动方向与初始运动方向相反D.汽车运动4 h的位移大小为30 km8.一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以a=3 m/s2的加速度开始行驶,恰在这一时刻一辆自行车以v自=6 m/s的速度匀速驶来,从旁边超过汽车.问:(1)汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?(2)什么时候汽车追上自行车?此时汽车的速度是多少?9.甲车以10 m/s的速度在平直的公路上匀速行驶,乙车以4 m/s的速度与甲车平行同向做匀速直线运动,甲车经过乙车旁边开始以0.5 m/s2的加速度刹车,从甲车刹车开始计时,求:(1)乙车在追上甲车前,两车相距的最大距离;(2)乙车追上甲车所用的时间。
物理追及相遇问题介绍
物理中的"追及相遇问题"是一类关于相对运动的问题,通常涉及到两个或多个物体,它们以不同的速度或方向运动,问题的目标是找到它们何时何地相遇的问题。
这类问题可以涉及到汽车、行人、船只、飞机等不同的情境。
典型的追及相遇问题可以分为两个主要类型:
1. 同向追及问题:在这种情况下,两个物体以相同的方向运动,但它们的速度可能不同。
问题通常涉及到一个物体从后面追赶另一个物体,然后问何时它们会相遇。
2. 反向追及问题:在这种情况下,两个物体以相对相反的方向运动,通常是一个物体在追赶另一个物体。
问题通常涉及到两者之间的距离和速度,问题的目标是找到它们相遇的时间和位置。
解决这类问题的方法通常基于以下的基本原理:
1. 距离= 速度×时间:这个公式用于计算一个物体在某段时间内所移动的距离。
2. 相对速度:这是两个物体相对于彼此的速度。
在同向追及问题中,它通常是两个物体速度的差值,而在反向追及问题中,通常是两个物体速度的和。
3. 时间:解决追及问题时,你需要找到两个物体何时具有相同的位置,这涉及到时间的计算。
4. 位置:问题的目标通常是找到两个物体相遇的位置坐标。
通常,追及相遇问题可以通过建立方程或者绘制图表来解决。
你可以使用这些基本原理和数学技巧来找到问题的解答,无论是计算它们何时相遇还是它们在何处相遇。
这些问题在物理学和工程学中经常出现,对于理解相对运动和解决与运动有关的实际问题非常有用。
追及与相遇问题练习(含答案)一、多选题(本大题共5小题,共20.0分)1. 在一个大雾天,一辆小汽车以的速度行驶在平直的公路上,突然发现正前方处有一辆大卡车以的速度同方向匀速行驶,汽车司机立即刹车,忽略司机的反应时间,后卡车也开始刹车,从汽车司机开始刹车时计时,两者的图象如图所示,下列说法正确的是( )A. 小汽车与大卡车一定没有追尾B. 由于在减速时大卡车的加速度大小小于小汽车的加速度大小,导致两车在时追尾C. 两车没有追尾,两车最近距离为D. 两车没有追尾,并且两车都停下时相距2. 两物体均沿轴正方向从静止开始做匀变速直线运动,时刻两物体同时出发,物体的位置随速率平方的变化关系如图甲所示,物体的位置随运动时间的变化关系如图乙所示,则( )A. 物体的加速度大小为B. 时,两物体相距C. 内物体的平均速度大小为D. 两物体相遇时,物体的速度是物体速度的倍3. 甲乙两车在一平直道路上同向运动,其图象如图所示,图中和的面积分别为和,初始时,甲车在乙车前方处( )A. 若,两车不会相遇B. 若,两车相遇次C. 若,两车相遇次D. 若,两车相遇次4. ,两辆汽车从同一地点同时出发沿同一方向做直线运动,它们的速度的平方随位置的变化规律如图所示,下列判断正确的是( )A. 汽车的加速度大小为B. 汽车、在处的速度大小为C. 从开始到汽车停止前,当时、相距最远D. 从开始到汽车停止前,当时、相距最远二、计算题(本大题共5小题,共50.0分)5. 一辆值勤的警车停在公路边,当警员发现从他旁边以的速度匀速直线行驶的货车有违章行为时,决定前去追赶,经过后警车启动,并以的加速度做匀加速直线运动,试问:警车在追赶货车的过程中,两车间的最大距离是多少若警车能达到的最大速度是,达到最大速度后以该速度匀速运动,则警车启动后要多长时间才能追上货车6. 一辆汽车以的速度在平直公路上行驶,制动后要经过才能停下来。
现在该汽车正以的速度在平直公路上行驶,突然发现正前方处停有一辆摩托车,汽车司机经的反应时间后,立即采取制动措施,汽车开始制动的同时摩托车以的加速度加速启动。
相遇、追及问题例1 甲、乙两人同时从两地出发相向而行,距离是1000米,甲每分钟行60米,乙每分钟行40米。
甲带着一只狗,狗每分钟行150米。
这只狗同甲一道出发,碰到乙的时候,它就掉头朝甲这边走,碰到甲时又往乙那边走……直到两人相遇,这只狗一共走了多少米?例2 两城相距400千米,两列火车同时从两城相对开出,5小时相遇,已知第一列火车的速度比第二列火车每小时快2千米,两列火车的速度各是多少?例3 甲、乙两辆汽车同时从A、B两地相向而行,4小时后相遇。
相遇后甲车继续前行3小时到达B地,乙车继续以每小时24千米的速度前进,问A、B两地相距多少千米?例4 甲、乙两车分别从A、B两地同时相向而行。
甲车每小时行82千米,乙车每小时行72千米,两车在距离中点30千米处相遇。
A、B两地相距多少千米?例5 甲、乙两车同时从A、B两地相向而行,第一次相遇在距A地65千米处,相遇后,两车继续前进,分别到达目的地后立刻返回。
第二次相遇在距A地35千米处,求A、B两地相距多远?例6A、B两地相距38千米,甲乙分别从A、B两地同时出发相向而行.甲到达B地立即返回,乙到达A地后也立即返回,3小时后两人第二次相遇.此时,甲行的路程比乙行的路程多18千米.问甲每小时行多少千米?例7甲、乙两人环湖跑步,环湖一周长400米。
乙每分钟跑80米,甲的速度是乙的1. 25倍。
现在两人同时同向跑,且起跑时甲在乙前面100米。
求多少分钟后两人相遇?例8甲、乙、丙三车的速度分别为每小时60千米、48千米和42千米.甲车和丙车从A 地开往B地,乙车则从B地开往A地.如果三辆车同时出发,乙车遇到甲车后30分钟又与丙车相遇.问A、B两地相距多少千米?能力训练1.A、B两地相距480千米,甲、乙两车同时从两站相对出发,甲车每小时行35千米,乙车每小时行45千米,一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去,遇到甲车又返回飞向乙车,这样一直飞下去。
小学数学典型应用题相遇和追及问题相遇问题含义:两个运动的物体同时由两地出发相向而行,在途中相遇。
这类应用题叫做相遇问题。
这类应用题叫做相遇问题。
数量关系:相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间解题思路和方法:简单的题目可直接利用公式,复杂的题目变通后再利用公式,利用线段图分析可以让解题事半功倍。
例题1:欢欢和乐乐在一条马路的两端相向而行,欢欢每分钟行60米,乐乐每分钟行80米,他们同时出发5分钟后相遇。
这条马路长()。
解:根据公式总路程=(甲速+乙速)×相遇时间,可以求出这条马路长(60+80)×5=700(米)。
例题2:甲乙两车分别以不变的速度从AB两地同时出发,相向而行。
到达目的地后立即返回。
已知第一次相遇地点距离A地50千米,第二次相遇地点距离B地60千米,AB两地相距_____千米。
解:1、本题考查的是二次相遇问题,灵活的运用画线段图的方法来分析是解决这类问题的关键。
2、画线段图3、从图中可以看出,第一次相遇时甲行了50千米。
甲乙合行了一个全程的路程。
从第一次相遇后到第二次相遇,甲乙合行了两个全程的路程。
由于甲乙速度不变,合行两个全程时,甲能行50×2=100(千米)。
4、因此甲一共行了50+100=150(千米),从图中看甲所行路程刚好比AB两地相距路程还多出60千米。
所以AB两地相距150-60=90(千米)。
例题3:欢欢和乐乐在相距80米的直跑道上来回跑步,乐乐的速度是每秒3米,欢欢的速度是每秒2米。
如果他们同时分别从跑道两端出发,当他们跑了10分钟时,在这段时间里共相遇过_____次。
解:1、根据题意,第一次相遇时,两人共走了一个全程,但是从第二次开始每相遇一次需要的时间都是第一次相遇时间的两倍。
(线段图参考例2。
)2、根据“相遇时间=总路程÷速度和”得到,欢欢和乐乐首次相遇需要80÷(3+2)=16(秒)。
追及问题1、小明每天早上要在7:50之前赶到距离家1000米的学校上学,一天,小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上他。
(1)爸爸追上小明用了多少时间?(2)追上小明时,距离学校还有多远?2、A、B两车分别停靠在相距115千米的甲、乙两地,A车每小时行50千米,B车每小时行30千米,A车出发1.5小时后B车再出发。
若两车同向而行(B车在A车前面),请问B车行了多长时间后被A车追上?3甲、乙两人自A地出发同向而行,甲以hkm5的速度先出发,半小时后乙以hkm7的速度追赶甲。
几小时后乙能追上甲?4、张宁与张宇两兄妹早上以60米/分钟的速度同时从家出发去学校,6分钟后,张宇发现忘带铅笔盒,遂叫妹妹继续前行,他以90米/分钟的速度跑步返回。
问:从张宇离开到又追上张宁需要多少分钟?(假设学校足够远)5、小王步行到县城去,每分钟行80米,5分钟后老王发现小王忘了带文件,立即骑车去追小王,2分钟后追上,求老王骑车的速度?6、甲乙两匹马在相距70米的地方同时出发,出发时甲马在前,乙马在后,如果甲马每秒跑8米,乙马每秒跑14米,多少秒后乙马超过甲马50米?7、甲乙两站相距360千米,客车和货车同时从甲站出发驶向乙站,客车每小时行60千米,货车每小时行40千米,客车到达乙站后又以原速立即返回甲站,与货车相遇,从出发到相遇共经过多少小时?8、晚饭后,小明和爸爸沿同一条公路去散步,小明走得慢,每分钟走60米,所以他先从家出发,5分钟后,爸爸以每分钟80米的速度去追小明。
经过多少分钟可以追上小明?9、甲、乙两辆汽车同时从A、B两地相对开出,甲每小时行75千米,乙每小时行65千米。
甲、乙两车第一次相遇后继续前进,分别到达B、A两地后,立即按原路返回,两车从出发到第二次相遇共行了6小时。
A、B两地相距多少千米?10、两辆汽车同时从A地开往B地,甲汽车每小时行80千米,乙汽车每小时行120千米。
当乙汽车比甲汽车多行200千米时,甲汽车正好行了全程的40%。
问:A地到B地的路程是多少千米?11、兄妹两人同时从家出发去学校,哥哥每分钟走80米,妹妹每分钟走50米,哥哥到校门口时,发现忘带语文课本,立即返回家去拿,他在离学校150米处遇到妹妹。
他家离学校有多远?12、龟兔赛跑,龟每分钟爬25米,兔每分钟跑325米,全程1500米。
兔自以为能得第一,途中睡了一觉,结果乌龟到了终点时,兔还有200米才能到。
兔睡了多少分钟?13、已知甲乙两船的船速分别是24千米/时和20千米/时,两船先后从汉口港开出,乙比甲早出1小时,两船同时到达目的地A,问两地距离?14、某校组织学生排队去春游,步行速度为每秒1米,队尾的王老师以每秒2.5米的速度赶到排头,然后立即返回队尾,共用10秒,求队伍的长度是多少米?15、在一个圆形跑道上,甲从A点,乙从B点同时出发反向而行,6分钟后两人相遇,再过4分钟甲到B点,又过8分钟两人再次相遇,甲、乙环形一周各需多少分钟?16、甲乙两人环湖同向竞走,环湖一周是400米,乙每分钟走80米,甲的速度是乙的一又四分之一倍,问甲什么时候追上乙?17、猎犬发现距它8米远的地方优质本报的野兔子,立刻追。
猎犬包6步的路程野兔要跑11步,但是兔子跑的4步的时间猎犬只能奔跑3步。
猎犬至少要跑多少米才能追上野兔?18、一只野兔跑出85步猎犬才开始追它,兔子跑8步的路程猎犬只需跑3步,猎犬跑4步的时间野兔能跑9步。
问猎犬至少要跑多少步才能追上兔子?19、A,B两站相距300千米,一列快车从A站开出,行驶速度为每小时60千米,一列慢车从B站开出,行驶速度为每小时40千米,(1)两车同时同向开出,慢车在前,出发多长时间后快车追上慢车?(2)慢车先开30分钟,两车同向而行,慢车在前,快车出发多长时间后追上慢车,此时慢车行驶了多少千米?20、甲乙两人在一条长400米的跑道上跑步,甲的速度是360米/分,乙的速度是240米/分。
(1)两人同时同向同地跑,问第一次相遇时,两人一共跑了几圈(2)两人同时同地反向跑,问几秒后两人第一次相遇。
21、某桥长1200千米,现有一列火车从桥上匀速通过,测得火车从上桥到完全过桥共用50秒,而整列火车车身完全在桥上的时间是30秒求火车的车长和速度?三、相遇问题1.相向而行同时出发到相遇时甲、乙两人所用的时间相等。
2.基本公式:速度和×相遇时间=相遇路程四、追击问题1.同向而行同时出发到相遇(即追击)时,甲、乙两人所用的时间相等2.基本公式:速度差×追击时间=追击路程例1. A、B两地相距960千米,甲、乙两辆汽车分别从两地同时出发,相向开出,6小时后两车相遇;已知甲车的速度是乙车的1.5倍求甲、乙两车的速度各是多少?例2. A、B两地相距230千米,甲队从A地出发两小时后,乙队从B地出发与甲相向而行,乙队出发20小时后与甲队相遇,已知乙的速度比甲的速度每小时快1千米,求甲、乙的速度各是多少?例3. 甲、乙两车自西向东行驶,甲车的速度是每小时48千米,乙车的速度是每小时72千米,甲车开出2小时后乙车开出,问几小时后乙车追上甲车?课堂练习1、甲、乙两人驾车自A地出发同向而行,甲先出发,半小时后乙以hkm80的速度追赶甲。
若乙行进了h5.3后追上甲,求甲车的速度。
2、甲、乙两人同时从相距27km的A、B两地相向而行,3h后相遇,甲比乙每小时多走1km,求甲、乙两人的速度。
3、A、B两地相距20km,甲、乙两人分别从A、B两发出发,甲的速度是6km/h,乙的速度是8km/h。
(1)若两人相向而行,甲先出发半小时,乙才出发,问乙出发后几小时与甲相遇?(2)若两人同时同向出发,甲在前,乙在后,问乙多少小时可追上甲?4、甲、乙两人骑自行车,同时从相距65千米的两地相向而行,甲的速度为每小时17.5千米,乙的速度为每小时15千米,求经过几小时,甲、乙两人相距32.5千米。
5、甲、乙两人生产同一种零件,甲每天生产30个,乙每天生产24个,当乙生产这种零件3天后,甲开始工作,求甲工作几天后产量可赶上乙?6、 A、B两车分别停靠在相距240千米的甲、乙两地,A车每小时行50千米,B车每小时行30千米。
若两车同时相向而行,请问B车行了多长时间后与A车相遇?7、(1)挖一条长2200m 的水渠,由甲、乙两队从两头同时施工。
甲队每天挖 130m,乙队每天挖90m,挖好水渠需要几天? (2)A、B两车分别停靠在相距115千米的甲、乙两地,A车每小时行50千米,B车每小时行30千米,A车出发1.5小时后B车再出发。
若两车相向而行,请问B车行了多长时间后与A车相遇?8、小王、叔叔在400米长的环形跑道上练习跑步,小王每秒跑5米,叔叔每秒跑7.5米。
(1)若两人同时同地反向出发,多长时间两人首次相遇?(2)若两人同时同地同向出发,多长时间两人首次相遇?9、两辆汽车同时从相距560千米的两个车站相对开出。
4小时后在途中相遇,已知一辆汽车每小时行68千米,另一辆汽车每小时行多少千米?10、两辆汽车同时从相距380千米的甲乙两地相对开出,甲车每小时行45千米,乙车每小时行50千米。
两车开出几小时后还相距95千米?11、A、B两地相距580千米,甲车从A地出发1小时后,乙车从B 地出发相向开出,6小时后两车相遇;已知乙车的速度是甲车的1.5倍。
求甲、乙两车的速度各是多少?12、甲乙两车同时从相距506千米的两地相向开出,甲车每小时行52千米,乙车每小时行40千米,那么几小时后两车相距138千米?13、甲乙二人从相距36千米的两地相向而行。
甲速度为每小时3千米,乙速度为每小时4千米,若乙先出发2小时,甲才出发,则甲经过几小时后与乙相遇?14、一艘轮船在静水中的速度是每小时15千米,它逆水航行11小时走了88千米,这艘船返回需多少小时?15、一艘船在河里顺流而下航行,每小时行18千米,船顺水行2小时与逆水行3小时的路程相等,那么船速是每小时多少千米?水流速度是每小时多少千米?16、甲乙两车同时从A、B两地相向出发,5小时后相遇,相遇后甲车继续行驶4小时到达B地,已知乙车每小时行48千米,甲车每小时行多少千米?A、B相距多少千米?17、一艘客船在AB两地之间航行,顺水需2小时,逆水需3小时,已知有一木箱从A向B顺流而下,那么到达B地需用多少小时?(可假设AB全程为12千米)。
18、一座大桥长3400米,一列火车通过大桥时每分钟行800米,从车头上桥到车尾离开桥共需4.5分钟。
这列火车长多少米?19、两港相距168千米,一艘客轮和一艘货轮同时从两港相对开出。
客轮每小时行24千米,货轮每小时行18千米,几小时后两艘轮船相距21千米?20、甲、乙两车同时从东、西两地相向开出,甲车每小时行60千米,乙车每小时行52千米,两辆汽车在离中点16千米处相遇。
东、西两地相距多少千米?21、A,B两地相距470千米,甲车以每小时46千米,乙车以每小时40千米的速度先后从两地出发,相向而行。
相遇时甲车行驶了230千米。
问:乙车比甲车早出发几小时?22、甲、乙两辆汽车从相距600千米的两城相对开出,甲汽车每小时行65千米,乙汽车每小时行55千米。
两车开出几小时后相遇?23、王叔叔从甲城到乙城,第一天行了全程的40%,第二天行了全程的30%,距乙城还有900千米。
甲、乙两城相距多少千米?23、两辆汽车分别同时从甲、乙两地相对开出,甲车每小时行50千米,乙车每小时行60千米,经过4小时两车共行了全程的80%。
甲、乙两地相距多少千米?24、甲骑自行车每小时行13千米,比乙的骑车速度快3千米,两人从相距10千米的两地相背而行,几小时后两人相距67.5千米?25、淘气和爸爸周日去爬山,上山时每分钟行30米,到达山顶后沿原路返回,下山时每分钟行50米。
他们上山和下山的平均速度是多少?26、两艘军舰同时从两个港口对开,一艘军舰3小时行84千米,另一艘军舰2小时行62千米。
经过14小时两艘军舰相遇,两个港口之间的距离是多少千米?27、两辆汽车同时从甲城出发,相背而行,快车每小时行43千米,慢车每小时行37千米,经过26小时它们相距多少千米?28、甲、乙两车同时从两地相对开出,甲车每小时行34千米,乙车每小时行30千米,相遇时乙车比甲车少行20千米。
两地相距多少千米?29、从A城到B城,快车行完全程需要10小时,慢车行完全程需要15小时,现两车同时从A、B两城相对开出,相遇时快车行了180千米。
A、B两城相距多少千米?30、甲、乙同时从A、B两地相向而行,到达对方出发地后,立即返回。
在离A地60千米处第二次相遇,甲、乙速度比为2:3,求A、B 两地距离。