数列与级数的函数项级数与幂级数
- 格式:docx
- 大小:37.02 KB
- 文档页数:2
请双面打印/复印(节约纸张)高等数学主讲: 张小向第六章 无穷级数第一节 数项级数 第二节 反常积分判敛法 第三节 幂级数 第四节 傅里叶级数第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数§6.3 幂级数 一. 函数项级数的基本概念 u1(x), u2(x), …, un(x), … ——定义在数集 A上的函数序列 Σ u (x) = u1(x) + u2(x) + …+ un(x) + … n=1 n ——定义在数集 A上的函数项级数 un(x) —— 通项 Sn(x) = k=1uk(x) —— 部分和 Σn ∞n=1 nΣ u (x) = u1(x) + u2(x) + …+ un(x) + …∞∞——定义在数集 A上的函数项级数 收敛(发散)点x0∈D: n=1un(x0) 收敛(发散) Σ Σ 收敛(发散)域: n=1un(x) 的收敛(发散)点的全体 和函数 S(x) = n=1un(x) Σ 其定义域为 n=1un(x) 的收敛域 Σ 余项 Rn(x) = S(x) − Sn(x) = k=n+1uk(x) Σ∞ ∞ ∞ ∞第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数例1. 几何级数 n=1xn−1 = 1 + x + x2 +…+ xn +… Σ 是定义在实数集∞ ∞∞例1. 几何级数n=1 xn−1 的收敛域为(−1, 1). Σ 当 x ∈ (−1, 1)时, Sn(x) = 1− xn , 1− x∞上的函数项级数.当|x| < 1时, n=1|xn−1| 收敛, Σ 故 n=1xn−1 (绝对)收敛. Σ 当|x| ≥ 1时, lim n→∞ 综上所述,n=1 ∞ ∞xn−1≠ 0, 故 n=1 Σxn−1发散.∞lim xn = 0, n→∞ lim Sn(x) = n→∞ 所以 n=1xn−1 = Σ 1 . 1− xΣ xn−1 的收敛域为 (−1, 1).1 , x ∈ (−1, 1). 1− x272365083@1请双面打印/复印(节约纸张)第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数例2. x + (x2 − x) + (x3 − x2) + … + (xn − xn−1) + … 是定义在实数集 上的函数项级数. Sn(x) = xn,例3. 求下列级数的收敛域. ∞ xn (1) n=1 . Σ n! 解: 因为∀x ∈ lim n→∞ 所以 n=1 Σ∞, xn = lim |x| = 0. n! n→∞ n+1lim 当|x| < 1时, lim Sn(x) = n→∞ xn = 0, n→∞ lim 当 x = 1时, lim Sn(x) = n→∞ 1 = 1, n→∞ 当 x < −1 或 x > 1时, lim Sn(x)不存在. n→∞ 综上所述, 该级数的收敛域为(−1, 1], 0, x ∈ (−1, 1); 且和函数 S(x) = 1, x = 1.xn+1 (n+1)!∞ xn xn Σ 收敛, 因而 n=1 收敛. n! n! n ∞ x 可见 n=1 的收敛域为 . Σ n!第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数. n2 n |x| lim lim 解: n→∞ n x 2 = n→∞ n = |x|. n √n2 ∞ xn ∞ xn Σ 当|x| < 1时, n=1 2 收敛, 因而 n=1 2 收敛; Σ n n n ∞ xn lim 当|x| > 1时, n→∞ x 2 ≠ 0, 因而 n=1 2 发散. Σ n n ∞ xn ∞ 1 当|x| = 1 时, n=1 2 = n=1 2 收敛, 因而… Σ Σ n n ∞ xn 可见 n=1 2 的收敛域为[−1, 1]. Σ n(2) n=1 Σ∞xn(3)∞ (x−1)n Σ n n=1 2 n=x−1 + 2 +… 2 ⋅2 2|x−1| (x−1)n = lim n|x−1| nn n→∞ 2(n+1) 2 . 2(x−1)2n+1 lim n+1 解: n→∞ (x−1)2(n+1)∞ (x−1)n |x−1| 当 2 < 1 时, n=1 2nn 绝对收敛; Σ ∞ (x−1)n |x−1| 当 2 > 1 时, n=1 2nn 发散. Σ ∞ (x−1)n ∞ (−1)n 当 x = −1 时, n=1 2nn = n=1 n 收敛. Σ Σ当 x = 3 时, n=1 2nn = n=1 − 发散. Σ Σ n∞(x−1)n∞1第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数n+1 lim n+1 解: n→∞ (x−1)2(n+1)∞(x−1)n |x−1| 2 nn = 2 .(x−1)n (x−1)n(4) n=1 n Σ 解: lim n→∞∞ (−1)n1 n . 1+x当 2|x−1| |x−1|< 1 时, n=1 2nn Σ∞绝对收敛;un+1(x) 1 1 lim n un(x) = n→∞ n + 1 |1 + x| = |1 + x| .当 2> 1 时, n=1 2nn 发散. Σ∞当 |1+x| > 1 时, 该级数绝对收敛; 当 |1+x| < 1 时, 该级数发散. 收敛. 当 x = 0 时, n=1 n Σ∞ ∞当 x = −1 时, n=1 2nn = n=1 n Σ Σ∞(x−1)n∞(−1)n(−1)n∞ (−1)n 1 n = n=1 n 收敛. Σ 1+x ∞ 1 1 n = n=1 − 发散. Σ n 1+x当 x = 3 时, n=1 2nn = n=1 − 发散. Σ Σ n 可见 n=1 2nn 的收敛域为[−1, 3). Σ∞(x−1)n∞1当 x = −2 时, Σ n n=1(−1)n(x−1)n可见该级数的收敛域为(−∞, −2) ∪ [0, +∞).272365083@2请双面打印/复印(节约纸张)第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数二. 函数项级数的一致收敛性y 1S1(x), S2(x), …, Sn(x), … ——定义在数集 A上的函数序列 S(x) ——定义在数集 A上的函数 若∀ε > 0, ∃N∈ , 当 n > N 时, |Sn(x) − S(x)| < ε (∀x ∈ A), 则称{Sn(x)}在A上一致收敛于S(x). 若 n=1un(x) 的部分和序列 {Sn(x)} 在数集 A上 Σ 一致收敛, 则称该级数在A上一致收敛.∞lim xn = 0 (0 < x <1) n→∞∀ε > 0, ∃N∈ , s.t. n > N ⇒ |xn−0| < ε y=x y = x2 y = x3 y = x4 y = x5 y = x6εO x1 x2 x3 x4 x5 1 x…第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数例4. 设0 < a < 1, 证明级数x + (x2 − x) + (x3 − x2) + … + (xn − xn−1) + …例5. 证明级数x + (x2 − x) + (x3 − x2) + … + (xn − xn−1) + …在[0, a]上一致收敛. 证明: 该级数的部分和为 Sn(x) = 在[0, a]上的和为 S(x) ≡ 0. xn, ,在(0, 1)上不一致收敛. 证明: 该级数的部分和为 Sn(x) = xn, 在(0, 1)上的和为 S(x) ≡ 0.N+1 取ε = 1/2, ∀N ∈ , ∃x = ______ ∈ (0, 1), 3/4 虽然 n = N + 1 > N, 但是 |xn − 0| = xn = 3/4 > ε ,max{[logaε ]+1, 1} 对∀ε > 0, ∃N = ________________∈当 n > N 时, |xn − 0| = xn ≤ an < aN ≤ ε (∀x ∈ [0, a]), 可见Sn(x)在[0, a]上一致收敛于S(x).可见Sn(x)在(0, 1)上不一致收敛.第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数定理1 (Cauchy一致收敛准则). Σ u (x)在A上一致收敛 n=1 n ⇔ ∀ε > 0, ∃N∈n+p k=n+1 k ∞定理2 (Weierstrass判别法, M判别法). 设函数项级数 n=1un(x) (x ∈ A) 与正项级数 Σ ,有n=1 n ∞, 当 n > N时, ∀p∈Σ a 满足下列条件+;∞∞Σ u (x) = |Sn+p(x) − Sn(x)| < ε (∀x ∈ A). ⇓ Weierstrass判别法维尔斯特拉斯 [德]1815~1897(1) |un(x)| ≤ an , ∀x∈A, ∀n∈ (2) n=1an 收敛, Σ 则 n=1un(x)在A上一致收敛. Σn=1 n ∞乾隆1736-1796 嘉庆1796-1821 道光1821-1851 咸丰1851-1862 同治1862-1875 光绪1875-1908 宣统1908-1911Σ u (x)的优级数∞272365083@3请双面打印/复印(节约纸张)第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数证明: ∀ε > 0, ∃N∈n+p, 当 n > N时, ∀p∈,有例6. 设0 < a < b, 证明级数n=1 (1+|x|)nΣ u (x) = |Sn+p(x) − Sn(x)| k=n+1 k = |un+1(x) + un+2(x) + … + un+p(x)| ≤ |un+1(x)| + |un+2(x)| + … + |un+p(x)| ≤ an+1 + an+2 + … + an+p < ε (∀x ∈ A). Σ 由Cauchy一致收敛准则可知 n=1 un(x)在 A上一致收敛.∞Σ∞x在A = {x ∈x| a ≤ |x| ≤ b}上一致收敛.|x| b证明: (1+|x|)n = (1+|x|)n ≤ (1+a)n 对于 ∀n∈+以及 ∀x∈A都成立.∞又因为正项级数 n=1 (1+a)n 收敛, Σ 由Weierstrass判别法可知 n=1 (1+|x|)n Σ 在A = {x ∈ | a ≤ |x| ≤ b}上一致收敛.∞bx第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数三. 一致收敛级数的性质回忆定理3. (1) un(x)在[a, b]上连续(∀n∈∞ ∞+)例2中的级数(2) n=1un(x) 在 [a, b]上一致收敛 Σ (3) n=1un(x) = S(x) Σ S(x)在[a, b]上连续.⇒x + (x2 − x) + (x3 − x2) + … + (xn − xn−1) + …的收敛域为(−1, 1], 其和函数 0, x ∈ (−1, 1); S(x) = 1, x = 1. S(x)在(−1, 1]上不连续, 尽管该级数中的每一 项在(−1, 1]上都连续. 由例5可知该级数在(−1, 1]上不一致收敛.第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数定理4 (逐项积分). (1) un(x)在[a, b]上连续(∀n∈ 条 件∞ ∞例7. 设S(x) = n=1 Σ+)∞π cosnx , 求 ∫ 0 S(x)dx. n2(2) n=1un(x) 在 [a, b]上一致收敛 Σ (3) n=1un(x) = S(x) Σ ① S(x)在[a, b]上可积; ② ∀x0, x∈[a, b], Σ ∫ x0 S(t)dt = n=1 (∫ x0 un(t)dt).x ∞ x⇒解:结 论cosnx 1 ≤ 2 (∀x∈[0, π], ∀n∈ +) n2 n ⇒ ∞ 1 Σ 2 收敛 n=1 n ∞ cosnx 在 [0, π] 上一致收敛 Σ n=1 n2 ⇒ cosnx ∈ C[0, π] (∀n∈ +) n2 ∞ π π cosnx ∫ 0 S(x)dx = n=1 ∫ 0 n2 dx Σ ∞ π sinnx = n=1 ∫ 0 n3 dx = 0. Σ272365083@4请双面打印/复印(节约纸张)第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数定理5 (逐项求导).1 (1) un(x) ∈ C[a, b] (∀n∈+)条 件(2) n=1un(x) 在[a, b]上收敛于S(x) ⇒ Σ (3) n=1un(x) 在[a, b]上一致收敛 Σ ′1 ① S(x) ∈ C[a, b] ;∞∞结 论② S′(x) = n=1un(x). Σ ′∞sinnx 1 例8. un(x) = n3 ∈ C(−∞, +∞) (∀n∈ +) sinnx 1 ≤ n3 ∞ sinnx n3 ⇒ n=1 3 (绝对)收敛 Σ n ⇒ ∞ 1 收敛 Σ n=1 n3 sinnx ′ 1 ≤ n2 ∞ sinnx ′ n3 ⇒ n=1 n3 一致收敛 Σ ∞ 1 收敛 Σ n=1 n2 ∞ sinnx 1 Σ n3 的和函数 S(x) ∈ C(−∞, +∞) , n=1 ∞ cosnx ∞ sinnx ′ = n=1 2 . Σ 而且S′(x) = n=1 n3 Σ n第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数四. 幂级数的概念与性质 1. 幂级数的概念 Σ a (x − x0∞2. 幂级数的收敛性 lim 设 n=0anx0n 收敛, 则 n→∞ anx0n = 0, Σ 故 ∃M > 0, s.t. ∀n∈ |anx0n| < M. , x0•∞x − x0的幂级数 )nn=0 nO x • •= a0 + a1(x − x0) + a2(x − x0)2 + … 其中 x0, an ∈ (n = 0, 1, 2, …) x0 = 0时, 对应的形式为 Σ a xn = a0 + a1x + a2x2 + … n=0 n∞若 |x| < |x0|, 令q = |x/x0|, 则 q < 1, |cnxn| = |cnx0n|⋅qn < M⋅qn. Σ 而 n=0M⋅qn 收敛, 所以 n=0|cnxn| 收敛. Σ∞ ∞ ∞xΣ 故对所有满足|x| < |x0|的x, n=0 cnxn 绝对收敛.第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数定理6 (Abel定理). (1) 若n=0 anxn 在x = x0 ≠ 0 处收敛, Σ 则对所有满足|x| < |x0|的x, Σ c xn n=0 n (2)∞ ∞ ∞定理7. 若存在非零实数x1, x2使幂级数n=0 anxn Σ 在x1处收敛, 在x2处发散, 则存在R > 0, 使得 (1) 当|x| < R 时, n=0anxn 绝对收敛; Σ (2) 当|x| > R 时, n=0anxn 发散. Σ −R 收敛半径 x1 R x2 O • • • x (−R, R) ——收敛区间∞ ∞∞绝对收敛. 在x = x0 ≠ 0 处发散,阿贝尔[挪威] 1802~1829 顺治1644-1662 康熙1662-1723 雍正1723-1736 乾隆1736-1796 嘉庆1796-1821 道光1821-1851 咸丰1851-1862 同治1862-1875 光绪1875-1908 宣统1908-1911若n=0 anxn Σ∞则对所有满足|x| > |x0|的x,n=0 nΣ c xn 发散.272365083@5请双面打印/复印(节约纸张)第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数注: 若 n=0 anxn 仅在 x = 0处收敛, Σ 则规定 n=0anxn 的收敛半径 R = 0; Σ 若 n=0anxn 在整个实数轴上收敛, Σ 则规定 n=1anxn 的收敛半径 R = +∞. Σ∞ ∞ ∞∞定理8. 若幂级数 n=0anxn 中an ≠ 0 (∀n∈ Σan n→∞∞), 且n+1 lim a = ρ 或 lim √|an| = ρ. n→∞ n则该幂级数的收敛半径 +∞, R = 1/ρ, 0, 当ρ = 0时; 当0 < ρ < +∞时; 当ρ = +∞时.an+1 注: 教材上证明了 lim a = ρ 的情形, n→∞ nlim 这里证明 n→∞ √|an| = ρ 的情形.n第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数lim 证明: (1) 若 n→∞ √|an| = ρ = 0, 则∀x ∈n n→∞ ∞,有(2) 若0 < ρ < +∞, 则∀x ∈n n→∞,有lim √|anxn| = ρ |x| = 0,∞nlim √|anxn| = ρ |x|.故n=0 |anxn| 收敛, 因而 n=0anxn 收敛. Σ Σ 可见, 此时R = +∞. (2) 若0 < ρ < +∞, 则∀x ∈n n→∞由正项级数的根值判别法知: ∞ ∞ Σ Σ |x| < 1/ρ 时 n=0 |anxn| 收敛, 因而 n=0anxn 收敛; Σ |x| > 1/ρ 时, lim anxn ≠ 0, 因而 n=0anxn 发散. n→∞ 可见, 此时R = 1/ρ . (3) 若ρ = +∞, 则∀x ≠ 0, lim √|anxn| = +∞. n→∞n ∞ ∞,有lim √|anxn| = ρ |x|.由正项级数的根值判别法知: ∞ Σ |x| < 1/ρ 时 n=0 |anxn| 收敛,Σ 因而 lim anxn ≠ 0, 故 n=0anxn 发散. 可见, … n→∞第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数例9. (1) n=1 n! 的收敛半径为_________. Σ +∞an+1 1 ρ = lim a = lim 1 n→∞ n→∞ (n+1)! n! n∞xn例9. (3) n=1 2nn 的收敛半径为_________. Σ 21 n+1 ρ = lim a = lim n+1 1 (n+1) 2nn n→∞ n→∞ 2 n a∞(x−1)n= limn→∞ ∞1 = 0. n+1= limn→∞n 1 =−. 2(n+1) 2(2) n=1 n2 的收敛半径为_________. Σ 1an+1 n lim ρ = lim a = n→∞ (n+1)2 = 1. n→∞ n2xn注① 幂级数在收敛区间端点的收敛性要看具 体情况. 如例9(3), 收敛区间为(−1, 3). 在收敛区间的端点处,∞Σ n=1 2nn∞(x−1)n=条件收敛 (−1)n , x = −1; Σ n=1 n 可见, … ∞ 1 Σ −, x = 3, 发散 n=1 n272365083@6请双面打印/复印(节约纸张)第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数注② 缺项幂级数 不满足定理8中的“∀an ≠ 0 (∀n∈ 例10. n=1 Σ∞)”.例10. n=1 Σ(n!)2x2n−1 的偶次项系数全为零. (2n)! [(n+1)!]2 ⋅(2n)! 2 u (x) lim n+1 = lim |x| n→∞ un(x) n→∞ [2(n+1)]!⋅(n!)2n→∞. (2n)! u (x) |x|2 lim n+1 = . n→∞ un(x) 4 当|x| < 2时, 该级数绝对收敛;∞ (n!)2x2n−1当|x| > 2时, 该级数发散. 所以该级数的收敛半径为R = 2, 收敛区间为(−2, 2). [(n+1)!]2 (n!)2 1 = 得R = 4, 注: 若直接由 lim n→∞ [2(n+1)]! (2n)! 4 则出错!= lim(n+1)2 |x|2 |x|2 = . (2n+2)⋅(2n+1) 4当|x| < 2时, 该级数绝对收敛; 当|x| > 2时, 该级数发散.第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数例10. n=1 Σ∞(n!)2x2n−1 . (2n)!3. 幂级数的代数运算设 n=0anxn 与 n=0bnxn 的收敛半径分别为R1, R2, Σ Σ(2n)!!∞ ∞该级数的收敛半径为R = 2, 收敛区间为(−2, 2).1 Σ 当x = ±2时, 该级数 = ± − n=1 (2n−1)!! . 2∞和函数分别为S1(x), S2(x), R = min{R1, R2}, 则当|x| < R时, 有 S1(x) ± S2(x) =n=0 anxn ±n=0 bnxn = n=0(an±bn)xn, Σ Σ Σ S1(x)⋅S2(x) = ( n=0anxn)⋅( n=0bnxn) Σ Σ = n=0 (a0bn + a1bn−1 + … + anb0)xn. Σ∞ ∞ ∞ ∞ ∞ ∞lim 因为 (2n−1)!! > 1, 故 n→∞ (2n−1)!! ≠ 0. Σ 因而级数 ± − n=1 (2n−1)!! 发散. 2 所以该幂级数的收敛域为(−2, 2).1∞(2n)!!(2n)!!(2n)!!第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数4. 幂级数的分析性质 定理9. 设幂级数 n=0anxn 的收敛半径为R, Σ 0 < r < R, 则n=0 anxn Σ∞ ∞定理10. 设幂级数 n=0anxn 的收敛半径R > 0, Σ 和函数为S(x), 则 (1) S(x)在收敛域上连续. (2) 对于任意的 x ∈ (−R, R), 有 Σ S′(x) = n=0(anxn)′ = n=1nanxn−1, Σ∞ ∞∞在[−r, r]上一致收敛.∞证明: 由条件可知 n=0|anrn| 收敛. Σ 对于任意的 x ∈ [−r, r], n ∈ |anxn| ≤ |anrn|. Σ 由M判别法可知 n=0anxn 在 [−r, r] 上一 致收敛.∞,有Σ n ∫ 0 S(t)dt = n=0 ∫ 0 an tndt = n=0 n+1xn+1. Σx x∞∞a(3) n=1nanxn−1 和 n=0 n+1xn+1 的收敛半 Σ Σ n 径的仍为R.∞∞a272365083@7请双面打印/复印(节约纸张)第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数例11. 求 n=0(−1)n Σ∞xn+1 n+1的和函数S(x).例12. 对于任意的x ∈ (−1,1), 有 f(x) = 1−x = 1 + x + x2 + … + xn + … (1) f ′(x) = f ″(x) =x解: 首先, 容易求得该幂级数的收敛域为(−1, 1]. 根据定理10(1), S(x)在(−1, 1]上连续.1 , x ∈ (−1, 1), Σ = 又因为 n=0 1+x ∞ x x dt Σ 所以 ln(1+x) = ∫ 0 1+t = n=0∫ 0 (−1)ntndt ∞ xn+1 = n=0(−1)n Σ , x ∈ (−1, 1). n+1∞1(−1)nxn1 = 1 + 2x + … + nxn−1 + … (2) (1−x)2 2 = 2+6x +…+ n(n−1)xn−2 + … (3) (1−x)3 1 x2 xn+1∫ 0 1−t = ln 1−x = x + + … + + … (4) n+1 2 注① 在(4)中令x = 1/2得, ln2 = n=0 (n+1)2n+1 . Σ∞dt而S(1) = lim S(x) = lim ln(1+x) = ln(1+1), 可见 S(x) = ln(1+x), x ∈ (−1, 1].x→1− x→1−1第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数注② x = −1时, n=0 n+1 = n=0 n+1 收敛, Σ Σ x = 1时, n=0 n+1 = n=0 n+1 收敛, Σ Σ 故 n=0 n+1 的收敛域为 [−1,1), Σ 其和函数S(x)在−1处右连续, 而 ln1 也在−1处右连续, 因而 1−x ∞ (−1)n+1 lim = S(−1) = x→−1+S(x) Σ n=0 n+1 1 = x→−1+ ln 1−x = −ln2. lim∞ ∞∞xn+1∞(−1)n+1例13. 求 n=1(−1)n+1n(n+1)xn 的和函数. Σ 解: ρ = lim n+1 = lim (n+1)(n+2) = 1. n(n+1) n→∞ an n→∞ x = ±1时, lim (−1)n+1n(n+1)xn ≠ 0.n→∞∞xn+1∞1axn+1可见, 该级数的收敛域为(−1, 1). 设 n=1 (−1)n+1n(n+1)xn = S(x), x ∈ (−1, 1), Σ 则 ∫ 0 S(t)dt = n=1 ∫ 0 (−1)n+1n(n+1)tndt Σx x ∞ ∞ ∞= n=1 (−1)n+1nxn+1 = x2g(x), Σ第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数设 n=1 (−1)n+1n(n+1)xn = S(x), x ∈ (−1, 1), Σ 则 ∫ 0 S(t)dt = n=1 ∫ 0 (−1)n+1n(n+1)tndt Σx x ∞ ∞∞= n=1 (−1)n+1nxn+1 = x2g(x), Σ 其中g(x) = n=1 (−1)n+1nxn−1, x ∈ (−1, 1). Σ Σ ∫ 0 g(t)dt = n=1 ∫ 0 (−1)n+1ntn−1dt = n=1 (−1)n+1xn Σx x ∞ ∞ ∞x2 故 ∫ S(t)dt = x2g(x) = (1+x)2 . x2 ′ 2x , 即 由此可得 S(x) = (1+x)2 = (1+x)3x 0 n=1Σ (−1)n+1n(n+1)xn =∞2x , x ∈ (−1, 1). (1+x)3 2 27n+1 ∞ 1 Σ (−1) n(n+1) = S(−) = 8 . 注: 取x = 1/2 得 n=1 2n= 1+x . 上式两边对x求导得 g(x) = (1+x)2 .1x272365083@8请双面打印/复印(节约纸张)第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数例14. 求 n=1 2n−1 x2n−1 的和函数S(x). Σ(−1)n lim 解: n→∞ 2n+1 x2n+1 (−1)n−1 2n−1 = lim 2n−1 x2 2n−1 x n→∞ 2n+1∞(−1)n−1又因为S(0), 所以 S(x) = ∫ 0 S′(t)dt + S(0) = ∫0x x= x2. 可见该级数当|x| < 1时收敛, |x| > 1时发散,x = ±1时, 用Leibniz判别法可知该级数收敛,1 dt = arctanx, x ∈ (−1, 1). 1+t2结合 S(x) 和 arctanx 在[−1, 1]内的连续性得 S(x) = arctanx, x ∈ [−1, 1].(−1) Σ 注: 取x = 1得 − = arctan1 = S(1) = n=1 2n−1 . 4 π∞n−1所以该级数的收敛域为[−1, 1]. 根据定理10, S′(x) = n=1(−1)n−1x2n−2 = 1+x2 , Σ x ∈ (−1, 1).∞1第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数例15. 求 n=1 2n x2n−2 的和函数S(x), 并求 Σn=1∞2n−1Σ 2n 的值.2 2n−1 2n−2 = lim 2n+1 2 x x n→∞ 4n−2 2n∞S(x) = n=1 2n x2n−2 =n=1 n x2n−1 Σ Σ 2 = =∞2n−1∞1′2n−1x ∞ x2 n−1 ′ x 1 ′ x ′ Σ( ) = 2⋅ = 2 n=1 2 1 − x2/2 2 − x2 2 + x2 , (2 − x2)2∞lim n+1 解: n→∞ 2n+1 x2n可见该级数当|x| < √2时收敛, |x| > √2时发散,−= x2/2.∞−− − 其中 x ∈ (−√2, √2). 由此可得 n=1 2n = S(1) = 3. Σ2n−1− |x| = √2时, Σ 2n−1 x2n−2 = Σ 2n−1 发散. n=1 2n n=1 2 − − 所以该级数的收敛域为(−√2, √2).∞第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数回忆yy = 1−x2+x4−x6+x8 y = 1−x2+x4五. 函数展开为幂级数 1. 引例 (1) 1+x2 = 1 − x2 + … + (−1)nx2n + o(x2n). (2) n=0 (−1)nx2n = 1 − x2 + x4 − x6 + … Σ 的收敛半径为1, 收敛区间为(−1, 1), Σ (−1)nx2n = 1+x2 n=0∞ ∞11y=1 y= 1 1+x2 1−x2−1O1y=xy= 1−x2+x4−x61(|x| < 1).1 = 1−x2+x4−x6+x8−x10+…+(−1)nx2n + o(x2n). 1+x2272365083@9请双面打印/复印(节约纸张)第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数2. 函数在一点处的泰勒级数 设 f(x)在 x0 的某邻域N(x0)内有任意阶导数, 则称幂级数f (n)(x ) Σ n! 0 (x−x0)n n=0∞f(x) 在 x0 = 0 处的泰勒级数 n=0 Σ f(x) ~ n=0 Σ∞∞f (n)(0) n x n!称为 f(x)的麦克劳林(Maclaurin)级数, 记为f (n)(0) n x. n!为 f(x) 在 x0 处的 泰勒(Taylor)级数, 记为 f(x) ~ n=0 Σ∞泰勒[英] 1685~1731 康熙1662-1723 雍正1723-1736 乾隆1736-1796 泰勒[英] 1685~1731 麦克劳林[英] 1698~1746f (n)(x0) (x−x0)n. n!康熙1662-1723 雍正1723-1736 乾隆1736-1796第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数2. 函数可展为幂级数的条件 定理11. 设 f(x)在x0的某邻域N(x0)内有任意阶 导数, 则 f(x) 在 x0 处的泰勒级数在 N(x0)内收敛并以 f(x)为和函数 ⇔ f(x)在 x0 处的泰勒公式的余项满足n→∞3. 函数展开成幂级数的方法 (1) 直接法(将f(x)展成(x − x0)的幂级数) ① 求f (n)(x0), n = 0, 1, 2, … ② 求 n=0 Σ ③ 检验∞f (n)(x0) (x−x0)n的收敛半径R n! f (n+1)(ξ)lim Rn(x) = 0 (∀x∈ N(x0)).nlim Rn(x) = n→∞ (n+1)! (x−x0)n+1 = 0 lim n→∞ ④ 写出f(x)在x0处的幂级数展开式 f(x) = n=0 Σ∞证明的关键: Rn(x) = f(x) − k=0 Σf (n)(x0) (x−x0)k. n!f (n)(x0) (x−x0)n (指出x的范围) n!第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数例16. 将f(x) = ex展开为x的幂级数. 解: f (n)(0) = 1 (n = 0, 1, 2, …), Rn(x) = (n+1)! xn+1 (0 ≤ θ ≤ 1).e|x| 因为 |Rn(x)| ≤ (n+1)! |x|n+1, ∀x∈ eθ x例17. 将f(x) = cosx展开为x的幂级数. 解: f(0) = 1, f ′(0) = 0, f ′′(0) = −1, …, f (2k)(0) = (−1)k, f (2k+1)(0) = 0, (k ∈ ,x) n+1 x (0 ≤ θ ≤ 1). (n+1)! |x|n+1 因为|Rn(x)| ≤ , ∀x∈ , (n+1)!),Rn(x) =f(n+1)(θ所以 lim Rn(x) = 0 (∀x∈ ),n→∞由此可得 ex = n=0 Σ∞xn (∀x∈ n!所以 lim Rn(x) = 0 (∀x∈ ),n→∞).cosx = 1− (∀x∈ ).x2 x4 x6 x2n + − +…+ (−1)n +… 2! 4! 6! (2n)!272365083@10第六章无穷级数(2)间接法:①代换法, ②逐项求导, ③逐项积分, ④代数运算.例18. 因为§6.3 幂级数(∀x ∈).cos x = 1−+ …+ (−1)n +…x 22! x 2n(2n )! 所以cos2x = …−sin x = −x + +…+ (−1)n +1+…x 2n +1(2n +1)!x 33!sin x = x −+…+ (−1)n+…x 2n +1(2n +1)!x 33! 例19. 将f (x ) = ln(1+x )展开为x 的幂级数. 第六章无穷级数∞n =1(−1)n −1nΣ= ln2. 解: 其和函数S (x ) ∈C(−1, 1],11+x = Σ(−1)n −1x n −1(|x | < 1). ∞n =1逐项积分得ln(1+x ) = Σx n(|x | < 1). (−1)n −1n∞n =1 又因为Σ的收敛域为(−1, 1],∞n =1 x n (−1)n −1n再由ln(1+x ) ∈C(−1, 1]可得ln(1+x ) = Σx n (−1 <x ≤1).(−1)n −1n∞n=1 注:令x = 1得§6.3 幂级数第六章无穷级数例20. 将f (x ) = (1+x )α展开为x 的幂级数(α为解: 先求得f (x )的Maclaurin 级数:其收敛半径R = 1. 则(1+x )S ′(x ) = αS (x ), S (0) = 1. 由此可得S (x ) = (1+x )α, 即常数).(∗)1+αx+α(α−1) 2!x 2+…+ α…(α−n +1) n !xn+ …设其和函数为S (x ), x ∈(−1, 1), (1+x )α= 1+αx +α(α−1) 2!x 2+…+α…(α−n +1)n !x n +…§6.3 幂级数二项式级数但在区间(−1, 1)的端点处是否成立要对α讨论.第六章无穷级数(1+x )α= 1+αx +α(α−1) 2!x 2+…+α…(α−n +1)n !x n +…可以证明, 当α≤−1时, 的收敛域为(−1, 1);当−1< α< 0时, (∗)的收敛域为(−1, 1]; 当α> 0时, (∗)的收敛域为[−1, 1]. 因此, …(∗)1+αx +α(α−1) 2!x 2+…+α…(α−n +1) n !xn+ …§6.3 幂级数例21. 求下例函数在指定点处的泰勒展式.(|x +4| < 7),(|x +4| < 3). (1) f (x ) = xx 2−2x −3, x 0= −4. 第六章无穷级数解: f (x ) = x x 2−2x −3 = −( + ), 1 4 1 x + 1 3 x −31 x −3= −−1 7 1 1−(x +4)/7 (|x +4| < 3),1 x +1= −−1 3 1 1−(x +4)/3 = −−Σ( )n1 3 x +43 ∞n =0 = −−Σ( )n1 7 x +47 ∞n =0 f (x ) = −[ ]1 4 −−Σ( )n 1 3 x +43 ∞n =0 −−Σ( )n 37 x +47∞n =0 = −−Σ( + )(x +4)n 1 4 ∞n =0 1 3n +1 3 7n +1§6.3 幂级数(2) f (x ) = sin x , x 0= π/6.解: sin x = sin[(x −−)+−]π6π6 = −cos(x −−)+ sin(x −−), π6 1 2√3 2 π6 cos(x −−) = 1 −(x −−)2+…+ (x −−)2n+…π6 π6 π6 1 2! (−1)n(2n )! sin(x −−) = (x −−) −(x −−)3+…π6π6 π6 1 3!(−1)n(2n +1)! π6 + (x −−)2n +1+…sin x = −+ (x −−) −(x −−)2+…1 2 √32π6 π6 π6π612⋅2! + (x −−)2n+ (x −−)2n +1+ …(−1)n 2⋅(2n )! (−1)n √3 2⋅(2n +1)! 第六章无穷级数§6.3 幂级数(∀x ∈).解:(3) f (x ) =故∀x ∈(−1, 1),第六章无穷级数e x1−x , x 0= 0. e x= Σ∞n =0 x nn !, 1 1−x= Σx n , ∞n =0 e x1−x= ( Σ)⋅( Σx n )∞n =0 x n n ! ∞n =0 1 1!= 1 + (1+ )x + (1+ + )x2+ (1+ + + )x3+ …1 1! 1 2!1 1! 1 2! 1 3!§6.3 幂级数∀x ∈.∀x ∈(−1, 1).第六章无穷级数求收敛半径直接R = 1/ρ已知等式化为正项级数, 讨论敛散性代换法, 逐项求导/积分, 代数运算间接函数展开为幂级数幂级数求和(ρ= lim|a n +1/a n |, 公式lim|a n |1/n ) Σ|…| 求表达式S (z ) = lim S n (z ) f (n )(x 0)/n !, 检验R n (x )代换法, 逐项求导/积分, 代数运算间接1+αx + Σ⎯⎯⎯⎯⎯x n = (1+x )α, x ∈(−1, 1). α…(α−n +1)n !∞n =2 小结§6.3 幂级数Σx n = , Σ(−x )n = , x ∈(−1, 1). ∞n =11 1−x ∞n =1 1 1+x Σ⎯=e x , Σ= sin x , x ∈. ∞n =0 x n n ! ∞n =0 (−1)n x 2n +1(2n +1)!。
§ 11 3 幂 级 数 一、函数项级数的概念函数项级数 给定一个定义在区间I 上的函数列{u n (x )} 由这函数列构成的表达式 u 1(x )u 2(x )u 3(x ) u n (x )称为定义在区间I 上的(函数项)级数 记为∑∞=1)(n n x u收敛点与发散点对于区间I 内的一定点x 0 若常数项级数∑∞=10)(n n x u 收敛 则称 点x 0是级数∑∞=1)(n n x u 的收敛点 若常数项级数∑∞=10)(n n x u 发散 则称 点x 0是级数∑∞=1)(n n x u 的发散点收敛域与发散域函数项级数∑∞=1)(n n x u 的所有收敛点的全体称为它的收敛域所有发散点的全体称为它的发散域 和函数在收敛域上 函数项级数∑∞=1)(n n x u 的和是x 的函数s (x )s (x )称为函数项级数∑∞=1)(n n x u 的和函数 并写成∑∞==1)()(n n x u x s∑u n (x )是∑∞=1)(n n x u 的简便记法 以下不再重述在收敛域上 函数项级数∑u n (x )的和是x 的函数s (x )s (x )称为函数项级数∑u n (x )的和函数 并写成s (x )∑u n (x )这函数的定义就是级数的收敛域 部分和函数项级数∑∞=1)(n n x u 的前n 项的部分和记作s n (x )函数项级数∑u n (x )的前n 项的部分和记作s n (x ) 即 s n (x ) u 1(x )u 2(x )u 3(x ) u n (x )在收敛域上有)()(lim x s x s n n =∞→或s n (x )s (x )(n)余项函数项级数∑∞=1)(n n x u 的和函数s (x )与部分和s n (x )的差r n (x )s (x )s n (x )叫做函数项级数∑∞=1)(n n x u 的余项函数项级数∑u n (x )的余项记为r n (x ) 它是和函数s (x )与部分和s n (x )的差 r n(x )s (x )s n (x )在收敛域上有0)(lim =∞→x r n n二、幂级数及其收敛性 幂级数函数项级数中简单而常见的一类级数就是各项都幂函数的函数 项级数 这种形式的级数称为幂级数 它的形式是 a 0a 1x a 2x 2a n x n其中常数a 0 a 1 a 2a n叫做幂级数的系数幂级数的例子 1x x 2x 3 x n!1 !2112⋅⋅⋅++⋅⋅⋅+++n x n x x注 幂级数的一般形式是 a 0a 1(xx 0)a 2(x x 0)2 a n (x x 0)n经变换t x x 0就得a 0a 1t a 2t 2 a n t n幂级数1x x2x 3 x n可以看成是公比为x 的几何级数 当|x |1时它是收敛的 当|x |1时 它是发散的 因此它的收敛域为(1 1) 在收敛域内有11132⋅⋅⋅++⋅⋅⋅++++=-n x x x x x定理1 (阿贝尔定理) 如果级数∑∞=0n n n x a 当x x 0 (x 00)时收敛 则适合不等式|x ||x 0|的一切x 使这幂级数绝对收敛 反之如果级数∑∞=0n n n x a 当x x 0时发散 则适合不等式|x ||x 0|的一切x 使这幂级数发散定理1 (阿贝尔定理) 如果级数∑a n x n当x x 0 (x 00)时收敛 则适合不等式|x ||x 0|的一切x 使这幂级数绝对收敛 反之 如果级数∑a n x n当x x 0时发散 则适合不等式|x ||x 0|的一切x 使这幂级数发散提示 ∑a n x n是∑∞=0n n n x a 的简记形式证 先设x 0是幂级数∑∞=0n n n x a 的收敛点 即级数∑∞=0n n n x a 收敛 根据级数收敛的必要条件有0lim 0=∞→n n n x a 于是存在一个常数M 使| a n x 0n|M (n 0, 1, 2, )这样级数∑∞=0n n n x a 的的一般项的绝对值nn n n n nn n nn x x M x x x a x x x a xa ||||||||||00000⋅≤⋅=⋅=因为当|x ||x 0|时 等比级数n n x x M ||00⋅∑∞=收敛 所以级数∑∞=0||n n n x a 收敛 也就是级数∑∞=0n n n x a 绝对收敛简要证明 设∑a n x n在点x 0收敛 则有a n x 0n0(n ) 于是数列{a n x 0n}有界 即存在一个常数M 使| a n x 0n|M (n 0, 1, 2, ) 因为 nn n n n nn n nn x x M x x x a x x x a xa || |||| || ||00000⋅≤⋅=⋅=而当||||0x x <时 等比级数n n x x M ||⋅∑∞=收敛 所以级数∑|a n x n |收敛 也就是级数∑a nx n 绝对收敛定理的第二部分可用反证法证明 倘若幂级数当x x 0时发散而有一点x 1适合|x 1|>|x 0|使级数收敛 则根据本定理的第一部分 级数当x x 0时应收敛 这与所设矛盾定理得证推论 如果级数∑∞=0n n n x a 不是仅在点x 0一点收敛 也不是在整个数轴上都收敛则必有一个完全确定的正数R 存在 使得 当|x |R 时 幂级数绝对收敛 当|x |R 时 幂级数发散当x R 与x R 时 幂级数可能收敛也可能发散收敛半径与收敛区间正数R 通常叫做幂级数∑∞=0n n n x a 的收敛半径开区间(R R )叫做幂级数∑∞=0n n n x a 的收敛区间 再由幂级数在xR 处的收敛性就可以决定它的收敛域 幂级数∑∞=0n n n x a 的收敛域是(R , R )(或[R , R )、(R , R ]、[R , R ]之一规定 若幂级数∑∞=0n n n x a 只在x0收敛 则规定收敛半径R 0 若幂级数∑∞=0n n n x a 对一切x 都收敛 则规定收敛半径R 这时收敛域为(, )定理2如果ρ=+∞→||lim 1nn n a a其中a n 、a n 1是幂级数∑∞=0n n n x a 的相邻两项的系数则这幂级数的收敛半径⎪⎪⎩⎪⎪⎨⎧+∞=≠=∞+=ρρρρ 0010 R定理2如果幂级数∑∞=0n n n x a 系数满足ρ=+∞→||lim 1nn n a a 则这幂级数的收敛半径⎪⎪⎩⎪⎪⎨⎧+∞=≠=∞+=ρρρρ 0010 R定理2如果ρ=+∞→||lim 1nn n a a则幂级数∑∞=0n n n x a 的收敛半径R 为当0时ρ1=R 当0时R 当时R 0简要证明 || ||||lim ||lim 111x x a a x a x a nn n n n n n n ρ=⋅=+∞→++∞→ (1)如果0 则只当|x |1时幂级数收敛 故ρ1=R(2)如果0 则幂级数总是收敛的 故R(3)如果 则只当x 0时幂级数收敛 故R 0例1 求幂级数)1( 32)1(13211⋅⋅⋅+-+⋅⋅⋅-+-=--∞=-∑n x x x x n x n n n n n 的收敛半径与收敛域 例1 求幂级数∑∞=--11)1(n n n nx 的收敛半径与收敛域解 因为1111lim ||lim 1=+==∞→+∞→nn a an n n n ρ所以收敛半径为11==ρR当x 1时 幂级数成为∑∞=--111)1(n n n是收敛的 当x 1时幂级数成为∑∞=-1)1(n n是发散的 因此收敛域为(1, 1]例2 求幂级数∑∞=0!1n n x n !1 !31!21132⋅⋅⋅++⋅⋅⋅++++n x n x x x的收敛域 例2 求幂级数∑∞=0!1n n x n 的收敛域解 因为0)!1(!lim !1)!1(1lim||lim 1=+=+==∞→∞→+∞→n n n n a a n n n n n ρ所以收敛半径为R从而收敛域为(, )例3 求幂级数∑∞=0!n n x n 的收敛半径解 因为+∞=+==∞→+∞→!)!1(lim ||lim 1n n a a n n n n ρ所以收敛半径为R 0 即级数仅在x 0处收敛例4 求幂级数∑∞=022!)()!2(n nx n n 的收敛半径 解 级数缺少奇次幂的项定理2不能应用可根据比值审敛法来求收敛半径幂级数的一般项记为nn x n n x u 22)!()!2()(=因为 21||4 |)()(|lim x x u x u n n n =+∞→当4|x |21即21||<x 时级数收敛 当4|x |21即21||>x 时级数发散 所以收敛半径为21=R提示 2222)1(221)1()12)(22()!()!2(])!1[()]!1(2[)()(x n n n x n n xn n x u x u n n n n +++=++=++ 例5 求幂级数∑∞=-12)1(n n nnx 的收敛域解 令t x 1 上述级数变为∑∞=12n n n n t因为 21)1(22 ||lim 11=+⋅⋅==++∞→n n a a n n n n n ρ所以收敛半径R 2当t 2时 级数成为∑∞=11n n此级数发散 当t2时 级数成为∑∞=-1)1(n n此级数收敛 因此级数∑∞=12n n n nt 的收敛域为2t 2 因为2x 12 即1x 3 所以原级数的收敛域为[1, 3)三、幂级数的运算 设幂级数∑∞=0n nn xa 及∑∞=0n n n x b 分别在区间(R , R )及(R , R )内收敛 则在(R , R )与(R , R )中较小的区间内有加法 ∑∑∑∞=∞=∞=+=+000)(n n n n n nn n nn x b a x b x a 减法 ∑∑∑∞=∞=∞=-=-0)(n nn n n n n n n n x b a x b x a设幂级数∑a n x n及∑b n x n分别在区间(R , R )及(R, R )内收敛则在(R , R )与(R , R )中较小的区间内有加法 ∑a n x n∑b n x n ∑(a n b n )x n减法 ∑a n x n∑b n x n∑(a n b n )x n乘法 )()(0∑∑∞=∞=⋅n n n n nn x b x a a 0b 0(a 0b 1a 1b 0)x (a 0b 2a 1b 1a 2b 0)x 2(a 0b n a 1b n1a nb 0)xn性质1 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛域I 上连续如果幂级数在x R (或xR )也收敛 则和函数s (x )在(R , R ](或[R , R ))连续性质2 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛域I 上可积并且有逐项积分公式∑∑⎰⎰∑⎰∞=+∞=∞=+===01001)()(n n n n xn n xn n n x x n a dx x a dx x a dx x s (x I ) 逐项积分后所得到的幂级数和原级数有相同的收敛半径性质3 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛区间(R R )内可导并且有逐项求导公式∑∑∑∞=-∞=∞=='='='110)()()(n n n n nn n nn x na x a x a x s (|x |R )逐项求导后所得到的幂级数和原级数有相同的收敛半径 性质1 幂级数∑a n x n的和函数s (x )在其收敛域I 上连续性质2 幂级数∑a n x n 的和函数s (x )在其收敛域I 上可积 并且有逐项积分公式 ∑∑⎰⎰∑⎰∞=+∞=∞=+===01001)()(n n n n xnn x n nn xx n a dx x a dx x a dx x s (x I ) 逐项积分后所得到的幂级数和原级数有相同的收敛半径 性质3 幂级数∑a n x n的和函数s (x )在其收敛区间(R R )内可导 并且有逐项求导公式∑∑∑∞=-∞=∞=='='='010)()()(n n n n n n n n n x na x a x a x s (|x |R )逐项求导后所得到的幂级数和原级数有相同的收敛半径例6 求幂级数∑∞=+011n n x n 的和函数 解 求得幂级数的收敛域为[1 1) 设和函数为s (x ) 即∑∞=+=011)(n n x n x s x [1 1) 显然s (0)1在∑∞=++=0111)(n n x n x xs 的两边求导得 x x x n x xs n n n n -=='+='∑∑∞=∞=+11)11(])([001对上式从0到x 积分 得 )1ln(11)(0x dx xx xs x--=-=⎰于是 当x 0时 有)1ln(1)(x x x s --= 从而⎪⎩⎪⎨⎧=<<--=0 11||0 )1ln(1)(x x x x x s因为⎰∑∑'+=+=∞=+∞=+x n n n n dx x n x n x xs 00101]11[11)( )1ln(11000x dx x dx x x x n n--=-==⎰⎰∑∞=所以 当x 0时 有)1ln(1)(x xx s --=从而 ⎪⎩⎪⎨⎧=<<--=0 11||0 )1ln(1)(x x x x x s例6 求幂级数∑∞=+011n n x n 的和函数解 求得幂级数的收敛域为[1 1) 设幂级数的和函数为s (x ) 即∑∞=+=011)(n nx n x s x [1 1)显然S (0)1 因为⎰∑∑'+=+=∞=+∞=+x n n n n dx x n x n x xs 00101]11[11)()11( )1ln(11000<<---=-==⎰⎰∑∞=x x dx x dx x x x n n所以 当1||0<<x 时有)1ln(1)(x xx s --=从而 ⎪⎩⎪⎨⎧=<<--=0 11||0 )1ln(1)(x x x x x s由和函数在收敛域上的连续性 2ln )(lim )1(1==-+-→x S S x综合起来得⎪⎩⎪⎨⎧=⋃-∈--=0 1)1 ,0()0 ,1[ )1ln(1)(x x x xx s提示 应用公式)0()()(0F x F dx x F x-='⎰ 即⎰'+=xdxx F F x F 0)()0()(11132⋅⋅⋅++⋅⋅⋅++++=-n x x x x x例7 求级数∑∞=+-01)1(n nn 的和解 考虑幂级数∑∞=+011n n x n 此级数在[1, 1)上收敛 设其和函数为s (x ) 则∑∞=+-=-01)1()1(n nn s在例6中已得到xs (x )ln(1x ) 于是s (1)ln2 21ln)1(=-s 即21ln 1)1(0=+-∑∞=n n n。
数列与级数的函数项级数与幂级数数列与级数是数学中重要的概念和研究对象,它们在各个领域都有
广泛的应用。
而函数项级数和幂级数则是数列与级数的两种特殊形式,它们在解析学、微积分以及物理学等领域都有重要的作用。
本文将介
绍函数项级数和幂级数的定义、性质以及应用。
一、函数项级数
函数项级数是指数列的通项是一个函数,而不是常数。
函数项级数
的一般形式可以表示为∑(n=1到∞) an(x)。
其中,an(x)是一个关于自变
量x的函数,并且随着n的增大而变化。
函数项级数可以看作是由一
系列函数组成的序列。
函数项级数的收敛性是指当x取某个值时,级数的部分和不断逼近
于某个有限值。
如果函数项级数的部分和收敛于有限值,那么我们称
该函数项级数在该点收敛。
函数项级数的收敛性可以通过一系列的测
试方法进行判断,比如比较判别法、积分判别法以及魏尔斯特拉斯判
别法等。
函数项级数在分析学、微积分和物理学等领域都有广泛的应用。
例如,泰勒级数是一种特殊的函数项级数,它可以将任意函数近似为一
系列幂函数的和。
这在微积分的应用中非常重要。
此外,函数项级数
还有在物理学中解决波动方程、热传导方程和扩散方程等问题中的应用。
二、幂级数
幂级数是函数项级数的一种特殊形式,它的通项是幂函数。
幂级数的一般形式可以表示为∑(n=0到∞) cn(x-a)^n。
其中,cn是常数系数,x 是自变量,a是常数。
幂级数可以看作是由一系列幂函数组成的序列。
幂级数的收敛性同样可以通过一系列的测试方法进行判断,比如比值判别法、根值判别法和柯西-阿达玛公式等。
与函数项级数类似,幂级数在分析学、微积分和物理学等领域都有重要的应用。
在解析学中,我们可以使用幂级数来表示一些常见函数,比如指数函数、三角函数和对数函数等。
幂级数在数值计算和近似计算中也有广泛的应用。
此外,幂级数还可以用来解决差分方程、微分方程和边值问题等。
总结:
数列与级数是数学中重要的概念,在函数项级数和幂级数的框架下有着广泛的应用。
函数项级数是以函数为通项的级数,在分析学和微积分中有重要的作用。
而幂级数是特殊的函数项级数,它的通项是幂函数,可用于表示常见函数以及解决各种数学问题。
函数项级数和幂级数的收敛性可以通过不同的判别法来判断,这些方法对于数学分析和实际应用都具有重要意义。