4.1.2中职数学-实数指数幂的运算法则
- 格式:doc
- 大小:113.50 KB
- 文档页数:5
4.1实数指数幂编制说明2013-10-29新课标的理念和现代建构主义理论告诉我们,学生的学习是在三维目标指导下,建立在已有的经验的基础之上的主动建构过程。
在这一过程中,教师的作用是设计者、组织者、评估者、指导者,学生是学习活动的主体,只有充分发挥学生的积极性、主动性,才能提高建构的质量,我尝试利用这一理论来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、教学目标分析、教法学法分析、教学评价分析四个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。
一、教材分析:1.教材的地位与作用:本节内容安排在江苏省职业学校文化课教材数学第一册的第4.1节,它是继初中平方根和立方根的拓展和延续,为以后学习幂函数、指数函数打基础、做铺垫。
2.学情分析:(1)学生已基本掌握平方根与立方根概念。
(2)数学基础知识偏弱,学习缺少自信心,自学能力和自控能力都停留在较低层次上。
(3)学生学习兴趣不够浓,动力不强,学习效率较低,对数学问题的合作探究欲望不高。
(4)学生层次参次不齐,个体差异比较明显。
3.教学重点与难点:本节教学重点:n次方根以及分数指数幂的概念及性质。
本节教学难点:根式与分数指数幂的互化。
解决措施....:从学生熟悉的平方根与立方根入手,使用“任务单”让学生亲身参与,由此来引导学生对问题的思考,体验概念、公式形成过程,并逐步掌握问题的关键。
(根据教材重、难点,我制定如下教学目标)二、教学目标分析:新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程为主,同时成为学会学习和正确认识价值观为目的。
这要求我们在教学中以知识技能的培养为主线,渗透情感态度与价值观,并把这两者充分体现在教学过程中,新课标和现代建构主义指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据实数指数幂在教材内容中的地位与作用,结合学情分析,我设计如下教学目标:1.知识技能目标:⑴识记n次方根的概念,能区分奇次方根、偶次方根和n次算术根。
课题名称 4.1 实数指数幂授课班级13机电 1授课时间课题序号授课课时第到授课形式启迪、类比使用教具课件1. 识记 n 次方根的观点,能划分奇次方根、偶次方根和n 次根算式根。
教学目的 2. 能描绘分数指数幂的定义,会进行根式与分数指数幂的互化。
3.识记有理数指数幂的运算性质,会进行简单的有理数指数幂的运算。
教学重点有理数指数幂的运算、实数指数幂的综合运算教学难点有理数指数幂的运算、实数指数幂的综合运算更新、补充、删减无内容课外作业1. P 96 习题。
实数指数幂授课主要思虑沟通例题讲堂小结观点内容或板书设计问题解决练习教学后记教课过程师生活动设计意主要教学内容及步骤图等一、复入:二、新:研究(本 90 )引学生回初中1.观点学的平方根、立方根的一般地,假如 x n a( n N , 且 n1) ,称x a桂梅观点,启学生思虑当指数分取 4,5 ,⋯,的 n 次方根。
x 的名称确立,比如:指数分取奇数和偶数底数的异同。
当n 奇数,正数的n 次方根是一个正数,数的n次方根是一个数。
, a 的 n 次方根只有一个,作n a 。
比如:当 n 偶数,正数 a 的 n 次方根有两个,它互相反数,作±n a的形式。
数没有偶次方根。
0 的任何次方根都是0.正数 a 的正的 n 次方根叫做 a 的 n 次算式根。
作n a 。
当n a 存心,把n a 叫做根式,此中n叫做根指数,a 叫做被开方数。
性:(1)(na) n(,且n1)a n N(2)当 n 奇数,(n a)n a ;当 n 为偶数时, (n a )na (a 0 ), | a |a( a 0).m(3) a nna m ;m11 (4) anmna ma n例 1 将以下各分数指数幂写成根式的形式:22(1) a 3 ;(2) b 3 .例 2 将以下各根式写成分数指数幂的形式:(1)5a 2; (2)1.3a 5思虑沟通1. 0 的正分数指数幂是。
授课班级21机1、汽1 授课内容 4.1实数指数授课地点835、803 授课时间12.20-12.21教学目标知识目标1.理解整数指数幂及其运算律,并会进行有关运算.了解根式的概念和性质;2.理解分数指数幂的概念;掌握有理数指数幂的运算性质.能力目标会对根式、分数指数幂进行互化.素质目标1.培养学生的观察、分析、归纳等逻辑思维能力;2.培养学生勇于发现、勇于探索、勇于创新的精神;3.培养学生合作交流等良好品质.教学重难点教学重点零指数幂、负整指数幂的定义,分数指数幂的概念以及分数指数幂的运算性质.教学难点零指数幂及负整指数幂的定义过程,整数指数幂的运算.对分数指数幂概念的理解.教学过程教学环节教学内容学生活动教师活动设计意图一、回顾旧知,做实铺垫(情景导入)在一个国际象棋棋盘上放一些米粒,第一格放1粒,第2格放2粒,第3格放4粒……一直到第64格,那么第64格应放多少粒米?第1格放的米粒数是1;第2格放的米粒数是2;第3格放的米粒数是2×2;第4格放的米粒数是2×2×2;学生在教师的引导下观察图片,明确教师提出的问题,通过观察课件,归纳、探究答案.师:通过上面的解题过程,你能发现什么规律?那么第64格放多少米粒,怎么表示?学生回答,教师针对学生通过问题的引入激发学生学习的兴趣.课程思政:在问题的分析过程中,培养学生归纳推理的能力.2个23个2二、引课示标,明确方向三、自学质疑,合作探究第5格放的米粒数是2×2×2×2;……第64格放的米粒数是2×2×2× (2)1.分数指数幂的概念以及分数指数幂的运算性质.2.对分数指数幂概念的理解.自学范围:课本P62-P64自学时间:6分钟自学要求:1、找出正整数,负整数指数的运算法则并做标记;2、圈画出它们的运算法则字母表示方法;自学问题:1.正整数,负整数指数的运算法则2.根式有关概念3.根式的性质4.分数指数幂5.实数指数幂的运算法则自学分享一、根式1.当n是正整数时,a n叫正整指数幂.2规定:a0=1 (a≠0)3.我们规定:a-1=1a(a≠0)学生解答.全班齐读学习目标,30秒内内化学生在6分钟内自学记录自学过程中产生的疑惑完成自学要求预设问题:学生对于幂的认识不足的回答给予点评.并归纳出第64格应放的米粒数为263.教师讲解重难点,解析目标,让学生明确学习方向。
中职数学基础模块上册《实数指数幂及其运算法则》word教案第一章:指数幂的概念与性质1.1 教学目标1. 理解指数幂的概念2. 掌握指数幂的性质3. 学会运用指数幂的性质解决问题1.2 教学内容1. 指数幂的定义与例子2. 指数幂的性质3. 指数幂的应用1.3 教学重点与难点1. 重点:指数幂的概念与性质2. 难点:指数幂的应用1.4 教学方法与手段1. 讲授法:讲解指数幂的定义与性质2. 案例分析法:分析实际问题中的指数幂应用3. 练习法:巩固所学知识1.5 教学过程1. 引入:通过实际问题引入指数幂的概念2. 讲解:讲解指数幂的定义与性质,举例说明3. 案例分析:分析实际问题中的指数幂应用4. 练习:布置相关练习题,巩固所学知识第二章:分数指数幂2.1 教学目标1. 理解分数指数幂的概念2. 掌握分数指数幂的性质3. 学会运用分数指数幂解决问题2.2 教学内容1. 分数指数幂的定义与例子2. 分数指数幂的性质3. 分数指数幂的应用2.3 教学重点与难点1. 重点:分数指数幂的概念与性质2. 难点:分数指数幂的应用2.4 教学方法与手段1. 讲授法:讲解分数指数幂的定义与性质2. 案例分析法:分析实际问题中的分数指数幂应用3. 练习法:巩固所学知识2.5 教学过程1. 引入:通过实际问题引入分数指数幂的概念2. 讲解:讲解分数指数幂的定义与性质,举例说明3. 案例分析:分析实际问题中的分数指数幂应用4. 练习:布置相关练习题,巩固所学知识第三章:指数幂的运算3.1 教学目标1. 掌握指数幂的运算法则2. 学会运用指数幂的运算法则进行计算3. 理解指数幂运算的规律3.2 教学内容1. 指数幂的运算法则2. 指数幂运算的规律3. 指数幂运算的应用3.3 教学重点与难点1. 重点:指数幂的运算法则2. 难点:指数幂运算的应用3.4 教学方法与手段1. 讲授法:讲解指数幂的运算法则2. 案例分析法:分析实际问题中的指数幂运算应用3. 练习法:巩固所学知识3.5 教学过程1. 引入:通过实际问题引入指数幂的运算2. 讲解:讲解指数幂的运算法则,举例说明3. 案例分析:分析实际问题中的指数幂运算应用4. 练习:布置相关练习题,巩固所学知识第四章:指数函数4.1 教学目标1. 理解指数函数的概念2. 掌握指数函数的性质3. 学会运用指数函数解决问题4.2 教学内容1. 指数函数的定义与例子2. 指数函数的性质3. 指数函数的应用4.3 教学重点与难点1. 重点:指数函数的概念与性质2. 难点:指数函数的应用4.4 教学方法与手段1. 讲授法:讲解指数函数的定义与性质2. 案例分析法:分析实际问题中的指数函数应用3. 练习法:巩固所学知识4.5 教学过程1. 引入:通过实际问题引入指数函数的概念2. 讲解:讲解指数函数的定义与性质,举例说明3. 案例分析:分析实际问题中的指数函数应用4. 练习:布置相关练习题,巩固所学知识第五章:对数与对数函数5.1 教学目标1. 理解对数的概念2. 掌握对数的性质3. 学会运用对数解决问题5.2 教学内容1. 对数的定义与例子2. 对数的性质3. 对数函数的应用5.3 教学重点与难点1. 重点:对数的概念与性质2. 难点:第六章:对数函数的性质与应用6.1 教学目标1. 理解对数函数的概念2. 掌握对数函数的性质3. 学会运用对数函数解决问题6.2 教学内容1. 对数函数的定义与例子2. 对数函数的性质3. 对数函数的应用6.3 教学重点与难点1. 重点:对数函数的概念与性质2. 难点:对数函数的应用6.4 教学方法与手段1. 讲授法:讲解对数函数的定义与性质2. 案例分析法:分析实际问题中的对数函数应用3. 练习法:巩固所学知识6.5 教学过程1. 引入:通过实际问题引入对数函数的概念2. 讲解:讲解对数函数的定义与性质,举例说明3. 案例分析:分析实际问题中的对数函数应用4. 练习:布置相关练习题,巩固所学知识第七章:指数与对数互化7.1 教学目标1. 理解指数与对数互化的原理2. 掌握指数与对数互化的方法3. 学会运用指数与对数互化解决问题7.2 教学内容1. 指数与对数的互化关系2. 指数与对数互化的方法3. 指数与对数互化的应用7.3 教学重点与难点1. 重点:指数与对数互化的原理与方法2. 难点:指数与对数互化的应用7.4 教学方法与手段1. 讲授法:讲解指数与对数互化的原理与方法2. 案例分析法:分析实际问题中的指数与对数互化应用3. 练习法:巩固所学知识7.5 教学过程1. 引入:通过实际问题引入指数与对数互化的概念2. 讲解:讲解指数与对数互化的原理与方法,举例说明3. 案例分析:分析实际问题中的指数与对数互化应用4. 练习:布置相关练习题,巩固所学知识第八章:指数与对数在实际问题中的应用8.1 教学目标1. 理解指数与对数在实际问题中的应用2. 掌握指数与对数在实际问题中的解题方法3. 学会运用指数与对数解决实际问题8.2 教学内容1. 指数与对数在实际问题中的应用实例2. 指数与对数在实际问题中的解题方法3. 指数与对数在实际问题中的应用案例分析8.3 教学重点与难点1. 重点:指数与对数在实际问题中的应用2. 难点:指数与对数在实际问题中的解题方法8.4 教学方法与手段1. 讲授法:讲解指数与对数在实际问题中的应用实例2. 案例分析法:分析实际问题中的指数与对数应用案例3. 练习法:巩固所学知识8.5 教学过程1. 引入:通过实际问题引入指数与对数在实际问题中的应用2. 讲解:讲解指数与对数在实际问题中的应用实例,举例说明3. 案例分析:分析实际问题中的指数与对数应用案例4. 练习:布置相关练习题,巩固所学知识第九章:复习与拓展9.1 教学目标1. 巩固本模块所学知识2. 提高学生的数学思维能力3. 培养学生解决实际问题的能力9.2 教学内容1. 复习本模块的主要知识点和技能2. 拓展与本模块相关的数学知识3. 分析与解决实际问题9.3 教学重点与难点1. 重点:巩固本模块所学知识2. 难点:拓展与本模块相关的数学知识9.4 教学方法与手段2. 案例分析法:分析与解决实际问题3. 练习法:巩固所学知识9.5 教学过程2. 讲解:讲解与本模块相关的数学知识,举例说明3. 案例分析:分析与解决实际问题4. 练习:布置相关练习题,巩固所学知识第十章:评价与反馈10.1 教学目标1.重点和难点解析第一章:指数幂的概念与性质重点和难点解析:本章节的重点是指数幂的概念与性质,难点是指数幂的应用。
中职数学基础模块上册《实数指数幂及其运算法则》课件 (一)中职数学基础模块上册《实数指数幂及其运算法则》课件是数学学习过程必不可少的教育资源,本文将从以下几个方面对这一课件进行探讨。
一、课件简介《实数指数幂及其运算法则》是中职数学基础模块上册的一个重要课程,主要介绍了实数指数幂的概念、性质和运算法则等内容。
而课件则是一种多媒体教育资源,通过PPT、图片、视频等形式,生动直观地向学生展示课程内容,帮助学生更好地理解和掌握知识点。
二、课件特点1.重点突出:课件针对实数指数幂的重要性,将其作为重点内容进行讲解,对于常规知识点和易混淆点也有特别的突出。
2.图文并茂:课件采用大量图片、图表、公式等形式,生动直观地展示知识点,能够帮助学生对内容有更加深入的理解。
3.多元化表现:课件应用了视频、音频等多媒体资料,进行思维导图和演示,有很好的视觉和听觉效果,对于记忆理解和知识拓展有着显著的效果。
三、课件分析《实数指数幂及其运算法则》课件分为以下几个部分:1.引言:介绍实数指数幂的概念和特点,为后面的内容做好铺垫。
2.基础知识:讲解实数指数幂的基本定义、性质及其重要的运算法则。
3.练习题:通过练习题来检验学生对课程内容的理解和掌握情况,帮助学生加深对重要知识点的记忆和理解。
4.案例分析:通过实际案例的分析,向学生演示实数指数幂在实际问题中的应用场景,拓展学生的思维和知识领域。
四、课件应用《实数指数幂及其运算法则》课件能够提供丰富多样化的视听体验,使学生对实数指数幂这一内容更加深入地认识和理解。
同时,教师可以通过课件中的思维导图和案例分析等内容,培养学生的思维反应能力和创造性思维能力,提升教学效果和质量。
总之,中职数学基础模块上册《实数指数幂及其运算法则》课件的设计合理、内容丰富、形式多样,极大地提升了教学效果,为学生打下更坚实的数学基础。
中职数学基础模块上册《实数指数幂及其运算法则》word教案教案目录:一、教学目标1.1 知识与技能目标1.2 过程与方法目标1.3 情感态度与价值观目标二、教学内容2.1 实数指数幂的定义与性质2.2 运算法则2.3 指数幂的应用三、教学重点与难点3.1 教学重点3.2 教学难点四、教学方法与手段4.1 教学方法4.2 教学手段五、教学过程5.1 导入新课5.2 知识讲解5.3 例题解析5.4 课堂练习5.5 总结与拓展教案一、教学目标1.1 知识与技能目标通过本节课的学习,使学生掌握实数指数幂的定义与性质,能够运用运算法则进行简单的计算。
1.2 过程与方法目标通过自主学习、合作探讨的方式,培养学生分析问题、解决问题的能力。
1.3 情感态度与价值观目标激发学生对数学的学习兴趣,培养学生的逻辑思维能力。
二、教学内容2.1 实数指数幂的定义与性质实数指数幂是指以实数为底数的指数幂,例如:2^3、3^4等。
2.2 运算法则同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;积的乘方,等于每个因式的乘方再相乘。
2.3 指数幂的应用指数幂在实际生活中有广泛的应用,如计算利息、折扣等。
三、教学重点与难点3.1 教学重点实数指数幂的定义与性质,运算法则的应用。
3.2 教学难点指数幂的运算法则的理解与运用。
四、教学方法与手段4.1 教学方法采用问题驱动法、案例教学法、小组合作学习法等。
4.2 教学手段利用多媒体课件、教学挂图、实物模型等辅助教学。
五、教学过程5.1 导入新课通过复习实数的基本概念,引出实数指数幂的概念。
5.2 知识讲解讲解实数指数幂的定义与性质,运算法则的推导与解释。
5.3 例题解析举例说明实数指数幂的运算法则的应用,引导学生进行思考。
5.4 课堂练习布置一些相关的练习题,让学生巩固所学知识。
5.5 总结与拓展对本节课的内容进行总结,提出一些拓展问题,激发学生的学习兴趣。
中职数学基础模块上册《实数指数幂及其运算法则》Word教案一、教学目标1. 知识与技能:(1)理解实数指数幂的概念;(2)掌握实数指数幂的运算法则;(3)能够运用实数指数幂及其运算法则解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳实数指数幂的运算法则;(2)培养学生的逻辑思维能力和运算能力。
3. 情感、态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生合作交流、积极探索的精神。
二、教学重点与难点1. 教学重点:实数指数幂的概念,实数指数幂的运算法则。
2. 教学难点:实数指数幂的运算法则的应用。
三、教学方法1. 情境创设:通过生活实例引入实数指数幂的概念;2. 自主探究:引导学生观察、分析、归纳实数指数幂的运算法则;3. 合作交流:分组讨论,共同解决问题;4. 巩固练习:设计相关练习题,巩固所学知识。
四、教学过程1. 导入新课:(1)复习相关知识点,如幂的定义;(2)通过生活实例引入实数指数幂的概念。
2. 自主探究:(1)观察实数指数幂的运算法则;(2)分析、归纳实数指数幂的运算法则。
3. 合作交流:(1)分组讨论,共同解决问题;(2)分享各自的学习心得和方法。
4. 巩固练习:(1)设计相关练习题;(2)学生独立完成,教师点评、讲解。
5. 课堂小结:(2)强调实数指数幂在实际问题中的应用。
五、课后作业1. 复习实数指数幂的概念和运算法则;2. 完成课后练习题;六、教学策略1. 实例引导:通过具体的实例,让学生理解实数指数幂的实际意义和应用。
2. 问题驱动:提出问题,激发学生的思考,引导学生主动探究实数指数幂的运算法则。
3. 互助合作:鼓励学生之间的合作,共同解决问题,提高学生的团队协作能力。
4. 实践操作:让学生通过实际操作,加深对实数指数幂及其运算法则的理解。
七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 课后作业:检查学生完成的课后作业,评估学生对实数指数幂及其运算法则的掌握程度。
4.1.2 实数指数幂及其运算法则
一、教材分析
本节课是新课标职业高中数学基础模块上册第四章实数指数幂第二课时,也是指数函数的入门课程。
指数函数对于学生来说是一个全新的函数模型,学习起来比较困难。
而实数指数幂的运算是指数函数的基础,是认识指数函数的先遣队。
我们通过初中学习整数指数幂的运算,进一步推广到实数指数幂的运算,为我们的指数函数铺路搭桥。
实数指数幂的运算是高中数学中的一类重要运算,需要理解运算对象,掌握运算法则,探究运算思路,选择运算方法,是培养学生具备运算能力的重要载体。
通过本节课的学习,可以让学生重新认识幂运算,为指数函数做铺垫。
从而更清晰,深刻地认识和理解指数函数模型,培养学生的逻辑思维能力。
二、学情分析
学生进入高中学习时间短,运算能力,逻辑思维能力,探究能力,合作学习能力还不够成熟。
需要在我们的教学过程中继续强化,引导。
初中已经学习《整数指数幂及其运算法则》。
本节课是在初中学习基础上继续深入学习,将幂指数的限定由整数推广到实数,运算法则不变,所以学生有前面的基础,我们的探究过程会显得更加从容,学生能够通过合作交流完成猜想与探究。
通过对不等式的学习,已有一定的运算基础,同时对相互转化的思想,探究能力、逻辑思维能力得到了一定的锻炼。
因此,学生已具备了探索发现研究新知的认识基础,故应通过指导,教会学生独立思考、团结协作、大胆猜测和灵活运用类比、转化、归纳等学习方法。
三、教学设计
0.
,且a≠时,规定
四、板书设计:
五、课后反思
学生是教学的主体,为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,本节课给学生提供各种参与机会。
为了调动学生学习的积极性,使学生化被动为主动。
本节课我采用学生独立完成加小组合作交流,分享小组成果等方式调动学生主动参与的积极性。
在教学重难点上,循序渐进、启发学生的思维,通过课堂练习、学生讨论的方式来加深理解,很好地突破难点和提高教学效率。
让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。
在探索新知的过程中,最重要的环节是论证猜想,但由于学生知识受限,不能很好地理解证明,所以本节课没有对结论进行证明,使学生不能完整体会探索精神,科学精神。
将在以后的教学中弥补这一缺失。