当前位置:文档之家› 有关向量内积基本知识点

有关向量内积基本知识点

有关向量内积基本知识点
有关向量内积基本知识点

关于向量内积的基本知识点:

基本概念:

设 V 是实数 R 上的线性空间 .如果 V 中任意两个向量α, β都按某一法则对应于 R 中一个唯一确定的数 , 记作 ( α , β ), 且 满足

(i) ( α , β)=( β, α );

(ii) ( α+β, γ )=( α , γ ) + (β , γ );

(iii) ( k α , β) = k(α, β);

(iv) 当αθ≠时, ( α , α )>0;

其中的α , β,γ是 V 中任意向量 , k 是任意实数 .则称 ( α , β) 为向量 α , β的内积. 而 V 叫做对这个内积来说的一个欧几里德 (Euclid) 空间 , 简称欧氏空间 .

举例说明:

例1: 在 R n 里 , 对于任意两个向量),,,(21n x x x =α, ),,,(21n y y y =β, 规定:

n n y x y x y x +++= 2211),(βα

容易验证 , 关于内积的公理被满足 , 因而 R n 对于这样定义的内积来说作成一个欧氏空间。

例2: 在 R n 里 , 对于任意两个向量),,,(21n x x x =α, ),,,(21n y y y =β, 规定:

n n y nx y x y x +++= 22112),(βα

不难验证 , 这样R n 也作成一个欧氏空间. 由以上两个例子可以看出 , 对同一个线性空间可以引人不同的内积 , 使它作成欧氏空间

例3: 令 C[a ,b] 是定义在 [a ,b] 上一切连续实函数所成的线性空间 .关于任意 f(x), g(x) ∈C[a ,b] , 规定:

dx

x g x f g f b

a ?=)()(),(

根据定积分的基本性质可知 , 关于内积的公理都被满足 , 因而 C[a ,b] 作成一个欧氏空间 .

一些性质:

关于欧氏空间 V 中的向量α , β,γ和实数a 有 以下基本性质:

(1) (0, α )=( α , 0 )=0;

(2) (2) ( α ,β十γ )=( α , β ) 十 ( α , γ );

(3) (3) ( α , a β ) = a ( α , β ).

进一步 , 对于 V 向量r ααα,,,21 ,s βββ,,,21 及 R 中实数 r a a a ,,,21 和s b b b ,,,21 , 必有

),(),(1111∑∑∑∑=====s j j i j i r i s j j j r i i i b a b a βαβα

长度: 由于对欧氏空间的任意向量α来说 , 句 (α, α ) 总是一个非负实数 , 我们可以合理地引人向量长度的概念 . 设α是欧氏空间的一个向量 .非负实数 ( α , α ) 的算术平方根 ),(αα, 叫做α的长度,记作| α |, 即 | α | = ),(αα .

由定义可知 , 欧氏空间中每个向量都有确定的长度 .零向量的长度是 0, 非零向量的长度是正数. 对欧氏空间的任意向量α和任意实数k ,

|k α| = ),(ααk k =),(2ααk = |k||α|

即实数k 与向量α的数量乘积的长度等于k 的绝对值与α长度的积 .

长度为 1 的向量叫做单位向量 .如果α是非零向量 , 则α

α1

是一单位向量 , 用这种方式得到单位向量叫做α的单位化 . 以下定理给出了一个重要的不等式 , 通常称为哥西一施瓦兹不等式

定理1: 在在一个欧氏空间里 , 关于任意向量α , 卢有不等式

),)(,(),(2ββααβα≤

等号成立当且仅当α,β线性相关

证明思路: 应用二次函数。

由定理1, 我们可以得到很多重要不等式。如:哥西 (Cauchy) 不等式;施瓦兹 ( Schwarz ) 不等式等。

夹角: 设的βα,是欧氏空间中两个非零向量 .则由哥西一施瓦兹不等式得

1

),(1≤≤-β

αβα 这样βαβα),(arccos

有意义 , 称其为βα,的夹角 .

这样 , 欧氏空间任意两个非零向量有唯一的夹角)0(πθθ≤≤。为方便起见 , 我们规定 : 零向量与任何向量的夹角为2π

如果 (βα,)=0, 则称欧氏空间的二个向量βα,是正交的 .

不难知道 , βα,正交 , 当且仅当βα,的夹角为 2π

。容易验证 , 在欧氏空间 R n 中 , 单位向量i ε= (0, … ,0 ,1,0, … ,0), i = 1,2, … ,n.两两正交 .

定理2: 在一个欧氏空间中 , 如果向量α与,,,,21r βββ 中每一个正交 , 则α与,,,,21r βββ 的任意一个线性组合也正交.

距离: 在欧氏空间里 , 定义向量α

, 卢的距离为 |βα-|, 通常用 d(βα,)表示β

α,的距离 .

容易证明 , 距离有如下性质

(i) 当βα≠时 ,d(βα,)>0.

(ii) d(βα,) = d(αβ,). (iii) d(βα,) ≤ d(γα,)+d(βγ,),

其中γβα,,是欧氏空间的任意向量 .不等式 (iii) 称为三角形不等 式 .在解析几何里 , 这个不等式的意义就是一个三角形两边之和大 于第三边 .

最后,值得一提的是,如果W是欧氏空间V的一个子空间,那么W关于V的内积来说,W也作成一个欧氏空间.

基本定义:

正定矩阵的行列式必大于零,但是,我们判断矩阵是否为正定矩阵,要看各级顺序主子式都要大于零。

如果两个矩阵是相似的,则它们的特征多项式是相同的;若两个矩阵的特征多项式相同,则这两个矩阵是相似的。

知道基础解系的基本定义:

第一.就是要最多有r个线性无关向量,再加一个向量就是线性相关的;

第二.其他任意一个向量都可由这r个向量线性表示。

接着,要会求基础解系,然后找出这个r个线性无关向量。

平面向量知识点总结(精华)

必修4 平面向量知识点小结 一、向量的基本概念 1.向量的概念:既有大小又有方向的量,注意向量和数量的区别. 向量常用有向线段来表示 . 注意:不能说向量就是有向线段,为什么?提示:向量可以平移. 举例 1 已知A(1,2),B(4,2),则把向量u A u B ur按向量a r( 1,3)平移后得到的向量是. 结果:(3,0) 2.零向量:长度为 0 的向量叫零向量,记作:0r,规定:零向量的方向是任意的; 3.单位向量:长度为一个单位长度的向量叫做单位 向量(与u A uu B r共线uuur 的单位向量是u A u B ur ); | AB| 4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; 5.平行向量(也叫共线向量):方向相同或相反的非零向量 a r、 b r叫做平行向量,记作:a r∥b r, 规定:零向量和任何向量平行 . 注:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合; ③平行向量无传递性!(因为有r0); ④三点A、B、C 共线u A uu B r、u A u C ur共线. 6.相反向量:长度相等方向相反的向量叫做相反向量 . a r的相反向量记作a r. 举例 2 如下列命题:(1)若|a r | |b r | ,则a r b r. (2)两个向量相 等的充要条件是它们的起点相同,终点相同 . (3)若u A u B ur u D u C u r,则ABCD是平行四边形 . (4)若ABCD是平行四边形,则u A uu B r u D u C uur. (5)若a r b r,b r c r,则a r c r. (6)若a r / /b r,b r / /c r则a r / /c r.其中正确的是. 结果:(4)(5) 二、向量的表示方法

空间向量知识点归纳总结归纳

空间向量知识点归纳总结 知识要点。 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2.空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ? ??ρ+=+ ⑵加法结合律:)()(c b a c b a ? ???ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 3.共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫 做共线向量或平行向量,a ρ平行于b ρ,记作b a ρ ?//。 当我们说向量a ρ、b ρ共线(或a ρ//b ρ)时,表示a ρ、b ρ 的有向线段所在的直线可能是同一直线,也可能是平行直线。 (2)共线向量定理:空间任意两个向量a ρ、b ρ(b ρ≠0ρ),a ρ//b ρ 存在实数λ,使a ρ =λb ρ。 4.共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件是存在 实数,x y 使p xa yb =+r r r 。 5.空间向量基本定理:如果三个向量,,a b c r r r 不共面,那么对空间任一向量p r ,存在 一个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r 。 若三向量,,a b c r r r 不共面,我们把{,,}a b c r r r 叫做空间的一个基底,,,a b c r r r 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序 实数,,x y z ,使OP xOA yOB zOC =++u u u r u u u r u u u r u u u r 。 6.空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标。 (2)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k r r r 表示。 (3)空间向量的直角坐标运算律: ①若123(,,)a a a a =r ,123(,,)b b b b =r ,则112233(,,)a b a b a b a b +=+++r r ,

空间向量与立体几何知识点

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥.

(3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面找到两不共线向量来线性表示直线的方向向量.(4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? , 但务必注意两异面直线所成角θ的围是 0, 2 π ?? ???, 故实质上应有:cos cos,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|. (3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量; ②求出从该点出发的平面的任一条斜线段对应的向量; ③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离. 备考建议:

高考平面向量知识点总结

高考平面向量知识点总结 16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式: a b a b a b -≤+≤+. ⑷运算性质:①交换律:a b b a +=+; ②结合律:()() a b c a b c ++=++;③00a a a +=+=. ⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 18、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为 () 11,x y , () 22,x y ,则 ()1212,x x y y AB =--. 19、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=; ②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=. ⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③() a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==. 20、向量共线定理:向量() 0a a ≠与b 共线,当且仅当有唯一一个实数λ ,使b a λ=. 设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向 b a C B A a b C C -=A -AB =B

平面向量基础知识

b a B A O a -b 平面向量基础知识 1.向量的概念 (1)向量的定义:既有大小又有方向的量叫做向量.向量可用字母a ,b ,c ,…等表示,也可用表示向量的有向线段的起点和终点的字母表示(起点写在前面,终点写在后面,上面划箭头)如AB 表示由起点A 到终点B 方向的向量. (2)向量的模:向量AB 的大小(即向量AB 的长度)叫做向量AB 的模,记作|AB |.又如向量a 的模记作|a |. 注意:向量的模是一个非负实数,是只有大小而没有方向的标量. (3)零向量、单位向量、平行向量、共线向量的概念. ①零向量:长度(模)为0的向量叫做零向量,记作0.零向量的方向可看作任意方向. ②单位向量:长度(模)为1个单位的向量叫做单位向量. ③平行向量:方向相同或相反的非零向量叫做平行向量,向量a 与b 平行可记作:a //b .因为平行向量都可移到同一条直线上,所以平行向量又叫做共线向量.我们规定0与任一向量平行. ④相等向量:长度相等且方向相同的向量叫做相等向量.向量a 与b 相等,记作a =b .相等向量一定共线,反之则不一定成立. 2.向量运算 (1)加法运算 ①定义:求两个向量和的运算叫做向量的加法,如已知向量a ,b , 作AB =a ,BC =b ,则向量AC 叫做a 与b 的和,记作a +b ,即a +b =AB +BC =AC . 这种根据向量加法的定义求向量和的方法,叫做向量加法的 三角形法则. 由图可知,以同一点A 为起点的两个已知向量a ,b 为邻边作 平行四边形ABCD ,则以A 为起点C 为终点的对角线AC 就是a 与b 的和,我们把这种作两个向量和的方法叫做向量加法的平行 四边形法则. ②运算性质: a + b =b +a (交换律); (a +b )+ c =a +(b +c )(结合律); a +0=0+a =a . (2)减法运算 ①相反向量:与向量a 长度相等,方向相反的向量叫做a 的相反向量. 记作a .零向量的相反向量仍是零向量;-(-a )=a ;a +(-a )=0 (即互为相反的两个向量的和是零向量.) ②减法定义:向量a 加上b 的相反向量叫做a 与b 的差,即a b =a +(-b ). 求两个向量的减法可转化为加法进行.若向量是用两个大写字母,则只需把减向量起点字母与终点字母交换顺序,就可将减法变为加法,如AB -BC =AB +CB 如图,已知,在平面内任取一点O ,作OA =a ,OB =b ,则BA =a -b .即a -b 可以表示为从向量b 的终点指向a 的终点的向量.此法则叫做两向量减 法的三角形法则. (3)实数与向量的积: ①定义:λa ,其中λ>0,λa 与a 同向,|λa |=|λ|?|a |; λ<0时,λa 与a 反方向,|λa |=|λ|?|a |;λ=0时,λa =0,当a =0,λa =0. ②运算律: B A C a +b a b B A C a +b a b D a b

数学必修4_第二章_平面向量知识点word版本

数学必修4第二章 平面向量知识点 2.1 平面向量的实际背景及基本概念 1. 向量:既有大小又有方向的量。 2. 向量的模:向量的大小即向量的模(长度),如,AB a uu r r 的模分别记作|AB u u u r |和||a r 。 注:向量不能比较大小,但向量的模可以比较大小。 3. 几类特殊向量 (1)零向量:长度为0的向量,记为0r ,其方向是任意的,0r 与任意向量平行, 零向量a =0r |a |=0。由于0r 的方向是任意的,且规定0r 平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。(注意与0的区别) (2)单位向量:模为1个单位长度的向量,向量0a 为单位向量0||1a u u r 。将一个 向量除以它的模即得到单位向量,如a r 的单位向量为: ||a a e a r r r (3)平行向量(共线向量):方向相同或相反的非零向量,称为平行向量.记作a ∥b 。 规定:0r 与任何向量平等, 任意一组平行向量都可以移到同一直线上,由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。 数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的。 (4)相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量。记作a r 。 关于相反向量有:① 零向量的相反向量仍是零向量, ②)(a =a ; ③ ()0a a v v v ; ④若a 、b 是互为相反向量,则 a = b ,b =a ,a +b =0 。

空间向量知识点归纳(期末复习).doc

空间向量期末复习 知识要点: 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示?同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2.空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 运算律:⑴加法交换律:a + h =b +ci ⑵加法结合律:(N + T) + E = N + 0 + e) ⑶数乘分配律:= + 3.共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,&平行于5 ,记作allb o 当我们说向量N、T共线(或a//b)时,表示万、5的有向线段所在的直线可能是同一直线,也可能是平行直线。 (2)共线向量定理:空间任意两个向量万、b(方工6), allb存在实数2,使a=kb o 4.共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量方,5不共线,"与向量刁,5共面的条件是存在实数 x^y\^p = xa-\-yb。 5.空间向量基本定理:如果三个向量a.b.c不共面,那么对空间任一向量存在一个唯一的有序实数组x,y,z ,使0 = xN + y5 + zC。 若三向量万不共面,我们把{a.b.c}叫做空间的一个基底,a,b,c叫做基向量,空间任意三个不共而的向量都可以构成空间的一个基底。 推论:设O ,A,B,C是不共面的四点,则对空间任一点P,都存在唯一的三个有序实数x, y, z ,使OP = xOA + yOB + zOC。 6.空间向量的数量积。 (1)空I'可向量的夹角及其表示:已知两非零向量a.b,在空间任取一点0,作0A = a,0B = b ,则厶叫做向量N与方的夹角,记作且规定OM a9b><7T, 显然有<丽>=<歸>;若<云伍>=仝,则称万与5互相垂直,记作:N丄方。 (2)向量的模:设0A = a,则有向线段刃的长度叫做向量万的长度或模,记作:\a\o

平面向量基础知识复习+练习(含答案)

平面向量 1. 基本概念: 向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。 2. 加法与减法的代数运算: (1)A] A2 A2A3 A n i A n A1A n . ⑵若a= ( X i, y i) ,b= ( X2, y2 )则 a b= ( X i x?, y i y ). 向量加法与减法的几何表示:平行四边形法则、三角形法则。 以向量AB = a、AD = b为邻边作平行四边形ABCD ,则两条对角线的向量 AC = a + b, BD=b —a,DB = a —b 且有丨a I —I b I <| a b I <| a I + I b I . 向量加法有如下规律: a + b = b + a (交换律);a+(b+c)=(a+ b)+c (结合律);—F- —F —k —V- a + 0= a a + (—a )=0. 3 .实数与向量的积:实数与向量a的积是一个向量。 (1) I a I = I I?I a I ; (2) 当 >0时,a与a的方向相同;当v 0时,a与a的方向相反;当=0时, —t a = 0. (3) 若a= ( X i, y i),则a= ( X i, y i). 两个向量共线的充要条件: (1) 向量b与非零向量a共线的充要条件是有且仅有一个实数,使得b= a . ―b- —te- (2) 若a= ( X i, y i) ,b= ( X2, y2 )则a // b x』2 x? y i 0 . 平面向量基本定理: 若e i、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有 —*■ 一对实数i, 2,使得a = i e i+ 2 e2.

平面向量知识点总结归纳

平面向量知识点总结归纳 1、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 2、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+ . ⑷运算性质:①交换律:a b b a +=+ ;②结合律:()() a b c a b c ++=++ ; ③00a a a +=+= . ⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++ . 3、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=-- . b a C B A a b C C -=A -AB =B

设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =-- . 4、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ . ①a a λλ= ; ②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a 的方向相 反;当0λ=时,0a λ= . ⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+ ;③() a b a b λλλ+=+ . ⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ== . 5、向量共线定理:向量() 0a a ≠ 与b 共线,当且仅当有唯一一个实数λ,使 b a λ= . 设()11,a x y = ,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、 () 0b b ≠ 共线. 6、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于 这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+ .(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底) 7、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y , ()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλ λ++?? ?++??. 8、平面向量的数量积: ⑴() cos 0,0,0180a b a b a b θθ?=≠≠≤≤ .零向量与任一向量的数量积为0. ⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥??= .②当a 与b 同向时, a b a b ?= ;当a 与b 反向时,a b a b ?=- ;22a a a a ?== 或a .③ a b a b ?≤ . ⑶运算律:①a b b a ?=? ;②()()()a b a b a b λλλ?=?=? ;③() a b c a c b c +?=?+? . ⑷坐标运算:设两个非零向量()11,a x y = ,()22,b x y = ,则1212a b x x y y ?=+ .

空间向量与立体几何知识总结(高考必备!)

zk ,有序实数组(,x 在空间直角坐标系O xyz -中的坐标,记作(A x 叫纵坐123,b a b a λλ?===2)若11(,A x y 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。)//a b b ?=)R 设b a ,是空间两个非零向21a a x =?=+2 (AB x ==

12)(x y y -+-cos |||| b a b ?.空间向量数量积的性质: cos ,a e <>.②0a b a b ⊥?=.③2 ||a a a =?. 、运算律 a b b ?=?; ②)(a ?λ四、直线的方向向量及平面的法向量 b = ④解方程组,取其中的一组解即可。 存在有序实数对μλ,使AB =n ⊥

六、计算角与距离 1、求两异面直线所成的角 已知两异面直线b a ,,,,,A B a C D b ∈∈,则异面直线所成的角θ为:cos AB CD AB CD θ?= 例题 【空间向量基本定理】 例1.已知矩形ABCD ,P 为平面ABCD 外一点,且PA ⊥平面ABCD ,M 、N 分别为PC 、PD 上的点,且M 分成定比2, N 分PD 成定比1,求满足 的实数x 、y 、z 的值。 ] 分析;结合图形,从向量出发,利用向量运算法则不断进行分解,直到全部向量都用 、 、 表示出来, 即可求出x 、y 、z 的值。 如图所示,取PC 的中点E ,连接NE ,则 。 点评:选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的一项基本功,要结合已知和所求,观察图形,联想相关的运算法则和公式等,就近表示所需向量。再对照目标,将不符合目标要求的向量当作新的所需向量,如此继续下去,直到所有向量都符合目标要求为止,这就是向量的分解。有分解才有组合,组合是分解的表现形式。空间向量基本定理恰好说明,用空间三个不共面的向量组可以表示出空间任意一个向量, 而且a,b,c 的系数是惟一的。 ) 【利用空间向量证明平行、垂直问题】 例2.如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E 是PC 的中点,作EF ⊥PB 于点F 。 (1)证明:PA 方形ABCD —中,E 、F 分别是,的中点,求:

平面向量的基本概念及线性运算知识点

平面向量 一、向量的相关概念 1、向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段(向量可以平移)。如已知A (1,2),B (4,2),则把向量AB u u u r 按向量a r =(-1,3)平移后得到的向量是_____(3,0) 2、向量的表示方法:用有向线段来表示向量. 起点在前,终点在后。有向线段的长度表示向量的大小,用_____箭头所指的方向____表示向量的方向.用字母a ,b ,…或用AB ,BC ,…表示 (1) 模:向量的长度叫向量的模,记作|a |或|AB |. (2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB u u u r 共线的单位向量是|| AB AB ±u u u r u u u r ); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性。 (5)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0r );④三点A B C 、、共线? AB AC u u u r u u u r 、共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。a 的相反向量是-a 。零向量的相反向量时零向量。 二、向量的线性运算 1.向量的加法: (1)定义:求两个向量和的运算,叫做向量的加法. 如图,已知向量a ,b ,在平面内任取一点A ,作AB =u u u r a ,BC =u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC =+=u u u r u u u r u u u r 。AB BC CD DE AE +++=u u u r u u u r u u u r u u u r u u u r 特殊情况:a b a b a+b b a a+ b (1)平行四边形法则三角形法则 C B D C B A 对于零向量与任一向量a ,有 a 00+=+ a = a (2)法则:____三角形法则_______,_____平行四边形法则______ (3)运算律:____ a +b =b +a ;_______,____(a +b )+c =a +(b +c )._______ 当a 、b 不共线时,

空间向量基础知识和应用

空间向量基础知识和应用

知识网络 知识要点梳理 知识点一:空间向量 1.空间向量的概念 在空间,我们把具有大小和方向的量叫做向量。 注: ⑴空间的一个平移就是一个向量。 ⑵向量一般用有向线段表示,同向等长的有向线段表示同一或相等的向量。相等向量只考虑其定义要 素:方向,大小。 ⑶空间的两个向量可用同一平面内的两条有向线段来表示。 2.共线向量 (1)定义:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平 行向量.平行于记作.当我们说向量、共线(或//)时,表示、的有向线段所在的直线可能是同一直线,也可能是平行直线. (2)共线向量定理:空间任意两个向量、(≠),//的充要条件是存在实数λ,使 =λ。 3.向量的数量积 (1)定义:已知向量,则叫做的数量积,记作,即 。 (2)空间向量数量积的性质: ①; ②; ③. (3)空间向量数量积运算律: ①;

②(交换律); ③(分配律)。 4.空间向量基本定理 如果三个向量不共面,那么对空间任一向量,存在一个唯一的有序实数组,使 。若三向量不共面,我们把叫做空间的一个基底,叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 5.空间直角坐标系: (1)若空间的一个基底的三个基向量互相垂直,且长为,这个基底叫单位正交基底,用表示; (2)在空间选定一点和一个单位正交基底,以点为原点,分别以的方向为正方向建立三条数轴:轴、轴、轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系, 点叫原点,向量都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为 平面,平面,平面; 6.空间直角坐标系中的坐标 在空间直角坐标系中,对空间任一点,存在唯一的有序实数组,使,有序实数组叫作向量在空间直角坐标系中的坐标,记作,叫横坐标,叫纵坐标,叫竖坐标. 7.空间向量的直角坐标运算律: (1)若,,则. 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 (2)若,,则 , , , ,

高中数学必修4平面向量知识点总结与典型例题归纳

平面向量 【基本概念与公式】 【任何时候写向量时都要带箭头】 1.向量:既有大小又有方向的量。记作:AB 或a 。 2.向量的模:向量的大小(或长度),记作:||AB 或||a 。 3.单位向量:长度为1的向量。若e 是单位向量,则||1e =。 4.零向量:长度为0的向量。记作:0。【0方向是任意的,且与任意向量平行】 5.平行向量(共线向量):方向相同或相反的向量。 6.相等向量:长度和方向都相同的向量。 7.相反向量:长度相等,方向相反的向量。AB BA =-。 8.三角形法则: ) AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数) 9.平行四边形法则: 以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。 10.共线定理://a b a b λ=?。当0λ>时,a b 与同向;当0λ<时,a b 与反向。 11.基底:任意不共线的两个向量称为一组基底。 12.向量的模:若(,)a x y =,则2||a x y =+,22||a a =,2||()a b a b +=+ 13.数量积与夹角公式:||||cos a b a b θ?=?; cos ||||a b a b θ?= ? 14.平行与垂直:1221//a b a b x y x y λ?=?=;121200a b a b x x y y ⊥??=?+= 题型1.基本概念判断正误: (1)共线向量就是在同一条直线上的向量。 ) (2)若两个向量不相等,则它们的终点不可能是同一点。 (3)与已知向量共线的单位向量是唯一的。 (4)四边形ABCD 是平行四边形的条件是AB CD =。

平面向量知识点及方法总结总结

平面向量知识点及方法总结总结 一、平面向量两个定理 1、平面向量的基本定理 2、共线向量定理。 二、平面向量的数量积 1、向量在向量上的投影:,它是一个实数,但不一定大于0、 2、的几何意义:数量积等于的模与在上的投影的积、三坐标运算:设,,则(1)向量的加减法运算:,、(2)实数与向量的积:、(3)若,,则,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标、(4)平面向量数量积:、(5)向量的模:、 四、向量平行(共线)的充要条件、 五、向量垂直的充要条件、六、七、向量中一些常用的结论 1、三角形重心公式在中,若,,,则重心坐标为、 2、三角形“三心”的向量表示(1)为△的重心、(2)为△的垂心、(3)为△的内心; 3、向量中三终点共线存在实数,使得且、 4、在中若D为BC边中点则 5、与共线的单位向量是七、向量问题中常用的方法 (一)基本结论的应用

1、设点M是线段BC的中点,点A在直线BC外,则(A)8 (B)4 (C)2 (D) 12、已知和点M满足、若存在实数m使得成立,则m= A、2 B、3 C、4 D、 53、设、都是非零向量,下列四个条件中,能使成立的条件是() A、 B、 C、 D、且 4、已知点____________ 5、平面向量,,(),且与的夹角等于与的夹角,则() A、 B、 C、 D、6、中,P是BN上一点若则m=__________ 7、o为平面内一点,若则o是____心 8、(xx课标I理)已知向量的夹角为,则、 (二)利用投影定义

9、如图,在ΔABC中,,,,则= (A)(B)(C)(D 10、已知点、、、,则向量在方向上的投影为 A、 B、 C、 D、11设是边上一定点,满足,且对于边上任一点,恒有则 A、 B、 C、 D、 (二)利用坐标法 12、已知直角梯形中,//,,,是腰上的动点,则的最小值为____________、 13、(xx课标II理)已知是边长为的等边三角形,为平面内一点,的最小值是() (三)向量问题基底化 14、在边长为1的正三角形ABC中, 设则____________、 15、(xx天津理)在中,,,、若,,且,则的值为 ___________、 16、见上第11题 (四)数形结合代数问题几何化,几何问题代数化例题 1、中,P是BN上一点若则m=__________

高中数学(理)空间向量知识点归纳总结及综合练习

空间向量知识点归纳总结 知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量, a 平行于 b ,记作b a //。 》 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使 p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组 ,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使 OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: ~ (1)空间直角坐标系中的坐标: (2)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=。 ②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 》

高中数学平面向量知识点总结及常见题型x

平面向量 一.向量的基本概念与基本运算 1向量的概念: ①向量:既有大小又有方向的量向量一般用a,b,c……来表示,或用有向线段的起点与终 点的大写字母表示,如:AB几何表示法AB , a ;坐标表示法a =xi ? yj (x, y).向量 的大小即向量的模(长度),记作| A B |即向量的大小,记作I 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行零向量a = 0 = I a I = 0"由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线) 的问题中务必看清楚是否有“非零向量”这个条件. (注意与0的区别) ③单位向量:模为1个单位长度的向量向量a0为单位向量二I a0I = 1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直 线上方向相同或相反的向量,称为平行向量.记作a // b ■由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为 亠% =x2 小相等,方向相同(x「yj = (x2, y2)=」 y2 2向量加法 求两个向量和的运算叫做向量的加法t―4 ―4 设AB 二a, BC =b,贝y a + b =AB BC = AC (1)0 a a,0二a ;( 2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2)三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点 当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则?向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ ? QR二AR,但这时必须“首尾相连” ? 3向量的减法 ①相反向量:与a长度相等、方向相反的向量,叫做a的相反向量 记作-a,零向量的相反向量仍是零向量 关于相反向量有:(i) -(-a)=a ; (ii) a+(-a)=( - a)+ a = 0 ; (iii) 若a、b是互为相反向量, 则a=-b,b = -a,a + b=0 ②向量减法:向量a加上b的相反向量叫做a与b的差, 记作:a - b二a ? (-b)求两个向量差的运算,叫做向量的减法 ③作图法:a -b可以表示为从b的终点指向a的终点的向量(a、b有共同起点) 4实数与向量的积: ①实数入与向量a的积是一个向量,记作入a,它的长度与方向规定如下: (I) a a ;

高中数学平面向量知识点总结[1]

高中数学必修4之平面向量 知识点归纳 一.向量的基本概念与基本运算 1向量的概念: ①向量:既有大小又有方向的量向量一般用c b a ,,……来表示,或用有向线段的起点与终 点的大写字母表示,如:AB 几何表示法 AB ,a ;坐标表示法),(y x yj xi a =+= 向 量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a | 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ?| a |= 由于0 的方向是任意的,且规定0 平行于任何向量,故在有关向量平行(共线) 的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) ③单位向量:模为1个单位长度的向量 向量0a 为单位向量?|0a |=1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直 线上方向相同或相反的向量,称为平行向量记作a ∥b (即 自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必 须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的. ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a =大 小相等,方向相同 ),(),(2211y x y x =???==?2 12 1y y x x 2向量加法 求两个向量和的运算叫做向量的加法 设,AB a BC b == ,则a +b =AB BC + =A C (1)a a a =+=+00;(2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点 当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法

空间向量知识点总结.doc

空间向量与立体几何知识点总结 一、基本概念 : 1、空间向量: 2、相反向量: 3 、相等向量: 4、共线向量: 5 、共面向量: 6、方向向量 : 7 、法向量 8、空间向量基本定理: 二、空间向量的坐标运算: 1.向量的直角坐标运算 r r 设 a =(a1,a2 , a3 ) , b = (b1 , b2 , b3 ) 则 (1) r r b1, a2 b2, a3 b3 ) ;(2) r r a +b=(a1 a -b=( a1 (3) r a2 , a3 ) (λ∈R);(4) r r λ a =( a1, a · b = a1b1 2.设 A( x1, y1, z1), B( x2, y2, z2),则b1 , a2 b2 , a3b3 ) ;a2b2a3b3; uuur uuur uuur AB OB OA = (x2x1 , y2y1 , z2z1 ) . r r 3、设a ( x1 , y1, z1 ) , b ( x2, y2 , z2 ) ,则 r r r r r r r r r r a P b a b(b 0) ; a b a b 0 x1 x2 y1 y2 z1z2 0 . 4. 夹角公式 r r r r a1b1 a2 b2 a3b3 . 设 a =(a1,a2, a3),b=(b1, b2, b3),则 cos a,b a12 a22 a32 b12 b22 b32 5.异面直线所成角 r r r r | a b | | x1x2 y1 y2 z1 z2 | cos | cos a,b . |= r r x12 y12 z12 x22 y22 z22 | a | | b | 6.平面外一点p 到平面的距离 n r 已知 AB 为平面的一条斜线, n 为平面的一个法 α

相关主题
文本预览
相关文档 最新文档